首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Conclusion There is a difference between the reactions ofApium graveolens to the typicaltomato aspermy virus on the one hand, and to the virus isolated by the writer from celery, and identified afterNoordam andRoland asCucumis virus 1st. Chr. Noordam, on the other hand.If it is assumed that the difference is not caused by the varieties of celery used, this suggests thattomato aspermy virus andCucumis virus 1st. Chr. are not quite identical.Samenvatting Op selderij werd een virus gevonden dat dezelfde symptomen op toetsplanten, en dezelfde serologische reactie geeft alsCucumis virus 1st. Chr. Noordam. Tot nu toe kon het tomato aspermy virus niet op selderij worden overgebracht. Als dit verschil niet veroorzaakt wordt door de gebruikte selderijvariëteiten, dan kan geconcludeerd worden, dat de twee virussen niet precies dezelfde zijn.Sustained by the Institute for Scientifical Research in Agriculture and Industry (IRSIA).  相似文献   

2.
Samenvatting Van de in Nederland bij komkommer optredende virusziekten worden het ziektebeeld en de belangrijkste eigenschappen beschreven.Aantasting door komkommervirus 1 vindt voornamelijk plaats bij een nateelt van komkommers. Het virus wordt overgebracht door de groene katoenbladluis (Aphis gossypii Glover) bij het opkweken en tijdens de teelt. De komkommerplanten hebben hiervan ernstiger te lijden naarmate de temperatuur gedurende de incubatieperiode lager is. De planten kunnen dan verwelken en afsterven.Bij de teelt onder glas wordt komkommervirus 2 verreweg het meest aangetroffen. Vers komkommerzaad is een belangrijke infectiebron. Tijdens de bewaring van het zaad loopt het infectievermogen snel achteruit. Toch kan een deel van het op het zaad aanwezige virus gedurende meer dan een half jaar zijn activiteit behouden. De in Nederland veel gebruikte onderstamCucurbita jicifolia kan worden beschouwd als een carriër voor dit virus. Bij het enten kan het virus gemakkelijk worden overgebracht, ook met behulp van besmet sap, dat op het hierbij gebruikte mes is achtergebleven. Er zijn aanwijzingen, dat het virus in de grond kan overblijven.Het optreden van komkommervirus 2 A is veel minder algemeen, hoewel het ziektebeeld veel ernstiger is. De eigenschappen stemmen overeen met die van komkommervirus 2.Het komkommernecrosevirus kan grote schade te weeg brengen aan de teelt, doordat de vruchten van de aangetaste planten onverkoopbaar zijn en de planten soms geheel afsterven. De inactiveringstemperatuur van dit virus bedraagt ruim 80°C gedurende 10 minuten. Een groot aantal waardplanten reageert met plaatselijke necrose op de geïnoculeerde bladeren. Een enkele maal kan tijdelijk een systemisch beeld worden waargenomen, zo b.v. opNicotiana tabacum var. White Burley. In de grond behoudt het virus zijn infectievermogen minstens een half jaar. Aantasting vindt van de grond uit plaats. Zij wordt bevorderd door een lage temperatuur van bodem en lucht. Tijdens een periode van warm, zonnig weer kan algeheel herstel plaats vinden. OpCucurbita ficifolia geënte planten zijn veel minder gevoelig en herstellen gemakkelijker.Summary The symptoms and the properties of the virus diseases occurring on cucumber in Holland, are described in this article. Cucumis virus 1 occurs mainly on cucumbers grown in autumn. It is transmitted byAphis gossypii Glover, both during the propagation period and during the remainder of the season. Cucumber plants suffer most when the temperature during the incubation period is low. The plants may then wilt and die. Cucumis virus 2 is found very frequently in cucumber growing under glass. Freshly harvested seed is an important source of infection. Although the percentage of infection diminishes fairly rapidly with time, the virus in the seeds may retain its activity for more than half a year.Cucurbita ficifolia, used in Holland on a large scale as a root stock for cucumber, is a carrier ofCucumis virus 2. The virus is transmitted very easily during grafting, as well as by cultural measures such as pruning etc. There are indications, also, that the virus may survive in the soil. Cucumis virus 2 A occurs very rarely. The symptoms it causes are more severe than those caused byCucumis virus 2. Its physical properties are the same as those ofCucumis virus 2.Cucumber necrosis virus is the most serious of the viruses affecting cucumber, as the fruits may be badly damaged and the plants sometimes die. This virus is inactivated for the most part by exposure to a temperature of 80°C for 10 minutes. A large number of host plants react with local necrosis on the inoculated leaves. In a few cases systemic symptoms were observed temporarily, e.g. onNicotiana tabacum var. White Burley. In the soil this virus can survive for more than half a year. Infection of the plants takes place from the soil. The disease is favoured by low soil- and air-temperatures. During a period of warm sunny weather complete recovery is possible. Plants grafted onCucurbita ficifolia are less susceptible to an attack of cucumber necrosis virus and if infected frequently recover.  相似文献   

