首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The culture filtrate (CF) from the plant growth-promoting fungus Phoma sp. GS8-1 was found to induce systemic resistance in Arabidopsis thaliana against the bacterial leaf speck pathogen Pseudomonas syringae pv. tomato DC3000 (Pst), and the underlying mechanism was studied. Roots of A. thaliana were treated with CF from GS8-1, and plants expressed a clear resistance to subsequent Pst infection; disease severity was reduced, and proliferation of pathogen was suppressed. Various mutants of A. thaliana were used to test whether the CF induced resistance through one of the known signaling pathways: salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). The CF was fully protective against Pst in Arabidopsis mutants jar1 and ein2 similar to wild-type plants. However, its efficacy was reduced in plants containing transgene NahG. Examination of systemic gene expression revealed that CF modulates the expression of SA-inducible PR-1, PR-2 and PR-5 genes, the JA/ET-inducible ChitB gene, and the ET-inducible Hel gene. Moreover, the expression of these genes was further enhanced upon subsequent stimulation after attack by Pst. Our data suggest that in addition to a partial requirement for SA, the signals JA and ET may also play a role in defense signaling in Arabidopsis.  相似文献   

2.
3.
The Arabidopsis MPK3 gene product participates in disease resistance mediated by the MAP kinase cascade. The expression of the MPK3 gene is induced by pathogen inoculation and treatment with chemicals such as salicylic acid (SA) and methyl jasmonate (JA), but the detailed expression pattern of the MPK3 gene has been largely unknown. To investigate MPK3 gene expression in response to disease stress, we fused the MPK3 promoter to the firefly luciferase gene to create a real-time monitoring system for regulated gene expression in planta. The results of an in vivo reporter assay using transgenic Arabidopsis plants harboring MPK3::Fluc showed that the MPK3 promoter activity was induced by treatment with chemicals such as SA and benzo(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), that induce defense gene expression. Inoculation with the fungal pathogen Botrytis cinerea resulted in systemic induction of MPK3::Fluc.  相似文献   

4.
Systemic acquired resistance (SAR) is induced following inoculation of Peronospora tabacina sporangia into the stems of Nicotiana tabacum plants highly susceptible to the pathogen. Previous results have shown that accumulation of acidic β-1,3-glucanases (PR-2's) following induction of SAR by P. tabacina may contribute to resistance to P. tabacina. We showed that up-regulation of the PR-2 gene, PR-2d, following stem inoculation with P. tabacina, is associated with SAR. Studies using plants transformed with GUS constructs containing the full length promoter from PR-2d or promoter deletions, provided evidence that a previously characterized regulatory element that is involved in response to salicylic acid (SA), may be involved in regulation of PR-2d following induction of SAR with P. tabacina. This work provides evidence that regulation of PR-2 genes during P. tabacina-induced SAR may be similar to regulation of these genes during infection of N-gene tobacco by TMV or following exogenous application of SA, and provides further support for the role of SA in regulation of genes during P. tabacina-induced SAR.  相似文献   

5.
Treatment of tobacco with a mixture containing reactive oxygen species (ROS) and salicylic acid (SA) provided greater protection of tobacco against infection by Pseudomonas syringae pv. tabaci than either treatment alone. Synergism in expression from the promoter of the defense gene PR-1a was also observed. Although the ROS hydrogen peroxide and peracetic acid were poor inducers alone, they enhanced the level of -glucuronidase (GUS) activity expressed from the PR-1a promoter when applied with SA to a transgenic plant bearing a PR-1a::GUS fusion. PR-1a expression was not correlated with increased cell death as determined by Evans blue staining. There was no effect on the timing at which expression was increased by the mixture compared with the separate treatments. The mixture of hydrogen peroxide and SA partially mimicked the effect of a commercial product Oxycom that has field efficacy in improving plant performance. Repetitive applications of Oxycom enhanced expression from the PR-1a promoter and the production of the PR-1 protein. Enhanced activity occurred systemically both from aerial applications to single leaves and from root drenches. Root application strongly promoted veinal expression for the PR-1a promoter compared with confluent production in leaves of sprayed seedlings. Application methods and timing may aid in the success of activators of systemic acquired resistance in field conditions.  相似文献   

