首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基于热重红外的硫酸盐法黑液热解特性分析   总被引:1,自引:0,他引:1  
为了深入地探讨黑液热解的反应机理以及黑液热解过程中产物的释放规律,采用热重-红外联用(TG-FT-IR)技术对竹子和桉木混合硫酸盐法制浆黑液固形物(BLS)的热裂解过程进行了研究。TG-FT-IR结果显示,BLS热解产物的释放主要集中在500~2 000 s,热解产物主要是CO2、CH4、H2O、CO、醇酚类化合物和醛酮类化合物。BLS的整个热解过程可分为3个阶段,第1阶段的失重主要是原料中结合水的挥发引起的,此阶段的最大失重速率出现在105℃;第2失重阶段主要发生在173~518℃,失重率约为25.19%,主要产物是CO2、CH4、H2O、醇酚类化合物、醛酮类化合物以及少量的CO,此阶段CO2的生成量最大;第3阶段主要发生在722~1 000℃,失重率接近39.05%,产物主要是CO,其它小分子产物的产率都很低。  相似文献   

2.
棕榈壳热解失重特性及动力学研究   总被引:1,自引:0,他引:1  
采用热重-红外联用(TG-FTIR)、裂解-气相色谱/质谱联用(Py-GC/MS)技术和小型固定床装置,考察了棕榈壳的热解失重过程和产物特性,并进一步评价了热解半焦的气化反应性。结果表明:棕榈壳热解失重过程大致分为干燥(25~236℃,3.42%)、主失重(236~400℃,52.31%)和炭化(400~850℃,14.90%)3个阶段,1.5级或2级反应可以较好描述棕榈壳热解反应的主失重过程;升温速率10~30 K/min下,反应表观活化能为67.63~76.47 k J/mol;热解过程主要气体产物的释放量顺序分别为CO2、H2O、CH4和CO;600~850℃下,棕榈壳主要热解产物为液相产物,其质量产率36.8%~50.9%,能量产率41.3%~58.9%,主要组分包括苯酚、乙酸、十八烷酸、十六烷酸、4-烯丙基-2,6-二甲氧基苯酚等物质,其中苯酚GC含量较高(12.56%~15.49%),这可能主要与原料木质素的含量较高有关;固相产物的质量和能量产率分别为20.6%~26.7%和27.4%~35.0%,其CO2气化反应性相对低于稻秆、木粉等常见生物质。  相似文献   

3.
采用热重-红外光谱(TG-FTIR)和裂解-气相色谱-质谱联用(Py-GC-MS)技术对椰壳粉的热失重、热裂解行为及其裂解产物进行了研究。在对N2和空气气氛下椰壳的TG和DTG曲线进行分析的基础上,采用三维红外光谱对热解过程中气体产物进行在线检测,结果表明:N2气氛下,椰壳的最大失重峰温度(Tm)为347.8℃,固体残余量为32.0%,主要的气体产物是CO2;而空气气氛下椰壳的热解更完全,固体残余量仅为6.5%,且最大热失重温度为282.1℃,释放的气体除了CO2,还有CO、H2O和CH4等。Py-GC-MS分析结果表明:酚类化合物是主要的裂解产物,当温度为400℃时共检测到39种裂解产物,其中酚类化合物12种(GC含量40.0%);当温度为700℃时共检测到56种裂解产物,其中酚类化合物18种(GC含量45.8%)。  相似文献   

4.
生物质三组分真空热解特性及液化产物成分分析   总被引:1,自引:0,他引:1  
以微晶纤维素、木聚糖和碱性木质素分别作为生物质3组分(纤维素、半纤维素和木质素)的模型物,利用傅立叶变换红外光谱技术(FT-IR)对生物质3组分结构进行了表征,并对3组分进行了真空热解特性分析,同时利用气质联用技术(GC-MS)对3组分真空热解液化后的生物油进行了成分分析,初步探讨了各组分的真空热解液化机理。研究结果表明,纤维素含有吡喃环、β-糖苷键等特征结构,真空热解时失重区间较窄(250~400℃),真空热解油产率较高(73.79%),产物主要有2,5-二甲基呋喃(9.32%)、2,6-二甲氧基苯酚(5.72%)和左旋葡聚糖(17.04%)等;木聚糖中存在β-糖苷键、阿拉伯糖侧链等结构,支链多,热稳定性差,真空热解油主要含有乙酸(10.11%)、羟基丙酮(18.42%)和糠醛(13.15%)等;木质素中含有较多的芳香族类物质结构,热解缓慢,失重区间较宽(185~550℃),热解终了时固体残留物较多,为29.67%,真空热解油中苯酚(16.24%)、愈创木酚(20.37%)等酚类物质较多。  相似文献   