3.
A carlavirus was isolated fromSambucus racemosa andS. nigra in the Netherlands. The virus was sap-transmissible and capable of infecting 14 out of 58 plant species and cultivars tested, causing symptoms in five of them. It was also transmitted byMyzus persicae at a low rate. Dilution end-point was 10–3–10–4, thermal inactivation at 70–75°C and ageing in vitro 2–4 days. The virus had a sedimentation coefficient of 155 S and molecular weight of capsid protein subunits of 31 000 dalton. The average buoyant density of the four isolates used was 1.315 g/cm3. The virus particles had an average normal length of 678 nm and a width of approximately 12 nm. In ultrathin sections of leaf tissue ofS. racemosa Plumosa Aurea bundles of virus particles were observed in the cytoplasm. Close serological relationship was found to a virus isolated from elderberry in Britain and a distant relationship to carnation latent virus. In its reaction on host plants and its persistence in crude sap it also resembled the former virus, originally code-named elderberry virus A. We propose the name elderberry carlavirus for it.Samenvatting Een carlavirus werd geïsoleerd uitSambucus racemosa enS. nigra in Nederland. Het virus kon met sap worden overgebracht en was in staat 14 van de 58 getoetste plantesoorten en-cultivars te infecteren waarbij op vijf van deze symptomen verschenen. Ook metMyzus persicae vond overdracht plaats, zij het in beperkte mate. De verdunningsgrens was 10–3–10–4, de inactiveringstemperatuur 70–75°C en de houdbaarheid in vitro 2–4 dagen. Het virus had een sedimentatiecoëfficiënt van 155 S en het molecuulgewicht van de structuurelementen van het capside-eiwit bedroeg 31 000 dalton. De deeltjes van de vier gebruikte isolaten hadden een gemiddelde zweefdichtheid van 1,315 g/cm3. De gemiddelde normale lengte van de virusdeeltjes bedroeg 678 nm bij een breedte van ongeveer 12 nm. In ultradunne coupes van bladweefsel vanS. racemosa Plumosa Aurea werden bundels draadvormige virusdeeltjes waargenomen in het cytoplasma. Het virus vertoonde een zeer sterke serologische verwantschap met een virus uit vlier geïsoleerd in Groot-Brittannië en een geringe verwantschap met het anjer-latenvirus. In zijn reactie op waardplanten en zijn eigenschappen in ruw sap vertoonde het ook veel gelijkenis met eerstgenoemd virus, in de literatuur vermeld onder de code-naam elderberry virus A. We stellen voor de naam carlavirus van vlier aan dit virus te geven.  相似文献   

4.
Galactoglucomannan-derived oligosaccharides (GGMOs) showing biological activity in growth, morphogenesis and cell viability were tested in a host pathogen interaction. As a model system, cucumber (Cucumis sativus L. cv. Laura) reacting hypersensitively to tobacco necrosis virus (TNV) was used. The defence reactions were dependent on the degree of polymerisation and concentration of oligosaccharides, as well as on the time of application of virus to plant cotyledons. Disease symptoms were inhibited by 60–75%. The average number of lesions per cotyledon was significantly decreased when oligosaccharides were used simultaneously or 24h prior to virus inoculation. Significant changes in peroxidase, beta-glucanase and chitinase activities accompanied the defence reaction. It can be concluded that oligosaccharides derived from spruce galactoglucomannan induce non-specific resistance to local viral infection in plants. GGMOs probably act as inhibitors of the virus infection, rather than inhibitors of direct virus multiplication.  相似文献   