6.
7.
Plants sprayed with harpin, a bacterial protein that induces hypersensitive cell death (HCD), develop systemic acquired resistance (SAR) without macroscopic necrosis. HCD sometimes accompanies the development of resistance conferred by resistance (R) genes. In Arabidopsis, some R genes require one or both of the signalling components NDR1 and EDS1 for function. This study addresses whether HCD, NDR1 and EDS1 are required for induction of SAR by harpin. When Arabidopsis and tobacco leaves were sprayed with harpin, microscopic hypersensitive response (micro-HR) lesions developed. Systemic expression of PR genes and the development of resistance were accompanied by micro-HR, except in the ndr1-1 mutant, in which harpin induced micro-HR without the development of resistance or expression of the PR-1 gene. Cell death and resistance did not occur following treatment with harpin in plants that could not accumulate salicylic acid. Harpin also failed to induce resistance in Arabidopsis eds1-1 mutants. Therefore, harpin-induced resistance seems to develop concomitantly with cell death and resistance requires NDR1 and EDS1.  相似文献   

8.
A conventional PCR and a SYBR Green real-time PCR assays for the detection and quantification of Phytophthora cryptogea, an economically important pathogen, have been developed and tested. A conventional primer set (Cryp1 and Cryp2) was designed from the Ypt1 gene of P. cryptogea. A 369 bp product was amplified on DNA from 17 isolates of P. cryptogea. No product was amplified on DNA from 34 other Phytophthora spp., water moulds, true fungi and bacteria. In addition, Cryp1/Cryp2 primers were successfully adapted to real-time PCR. The conventional PCR and real-time PCR assays were compared. The PCR was able to detect the pathogen on naturally infected gerbera plants and on symptomatic artificially infected plants collected 21 days after pathogen inoculation. The detection limit was 5 × 103 P. cryptogea zoospores and 16 fg of DNA. Real-time PCR showed a detection limit 100 times lower (50 zoospores, 160 ag of DNA) and the possibility of detecting the pathogen in symptomless artificially infected plants and in the re-circulating nutrient solution of closed soilless cultivation systems.  相似文献   

9.
Vascular plants have various inducible resistance mechanisms as defense against pathogens. Mosses, small nonvascular plants (subkingdom Bryophyta), have been little studied in regard to their pathogens or modes of defense. Data here show that Erwinia carotovora, a bacterial plant pathogen that causes softrot in many dicotyledonous plants, can also cause soft rot symptoms in the moss Physcomitrella patens. Infection of moss by E. carotovora required pathogenicity factors similar to those required to infect vascular plants and, again as in vascular plants, salicylic acid (SA) induced moss to inhibit tissue maceration by Erwinia. These data reveal that SA-dependent defense pathways may have evolved before differentiation of vascular and nonvascular plants.  相似文献   

10.
During defense responses, plant cells produce nitric oxide (NO), which may control many physiological processes. In a previous study, we reported that nitrate reductase (NR) is responsible in part for INF1 elicitor-induced NO production in Nicotiana benthamiana, but the possibility remains that other NO-generating system(s) contribute to NO production. In mammalian cells, NO production is catalyzed by NO synthase (NOS). However, NOS-like enzyme(s) have never been identified in plants, and only the gene for Arabidopsis thaliana nitric oxide-associated 1 (AtNOA1) has been identified as a putative regulator of NOS activity in plants. In this study, we cloned NbNOA1, a homolog of AtNOA1, from N. benthamiana and investigated its involvement in NO production induced by INF1. The NbNOA1 gene was silenced by a virus-induced gene-silencing (VIGS) technique. NbNOA1-silenced plants had yellowish leaves. Silencing NbNOA1 partially decreased INF1-induced NO production, while overexpressing NbNOA1 did not affect NO production. Silencing NbNOA1 suppressed INF1-induced PR1a gene expression and increased susceptibility to Colletotrichum lagenarium. These results suggest that NbNOA1 is involved in INF1-mediated NO production and is required for defense responses. The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under accession number AB303300.  相似文献   

11.
12.
Recent studies have indicated that the phytohormone abscisic acid (ABA), induced in response to a variety of environmental stresses, plays an important role in modulating diverse plant–pathogen interactions. In Arabidopsis thaliana, we previously clarified that ABA suppressed the induction of systemic acquired resistance (SAR), a plant defense system induced by pathogen infection through salicylic acid (SA) accumulation. We investigated the generality of this suppressive effect by ABA on SAR using tobacco plants. For SAR induction, we used 1,2-benzisothiazole-3(2H)-one 1,1-dioxide (BIT) and benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH) that activate upstream and downstream of SA in the SAR signaling pathway, respectively. Wild-type tobacco plants treated with BIT or BTH exhibited enhanced disease resistance against Tobacco mosaic virus (TMV) and tobacco wildfire bacterium, Pseudomonas syringae pv. tabaci (Pst), however, which was suppressed by pretreatment of plants with ABA. Pretreatment with ABA also suppressed the expression of SAR-marker genes by BIT and BTH, indicating that ABA suppressed the induction of SAR. ABA suppressed BTH-induced disease resistance and pathogenesis-related (PR) gene expression in NahG-transgenic plants that are unable to accumulate SA. The accumulation of SA in wild-type plants after BIT treatment was also suppressed by pretreatment with ABA. These data suggest that ABA suppresses both upstream and downstream of SA in the SAR signaling pathway in tobacco.  相似文献   