5.
利用固定床反应器研究了木屑与低密度聚乙烯(LDPE)共热解时的热解行为,并以木屑、LDPE单独热解为对照,考察了热解温度对共热解行为的影响,结果表明:木屑与LDPE共热解可以提高液体产率,当热解温度为600℃时液体产率达到最大值56.84%,比理论值高6.44个百分点。通过GC-MS对生物质与LDPE共热解液体产物组成进行了分析,发现共热解产生的生物油组分主要为脂肪烃、醇类及酚类,共热解过程中还生成了某些特定组分,如十一醇、庚烯醛等含氧长链化合物,这是生物质与LDPE共热解时自由基相互作用的产物。通过热重-红外联用实验研究了木屑与LDPE共热解的协同作用,结果发现:共热解时最大反应速率温度为490℃,相比LDPE单独热解时的512℃降低22℃;木质素裂解过程中产生的羟基自由基会与LDPE裂解产生的小分子产物结合形成十一醇、辛基苯酚等物质,而纤维素热解过程中生成的呋喃类、醛类会与LDPE裂解产生的CnHm分子结合形成2-丁基四氢呋喃、庚烯醛、十二醛等物质。  相似文献   

6.
木质素作为三维网状无定形高聚物,其化学结构非常复杂。为探究热解过程中产物的分布及形成路径,利用PyGC/MS联用仪在不同的热解温度下对软木木质素中最典型的C—C键(β-5型)模型化合物的热解产物进行详细研究。结果表明:β-5型化合物在低温下主要发生C—O键的开环断裂,热解产物仍以二聚体的酚类和酮类化合物为主。随着热解温度的升高,二聚体继续发生二次裂解反应,形成大量的小分子芳香族化合物,相对含量约占15%~30%;当热解温度为900℃时,热裂解生成的化合物之间能够通过缩聚反应形成萘和茚,其相对含量约占产物含量的9%。同时,反应路径也进一步揭示了热解过程中的转化机理。  相似文献   

7.
利用热重红外联用的分析方法对杨木粉和纤维素的热解失重特性和产物生成特性进行了对比研究。结果表明,杨木粉与纤维素热解失重的主要阶段在210~400℃范围内,裂解速率均约在350℃时达到最大。由于纤维素与杨木粉组成成分不同,杨木粉发生热失重的时间更早过程更长,而结构单一的纤维素在热失重过程中反应更为剧烈,分解速度较快裂解更完全。在线红外分析结果表明,杨木粉和纤维素热解产生的气体主要为CO2、CO、H2O及饱和小分子烷烃类,由于杨木粉中还有除纤维素以外的组分,使其热裂解过程变得更为复杂。  相似文献   

8.
制浆黑液固形物与工业木质素热解液化产物分析   总被引:2,自引:0,他引:2  
采用管式炉研究了纯化后的工业碱木质素和制浆黑液固形物在不同温度下的热解产物分布规律.借助热解-色谱-质谱(Py-GC-MS)联用、元素分析仪、ICP等离子发射光谱等分析了热解液相产物(热解油)和固体残余物的主要组成.研究表明,在600℃下热解,纯化后的工业碱木质素和黑液固形物热解油产率最高,且工业木质素热解油产率明显高于黑液固形物.热解油的产物非常复杂,纯化后的工业碱木质素和黑液固形物的热解油化学组成有较大的差异.纯化后的工业碱木质素热解油主要由各种低相对分子质量(Mr)的酚类、酮类、有机酸等物质组成,这些物质的相对含量明显高于黑液固形物热解产物中的含量,其中不含有黑液固形物的热解产物中相对含量较高的左旋葡萄糖,却出现了可能因热解缩合而形成的联苯结构.说明在黑液固形物热解液化前,对试样进行适当前处理,可在很大程度上调控其热解产物的组成.  相似文献   