5.
A correlation between the amount of virus as determined by infectivity test and that determined by a serological-spectrophotometric method was established in leaf discs ofNicotiana tabacum White Burley which had floated on a solution of 6-azauracil (AzU) before and after inoculation with tobacco mosaic virus. More virus, determined in the two different ways, was present in the AzU-than in the water-treated leaf discs at 24 and 48 h after inoculation. Thereafter, the amount of virus was less than that in the control. The inhibitory effect of the pyrimidine analogue on the amount of infectivity in sap from AzU-treated discs proved to be dependent on the dilution of sap used. The higher the dilution the more inhibition occurred.In inoculated leaf discs ofNicotiana glutinosa the formation of local lesions in the AzU-treated series was strongly inhibited at 48 h after inoculation whereas at that time the amount of virus determined by the serological-spectrophotometric method was higher than that in the water-treated control ones. The latter mentioned stimulating effect disappeared later than 48 h after inoculation and gave way to inhibition.The infectivity of tobacco mosaic virus from AzU-treated leaf discs of White Burley tobacco was 23% of that from water-treated controls when undiluted clarified sap was used.  相似文献   

6.
In mosaic-diseased plants ofHippeastrum hybridum two viruses were found. One virus with a normal length of 706 nm caused local lesions onHyoscyamus niger test plants and mosaic symptoms in the leaves ofH. hybridum. This virus was identified with theHippeastrum mosaic virus (HMV) (*/*∶*/*∶E/E∶S/*) and had a dilution end point between 10?3 and 10?4, a thermal inactivation point between 55–60°C and a longevity at room temperature of 28–32 hours. The second virus had a normal length between 584 and 611 nm depending on the method used. It caused local lesions onGomphrena globosa andChenopodium quinoa leaves, and after inoculation ofH. hybridum was found to be present without showing symptoms. It was readily purified from inoculated leaf tissue ofC. quinoa andNicotiana clevelandii by differential centrifugation and ofH. hybridum by density-gradient centrifugation. Purified virus had an absorption minimum at 242 nm, a maximum at 262 nm and a 260/280 absorption ratio of 1.19. The dilution end point was between 10?3 and 10?4, the thermal inactivation point between 70 and 80°C and the longevity in vitro at room temperature 28–32 hours. Although no direct comparisons have been made with other members of the potexvirus group, the virus seems to be a new one now namedHippeastrum latent virus. Both viruses were not seed-borne.  相似文献   

7.
Saponaria vaccaria Pink Beauty was found to be a test plant for carnation mottle virus. Its value was compared with that ofChenopodium amaranticolor for indexing for the virus, and this bioassay was compared with a serological diagnosis. Serological double-diffusion tests gave the quickest reactions, but proved to be the least sensitive; addition of 1M urea did not increase sensitivity. Local lesions resulting from infectivity tests on detached leaves ofC. amaranticolor in a climate room could be counted after 1 week and these tests were about equally sensitive as those on leaves on intact plants of this species in the glasshouse, which were read after about 10 days. Infectivity tests onSaponaria vaccaria Pink Beauty resulted in systemic symptoms 10 to 14 days after inoculation; this method appeared to be the most sensitive.Samenvatting Na de ontdekking, datSaponaria vaccaria Pink Beauty gevoelig is voor het vlekkerigheidsvirus van anjer, werd de waarde van de toetsplantenmethoden met deze en andere indicatorplanten onderling vergeleken en met de gebruikelijke serologische toets voor dit virus. De serologische dubbel-diffusiemethode leverde het snelst resultaten op, maar was het minst gevoelig. Ook toevoeging van 1M ureum aan het medium vergrootte deze gevoeligheid niet. Inoculatie van losse bladeren vanChenopodium amaranticolor in een klimaatkamer leverde lokale lesies op, welke na een week konden worden geteld. Deze methode was vrijwel even betrouwbaar als toetsing op bladeren aan intacte planten van dezelfde soort in de kas, welke reacties na 10 dagen afgelezen konden worden. De traagste, maar gevoeligste methode was de infectietoets metS. vaccaria Pink Beauty die ook waarde heeft voor het aantonen van enkele virussen, waarvoorC. amaranticolor niet vatbaar is.Stationed at the Experiment Station for Floriculture in the Netherlands, Aalsmeer, the Netherlands.This work was carried out during a stay of the student Miss van Olphen at the Experiment Station at Aalsmeer, the Netherlands.  相似文献   