13.
1-Octen-3-ol is a major volatile metabolite produced by mold fungi. When Arabidopsis plants were treated with 1-octen-3-ol, some defense genes that are turned on by wounding or ethylene/jasmonic acid signaling were induced. The treatment also enhanced resistance of the plant against Botrytis cinerea. When the induction of defense genes with 1-octen-3-ol was compared with that by volatile methyl jasmonate (MeJA) and methyl salicylate treatments, the induction pattern was similar to that caused by MeJA. Thus, Arabidopsis seems to recognize 1-octen-3-ol and consequently activates its defense response.  相似文献   

14.
15.
褐飞虱与白背飞虱为害诱导水稻防御反应的比较   总被引:1,自引:0,他引:1  
为探究2种稻飞虱——褐飞虱Nilaparvata lugens(St?l)和白背飞虱Sogatella furcifera(Horváth)诱导的水稻防御反应差异,于室内测定了水稻在分别受褐飞虱或白背飞虱产卵雌成虫为害时,其茉莉酸、水杨酸、乙烯、H_2O_2以及挥发物含量的变化。结果表明,尽管褐飞虱和白背飞虱产卵雌成虫的为害均可以诱导水稻茉莉酸、水杨酸、乙烯和H_2O_2等防御相关信号分子以及一些水稻挥发物含量的增加,但是二者的诱导作用存在差异。水稻在受白背飞虱产卵雌成虫为害时,茉莉酸的含量在3 h时就显著升高,12 h时含量达到最高;而受褐飞虱产卵雌成虫为害时,6 h时茉莉酸含量才显著升高,72 h时含量达最高;并且在2种稻飞虱为害的3~48 h内,白背飞虱为害诱导的茉莉酸含量始终显著高于褐飞虱为害诱导的。水稻受白背飞虱产卵雌成虫为害24 h后诱导的水杨酸含量、为害48 h后诱导的乙烯含量、为害72 h后诱导的H_2O_2含量及为害24 h后诱导的挥发物释放量分别是褐飞虱产卵雌成虫为害诱导的1.28、1.45、4.10和1.77倍。表明水稻能识别褐飞虱和白背飞虱的为害,从而做出针对害虫种类特异性的防御反应;并且水稻对白背飞虱产卵雌成虫为害所做出的防御反应比对褐飞虱的更强烈。  相似文献   

16.
To initiate defense responses against invasion of pathogenic organisms, animals and plants must recognize microbe-associated molecular patterns (MAMPs). In this study, the elicitor activity of bacterial DNA on the model plant Arabidopsis thaliana was examined. EcoRI-digested plasmid DNA induced defense responses such as generation of reactive oxygen species and deposition of callose, whereas SmaI- and HapII-digested plasmid DNA and EcoRI-digested herring DNA did not remarkably induce these responses. Further, methylation of the CpG sequence of plasmid DNA and Escherichia coli DNA reduced the level of the defense responses. The endocytosis inhibitors wortmannin and amantadine significantly inhibited DNA-induced defense responses. These results suggest that non-methylated CpG DNA, as a MAMP, induced defense responses in Arabidopsis and that non-methylated DNA seems to be translocated into the cytoplasm by endocytosis.  相似文献   

17.
Biological control of Rhizoctonia solani with Trichoderma harzianum has been demonstrated in several studies. However, none have reported the dynamics of expression of defence response genes. Here we investigated the expression of these genes in potato roots challenged by R. solani in the presence/absence of T. harzianum Rifai MUCL 29707. Analysis of gene expression revealed an induction of PR1 at 168 h post-inoculation (hpi) and PAL at 96 hpi in the plants inoculated with T. harzianum Rifai MUCL 29707, an induction of PR1, PR2 and PAL at 48 hpi in the plants inoculated with R. solani and an induction of Lox at 24 hpi and PR1, PR2, PAL and GST1 at 72 hpi in the plants inoculated with both organisms. These results suggest that in the presence of T. harzianum Rifai MUCL 29707, the expression of Lox and GST1 genes are primed in potato plantlets infected with R. solani at an early stage of infection. Mycothèque de l’Université catholique de Louvain of S. Cranenbrouck's affiliation is part of the Belgian Coordinated Collections of Micro-organisms (BCCM).  相似文献   