9.
【目的】研究杏壳半纤维素的结构组成、微观形貌以及其热解特性和产物生成规律,为杏壳热化学利用提供理论基础。【方法】采用碱抽提和乙醇纯化方式分离杏壳半纤维素,基于红外光谱、核磁共振、扫描电子显微镜对其结构组成和微观形貌进行表征,利用热重分析、热重红外连用分析杏壳半纤维素的热解特性。【结果】从杏壳中分离出半纤维素的得率为29.44%,红外光谱特征吸收峰主要集中在1 620~600 cm-1范围内,半纤维素成分以吡喃环结构的木糖为主。核磁共振图谱表明,杏壳半纤维素是以β-D-吡喃木糖形成的木聚糖为主链,在木糖基的C-2位连接4-O-甲基-α-D-葡萄糖醛酸,C-3位连有α-L-呋喃阿拉伯糖。扫描电子显微镜分析显示,半纤维素存在团聚现象,微观形态呈堆砌状的近似球形结构,半纤维素结构有一定的破坏。杏壳半纤维素的主要热解温度范围为210~380℃,在240℃出现一个肩状峰,在308℃出现最大失重尖峰,失重过程在600℃左右结束,800℃时热解残炭量为25.33%。杏壳半纤维素热解时各产物析出量在310℃时达到最高,小分子气体产物主要有CO_2、CO、CH_4,且CO_2和CO量远高于CH_4。【结论】杏壳半纤维素得率为29.44%,是以β-D-吡喃木糖形成的木聚糖为主链,呈堆砌状的近似球形结构,热解产物以CO_2、CO及乙酸、糠醛、丙酮等为主。  相似文献   

10.
通过TG和DSC对松木屑/低密度聚乙烯(LDPE)混合物的热解行为进行了研究,并利用微波辅助加热方式对不同质量比松木屑/LDPE混合物的热解产物进行了分析。实验表明,松木屑和LDPE可在270~480℃温度区间共热解,且共热解行为以375℃为界可分为两个阶段;松木屑/LDPE质量比在10∶2以下时具有较明显的共热解行为。气-质联用(GC-MS)分析表明,提高微波功率或增加LDPE加入量均会降低共热解液相产物的产率,其产物中愈创木酚类产物的产率降幅明显;生成大量的1-羟基-2-丙酮和乙酸,约占液相产物分率50%以上。大功率微波辅助加热会增加不凝气体,且LDPE加入量的增加会促进CO、CO2的产生。  相似文献   

11.
椰壳热解炭化热分析研究   总被引:1,自引:0,他引:1  
椰壳是一种优质活性炭原料,利用同步热重-差热分析仪(TG-DTA)对椰壳的热失重、热效应、热稳定性进行研究,分析了椰壳热解炭化的机理。作者还探讨了椰壳热解温度、升温速度对其炭化得率、分解速率的影响。实验结果表明:在5种升温条件下,椰壳热分析曲线都有两个失重阶段。热解温度区间在200~410℃之间。控制第二失重阶段是椰壳热解炭化的关键,提高升温速率在一定程度上会有利于椰壳热解反应的进行。当升温速率为20℃/m in,此时分解热焓为792.15 J/g,失重为31.925%。热解终温宜选择575℃。为椰壳的炭化工艺优化提供理论依据。  相似文献   

12.
研究了杨木[populus tremula]在120~300℃温度范围内热解过程中释放的VOC成分与含量,采用热重红外联用仪分析了杨木的失重和热解速度,以及热解产物的官能团,在此基础上用热解气质联用仪对杨木热解过程中释放的VOC进行分析。结果表明:杨木在热解过程中释放的VOC主要为酚类,其次是酮类、酸类、醇类、醛类。该研究旨在为木材热改性过程中有机挥发物控制处理技术和排放标准提供理论基础。  相似文献   