8.
A carlavirus was isolated from leaves of a dandelion plant raised in the experimental garden of the Hugo de Vries Laboratory in Amsterdam. The virus was readily sap-transmissible and infected 24 out of the 52 plant species and cultivars tested, with visible symptoms in 18 of them.Myzus persicae andCuscuta subinclusa (dodder) did not transmit the virus. In addition the virus was not seed-transmitted in dandelion. Dilution end-point was 10–5, thermal inactivation occurred at between 80–85°C and longevity in vitro was approximately 24h. The virus had a sedimentation coefficient of 136 S. Polyacrylamide gel electrophoresis of the coat protein gave two bands, consisting of proteins with molecular masses ranging from 37 000 to 34 300 Da (band I) and from 34 000 to 32 800 Da (band II). The molecular mass of the RNA was 2.84 x 106 Da. The average buoyant density of the virus was 1.306 gcm–3 and the average A260/A280 ratio 1.16. The virus particles had a normal length of 668 nm. with the light microscope, large mainly vacuolate inclusions were observed in the epidermal cells of infectedNicotiana cleavelandii leaves. In ultra-thin sections of systemically infected leaves ofN. clevelandii, bundles of aggregated virus particles were detected, whereas in infected dandelion leaves there were fewer aggregates and more scattered virus particles. There was a close serological relationship to dandelion latent virus, chrysanthemum virus B and potato virus S and a more distant one to carnation latent virus, elderberry carlavirus,Helenium virus S and potato virus M. The occurrence of the virus was found to be restricted to dandelion plants in the experimental garden in Amsterdam. On the basis of large differences in host range, symptomatology and lack of transmission byM. persicae it was decided that the virus could not be considered a strain of either dandelion latent virus, chrysanthemum virus B or potato virus S. We therefore propose that it be called dandelion carlavirus.Samenvatting Een carlavirus werd geïsoleerd uit een paardebloemplant, die opgekweekt was in de proeftuin van het Hugo de Vries-Laboratorium in Amsterdam. Het virus kon gemakkelijk met sap worden overgebracht en was in staat 24 van de 52 getoetste plantesoorten en-cultivars te infecteren, waarbij op 18 van deze symptomen zichtbaar werden.Myzus persicae en warkruid (Cuscuta subinclusa) konden het virus niet overbrengen. Evenmin kon het virus met zaad van geïnfecteerde planten van paardebloem overgaan. De verdunningsgrens was 10–5, de inactiveringstemperatuur 80–80°C en de houdbaarheid in vitro ongeveer 24 uur. Het virus had een sedimentatiecoëfficiënt van 136 S. Polyacrylamide-gelelektroforese van het manteleiwit resulteerde in twee banden, bestaande uit eiwitten met molecuulmassa's die varieerden van 37000 tot 34 3000 Da (band I) en van 34 000 tot 32 800 Da (band II). De molecuulmassa van het RNA was 2,84×106Da. De gemiddelde zweefdichtheid van het virus bedroeg 1,306g cm–3 en de gemiddelde A260/A280 verhouding was 1,16. Het virus had een normale lengte van 668 nm. In de epidermiscellen van geïnfecteerde bladeren vanNicotiana clevelandii werden met de lichtmicroscoop insluitsels met draderige en vacuoleachtige structuren waargenomen. In ultradunne coupes van systemisch geïnfecteerde bladeren vanN. clevelandii waren bundels geaggregeerde virusdeeltjes zichtbaar. In geïnfecteerde bladeren van paardebloem werden daarentegen meer verspreid voorkomende virusdeeltjes gevonden en minder aggregaten. Het virus vertoonde een sterke serologische verwantschap met het dandelion latent virus, chrysantevirus B en aardappelvirus S; er was een geringe verwantschap met het latente anjervirus, het carlavirus van vlier, Helenium virus S en het aardappelvirus M. Het vóórkomen van het virus bleek beperkt te zijn tot paardebloemen in de proeftuin in Amsterdam. Gezien de grote verschillen in waardplantenreeks, symptomatologie en overdracht metM. persicae hebben we gemeend, dat het virus niet slechts als een stam kon worden beschouwd van hetzij het dandelion latent virus, hetzij het chrysantevirus B en het aardappelvirus S. We stellen voor de naam carlavirus van paardebloem aan dit virus te geven.  相似文献   