18.
19.
Large-scale cDNA-AFLP profiling identified numerous genes with increased expression during the resistance response of wheat to the Septoria tritici blotch fungus, Mycosphaerella graminicola. To test whether these genes were associated with resistance responses, primers were designed for the 14 that were most strongly up-regulated, and their levels of expression were measured at 12 time points from 0 to 27 days after inoculation (DAI) in two resistant and two susceptible cultivars of wheat by real-time quantitative polymerase chain reaction. None of these genes was expressed constitutively in the resistant wheat cultivars. Instead, infection of wheat by M. graminicola induced changes in expression of each gene in both resistant and susceptible cultivars over time. The four genes chitinase, phenylalanine ammonia lyase, pathogenesis-related protein PR-1, and peroxidase were induced from about 10- to 60-fold at early stages (3 h–1 DAI) during the incompatible interactions but were not expressed at later time points. Nine other genes (ATPase, brassinosteroid-6-oxidase, peptidylprolyl isomerase, peroxidase 2, 40S ribosomal protein, ADP-glucose pyrophosphorylase, putative protease inhibitor, methionine sulfoxide reductase, and an RNase S-like protein precursor) had bimodal patterns with both early (1–3 DAI) and late (12–24 DAI) peaks of expression in at least one of the resistant cultivars, but low if any induction in the two susceptible cultivars. The remaining gene (a serine carboxypeptidase) had a trimodal pattern of expression in the resistant cultivar Tadinia. These results indicate that the resistance response of wheat to M. graminicola is not completed during the first 24 h after contact with the pathogen, as thought previously, but instead can extend into the period from 18 to 24 DAI when fungal growth increases dramatically in compatible interactions. Many of these genes have a possible function in signal transduction or possibly as regulatory elements. Expression of the PR-1 gene at 12 h after inoculation was much higher in resistant compared to susceptible recombinant-inbred lines (RILs) segregating for the Stb4 and Stb8 genes for resistance. Therefore, analysis of gene expression could provide a faster method for separating resistant from susceptible lines in research programs. Significant differential expression patterns of the defense-related genes between the resistant and susceptible wheat cultivars and RILs after inoculation with M. graminicola suggest that these genes may play a major role in the resistance mechanisms of wheat.  相似文献   

20.
Botrytis cinerea is a non-specific, necrotrophic pathogen that attacks many plant species, including Arabidopsis and tomato. Since senescing leaves are particularly susceptible to infection by B. cinerea, we hypothesized that the fungus might induce senescence as part of its mode of action and that delaying leaf senescence might reduce the severity of B. cinerea infections. To examine these hypotheses, we followed the expression of Arabidopsis SAG12, a senescence-specific gene, upon infection with B. cinerea. Expression of SAG12 is induced by B. cinerea infection, indicating that B. cinerea induces senescence. The promoter of SAG12, as well as that of a second Arabidopsis senescence-associated gene, SAG13, whose expression is not specific to senescence, were previously analyzed in tomato plants and were found to be expressed in a similar manner in the two species. These promoters were previously used in tomato plants to drive the expression of isopentenyl transferase (IPT) from Agrobacterium to suppress leaf senescence (Swartzberg et al. in Plant Biology 8:579–586, 2006). In this study, we examined the expression of these promoters following infection of tomato plants with B. cinerea. Both promoters exhibit high expression levels upon B. cinerea infection of non-senescing leaves of tomato plants, supporting our conclusion that B. cinerea induces senescence as part of its mode of action. In contrast to B. cinerea, Trichoderma harzianum T39, a saprophytic fungus that is used as a biocontrol agent against B. cinerea, induces expression of SAG13 only. Expression of IPT, under the control of the SAG12 and SAG13 promoters in response to infection with B. cinerea resulted in suppression of B. cinerea-induced disease symptoms, substantiating our prediction that delaying leaf senescence might reduce susceptibility to B. cinerea. Contribution from the Agriculture Research Organization, The Volcani Center, Bet Dagan, Israel, No. 127/2006 series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号