13.
竹材热解特性研究   总被引:2,自引:0,他引:2  
主要研究了竹材在快速热解与常规热解下液相、固相及气相产品的得率差异.快速热解下升温28℃/s,停留时间0.76 s,温度500℃,液相产品竹焦油得率为48.5%,主要组分为2,6-二甲氧基苯酚和2-甲氧基苯酚(愈疮木酚),在常规热解下升温速率1℃/min,温度500℃,液相得率为30%(包括水),组分主要为乙酸.在常规或缓慢热解中,固相产物,炭的微孔结构中,当热解温度低于550℃的情况下,主要孔径在6.0~22.0 nm,当热解温度在650~750℃,主要孔径<2 nm.  相似文献   

14.
以木质素磺酸钙(Ca-Ls)为原料,运用元素分析、傅里叶变换红外光谱(FT-IR)手段对其化学结构和性能进行表征,利用热重分析法(TG)和热解-气相色谱/质谱联用(Py-GC/MS)技术研究木质素磺酸钙的热裂解特性。研究发现:木质素磺酸盐相对于草本类木质素具有较低的碳含量及氮含量,较高的硫含量;木质素磺酸钙含有较丰富的愈创木基(G型)与紫丁香基(S型)结构单元;木质素磺酸钙热解分为4个阶段,主要热解温度范围为150~450℃;升温速率为10、20、30℃/min时,热失重微分曲线上最大失重峰向高温迁移,同时随着升温速率的增大,木质素磺酸钙热解时样品颗粒达到热降解所需温度的响应时间变短,木质素磺酸钙热分解速率增大,从而改变了木质素发生热降解反应的进程。  相似文献   

15.
核桃壳与煤共热解的热重分析及动力学研究   总被引:1,自引:0,他引:1  
利用热重分析在不同升温速率(5~50 K/min)和氮气气氛下对核桃壳、褐煤以及核桃壳-褐煤(质量比1∶1)混合物的热解失重行为进行了研究,求取了热解动力学参数。实验结果表明,随着升温速率的提高,3种原料的失重率下降,热失重速率升高;核桃壳与褐煤共热解时存在协同作用;三者的平衡热解温度分别为568.9、709.9和571.0K。应用Coats-Redfern方法进行热解动力学过程分析表明,3种原料均可由一级反应过程描述。核桃壳快速热解和残余物缓慢热解阶段的平均活化能分别为50.6、17.3 kJ/mol,褐煤的平均活化能为21.1 kJ/mol,核桃壳-褐煤混合物快速热解和残余物缓慢热解阶段的平均活化能分别为34.2和14.5 kJ/mol。  相似文献   

16.
纤维素与半纤维素热解过程的相互影响   总被引:2,自引:0,他引:2  
以微晶纤维素为纤维素模型物,以木聚糖为半纤维素模型物,采用同步热分析仪(STA)及热重和傅立叶红外光谱仪联用技术(TG-FT-IR)对微晶纤维素、木聚糖以及两种成分不同比例的混合组分进行了研究,以考察纤维素和半纤维素在热解过程中的相互影响。结果表明微晶纤维素和木聚糖均有一狭窄的快速热解温度区间,而且两者热解区间不重合。在微商热失重(DTG)峰对应温度区间微晶纤维素热解有一明显的吸热峰,吸热量为547.98 J/g,木聚糖热解则有一个比DTG峰较晚出现的小吸热峰,吸热量为45.01 J/g。木聚糖与微晶纤维素的混合组分的热解研究中发现,在DTG曲线上有两个分别由它们热解引起的失重峰,随着组分中比例的变化两个热失重峰此消彼长。微晶纤维素的热解失重峰不仅往高温区移动,而且热解速率减缓,热失重范围变宽。在DSC曲线上有两个分别由木聚糖和微晶纤维素热解所引起的吸热峰,木聚糖的吸热峰受组分中比例的变化影响较小,而微晶纤维素吸热峰随着纤维素比例的下降而明显减小。FT-IR检测到的主要有气体产物为H2O、CH4、CO2和CO。木聚糖与微晶纤维素的混合组分热解产物析出规律总体上是两者热解产物析出的叠加,与单独热解相比组分的混合有利于CH4、CO的生成,而CO2的产量则有较大幅度的下降。  相似文献   