9.
Three viruses collected in southern Yemen in 1990, infecting watermelon, tobacco and tomato were shown to be transmitted by the whiteflyBemisia tabaci and to have particle morphologies typical of geminiviruses. Colonies ofB. tabaci collected from different locations and from different hosts were used in virus transmission tests with the same host range of plants. Colonies established from both watermelon and cotton in the Yemen were identified as the squash silverleaf-inducing B biotype. The culture host of the colony did not influence virus acquisition and transmission efficiencies to and from other hosts. The tobacco and tomato geminiviruses had a similar host range, but differed in their severity in some hosts. Both these viruses differed from the watermelon geminivirus in host range and symptoms.Datura stramonium, an alternative host for all three viruses, could be co-infected by the watermelon and tobacco viruses.B. tabaci was able to acquire both viruses from the co-infectedD. stramonium and infect seedlings of either original host plant species with their respective viruses orD. stramonium with both. The viruses were identified as watermelon chlorotic stunt virus, tobacco leaf curl virus and tomato yellow leaf curl virus and were distinguished by cross hybridisation.  相似文献   

10.
Nematodes from a population of virus-freeParatrichodorus teres were allowed to feed on roots ofPetunia hybrida andNicotiana tabacum cv. White Burley plants infected with five strains of tobacco rattle or pea early-browning tobraviruses and were subsequently tested for virus transmission to roots of virus-freeP. hybrida andN. tabacum cv. White Burley plants. Virus transmission was not correlated with serotypes. Two strains of TRV with different serotypes were efficiently transmitted, whereas two other strains of TRV and one strain of PEBV with serotypes similar to transmitted ones were not transmitted at all. The two efficiently transmitted strains had originally been obtained fromP. hybrida roots which had been exposed to viruliferousP. teres in laboratory bait tests, whereas the three non-transmitted strains had been obtained from infected plant material collected in the field.  相似文献   

11.
6-Azauracil caused a marked reduction in the number and size of local lesions on excisedNicotiana glutinosa leaves or leaf discs inoculated with tobacco mosaic virus or its nucleic acid. The amount of infectivity recovered from tobacco (N. tabacum White Burley) leaf discs floated on the pyrimidine analogue solution and subsequently ground and assayed 24, 48, 72, and 96 h after inoculation with intact virus was reduced in the 24, 48, and 72 h series but reached the same level as that of the water-treated control discs in the 96 h series.By contrast, the amount of infectivity in stripped epidermal tissue ofN. glutinosa leaves inoculated with nucleic acid was not reduced in strips floated on the analogue for 24, 50, and 70 h as compared with water-floated controls. The analogue had no effect on infectivity of the virus in vitro and did not act as an inhibitor of infection.Part of this paper was presented at the International Symposium on Plant Pathology, held in New Delhi from December 27, 1966 till January 1, 1967. A summary will be published in the symposium volume entitled Plant disease problems.  相似文献   

12.
Zucchini yellow mosaic virus (ZYMV) is one of the most economically important viruses of cucurbit crops, causing severe mosaic, necrosis, and malformation. Three ZYMV isolates were obtained from pumpkins at Andong (ZYMV-PA), Euiryung (ZYMV-PE), and Suwon (ZYMV-PS), and their biological variability was determined on different hosts, including cucurbit crops as well as other indicator plants. ZYMV-PA caused the most severe symptoms, including severe mosaic, size reduction, and deformation, in oriental melon (Cucumis melo) and cucumber (Cucumis sativus) leaves. In contrast, ZYMV-PE and ZYMV-PS caused mild mosaic symptoms on oriental melon and cucumber. The nucleotide sequences of the genomic RNAs were determined and compared to the sequences of other potyviruses, including ZYMV isolates Reunion Island and TW-TN3. Each ZYMV Isolate had a genome of 9593 nucleotides, excluding the poly(A) tail, and contained 139 and 214 nucleotides in the 5- and 3-untranslated regions, respectively. Each had one large open reading frame encoding a protein of about 351kDa. The nucleotide sequences of ZYMV-PA, ZYMV-PE, and ZYMV-PS were more than 96.0% and the deduced amino acid sequences were more than 98.1% identical. When compared with other ZYMV isolates in a phylogenetic analysis, these three viruses formed a distinct virus clade and were more distantly related to other potyviruses (43.5%–62.8% identity).The nucleotide sequence data reported are available in the GenBank database under the accession numbers AY278998 to AY279000 for ZYMV-PA, ZYMV-PE and ZYMV-PS  相似文献   