17.
将银杏木、杉木和麦秸秆、稻草、玉米芯等5种木本和禾草类植物纤维原料在氮气气氛中进行常规热解,采用气相色谱在线分析热解气体产物组分,采用气质联用技术分析冷却收集到的热解液体产物组分,并采用卡尔费休法测定热解液体产物中水分含量。在这些禾草类植物原料和木本植物原料的热解过程中,它们热解固体产物炭的得率都在30%左右;禾草类原料的热解液体产物得率在33%~42%,低于木本类原料的得率(45%~51%),而禾草类原料的热解气体产物得率在30%~39%,高于木本类原料(18%~24%)。在热解液体产物中,有机物组分主要为呋喃型化合物和酚类化合物;其中禾草类原料热解得到的液体产物中,呋喃类化合物的总质量分数在25%~33%高于木本植物原料得到的总含量,而酚类化合物的总质量分数较低为24%~30%。在植物原料热解的主要气体产物组分中,CO2和CO的形成主要与原料组分的热分解有关,而CH4和H2的形成则主要与植物原料热解所产生的焦油的进一步热解以及固体炭结构的转变有关。  相似文献   

18.
澳洲坚果壳活性炭制备的热解特性研究   总被引:3,自引:0,他引:3  
以澳洲坚果壳为原料,磷酸为活化剂,利用同步热重-差热分析仪(TG-DTA)对澳洲坚果壳的热失重、热效应以及热解机理进行探讨.实验结果表明:不同条件下的澳洲坚果壳的热分析曲线都有两个失重阶段和相应的吸热峰或放热峰.澳洲坚果壳热解温度在200~410 ℃之间,800 ℃时残余量接近零.以磷酸为活化剂浸渍12和24 h的磷酸-澳洲坚果壳炭化和活化温度区间为130~400 ℃,800 ℃时残余量分别为34.431 %和17.743 %.磷酸-澳洲坚果壳较佳的活化温度在400 ℃左右,浸渍时间选择24 h为宜.同时随着浸渍时间的增加,DTG峰值温度呈现向低温推移的趋势,由未浸渍的363.63 ℃降至为243.71 ℃和238.37 ℃.磷酸浸渍对澳洲坚果壳有明显促进炭化作用,使其在130 ℃左右就开始热解炭化,研究结果为澳洲坚果壳活性炭制备提供理论依据.  相似文献   

19.
昆明地区16种阔叶树树叶的热重分析   总被引:1,自引:0,他引:1  
应用热重分析法研究了昆明地区16种阔叶树树叶的热解行为。实验结果表明:样品的热解过程可分为水分析出、快速热解、炭化等3个阶段;快速热解阶段的失重率约为65%,该阶段样品的热解动力学参数可以由一级反应方程和Coats-Redfern模型描述,通过计算发现光叶石栎、厚皮香具有较好的防火特性,着火温度、活化能、燃烧特征指数分别为:282.7℃、43.1 kJ/mo、l0.764×10-6和264.6℃、41.4 kJ/mo、l0.635 1×10-6。  相似文献   

20.
以可燃性气体为目的产物,在450~600℃低温条件下对木屑进行微波催化热解。考察了热解温度、催化剂种类以及催化剂用量对微波热解可燃气产量和热值的影响,并分析热解过程中各气体组分的变化趋势。结果表明:催化剂的加入可有效提高气体产率,不同催化剂对气体产率的影响顺序为:K2CO3Na OHNa2CO3Mg OCa ONa H2PO4Na2HPO4。在热解温度550℃、K2CO3用量(以木屑质量计)20%的条件下得到高产量的中热值可燃性气体,气体产率为62.65%,低位热值14.05 MJ/m3;且K2CO3作为催化剂时可得到较高的H/C的气体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号