13.
Nerine latent virus (NeLV), first found inNerine bowdenii, may occur also in the otherNerine species investigated so far:N. sarniensis, N. flexuosa Alba, andN. Mansellii. Chenopodium amaranticolor, C. quinoa, andGomphrena globosa sometimes reacted with local lesions after mechanical inoculation with NeLV.Nicotiana clevelandii andHippeastrum were symptomless hosts. In this respect NeLV resembled the incompletely describedHippeastrum latent virus (HLV).Serologically NeLV was closely related to HLV and to carnation latent virus (CaLV), but differed from the latter in host plant reaction. A more distant relationship was observed with some other carlaviruses, wheareas NeLV also reacted with an antiserum to potato virus X.Depending on the lot, NeLV could be detected rather reliably with the micro-precipitin test inN. bowdenii Van Roon, but less well in 63. Better results were obtained with the microplate method of enzyme-linked immunosorbent assay (ELISA).The average particle length was 664 nm, the sedimentation coefficient 155 S and the buoyant density 1.298 g/cm3.NeLV can be considered as a member of the carlavirus group. On basis of priority HLV may be considered as NeLV.  相似文献   

14.
Carlavirus isolates from cultivated Allium species represent three viruses   总被引:3,自引:0,他引:3  
From 12 cultivated and mostly vegetatively propagatedAllium species and varieties tested for carlavirus infections, 94 virus isolates were obtained which varied greatly on indicator hosts.Chenopodium amaranticolor, C. quinoa, Celosia argentea var.plumosa Geisha,Nicotiana hesperis accession 67A andN. occidentalis accession P1 proved valuable for detection, isolation and propagation of part of the isolates. The latter three species are new experimental hosts for carlaviruses ofAllium species. Other isolates could only be transmitted toAllium species such as crow garlic (A. vineale) leek (A. ampeloprasum var.porrum) and onion (A. cepa var.cepa). The isolates were grouped into three viruses by differential hosts and host reactions and their reaction with four antisera.Shallot latent virus (SLV) was found in ever-ready onion (A. cepa var.perutile), grey shallot (unidentifiedAllium species), multiplier onion (A. cepa var.aggregatum), pearl onion (A. ampeloprasum var.sectivum), rakkyo (A. chinense), shallot (A. cepa var.ascalonicum), and Welsh onion (A. fistulosum). Virus isolates from garlic and Asian shallot, fully reacting with antiserum to SLV but differing in host reactions from the SLV type-isolate, are now described as garlic strain (SLV-G) and Asian shallot strain of the virus, respectively. The garlic latent virus from garlic described in Japan is now considered identical with SLV-G.A carlavirus almost universal in garlic, and also found in great-headed garlic (A. ampeloprasum var.holmense), in an unidentifiedAllium species, and occasionally in leek, did not react with the antisera to SLV and the Japanese garlic latent virus, and is now described as the new garlic common latent virus (GCLV). It appeared identical to a virus erroneously identified in Germany as garlic latent virus.The new Sint-Jan's-onion latent virus (SjoLV) from Utrechtse Sint-Jan's onion (unidentifiedAllium species) from the Netherlands and similar crops originating from other countries, did not induce reactions in test plants and could only be detected by electron microscope decoration tests. It reacted equally wellwith the antisera to SLV and GCLV. It was also present together with SLV in ever-ready onion, pearl onion, rakkyo, shallot, and Welsh onion. Garlic latent virus reported in Japan from hosts other than garlic should be regarded as SLV, SjoLV, or a mixture of these viruses.The carlaviruses were not detected in wild plants of ramsons (A. ursinum), and of the predominantly vegetatively propagated crow garlic (A. vineale), field garlic (A. oleraceum), and sand leek (A. scorodoprasum), collected in the Netherlands.Severe reactions in the indicator hosts incidentally revealed soil-borne viruses in shallot (the nepovirusesArabis mosaic virus (ArMV) and tomato black ring virus) and crow garlic (ArMV and the tobravirus tobacco rattle virus). Tobacco necrosis virus (necrovirus) was detected in roots of shallot.  相似文献   

15.
In 1975 many tumours were observed in plants ofBegonia Schwabenland grown in Aalsmeer. Submersion of the roots ofNicotiana megalosiphon seedlings in a homogenate of tumorous tissue, induced tumours after two weeks. Short periods of submergence yielded results similar to those obtained after longer periods. Tumour homogenates lost their infectivity after ten min at 50°C. Aphids transmitted the infectious agent.Treatment with propylene oxide did not inhibit infectivity completely. Filtration through a 450 nm filter removed the infectious agent.Tobacco tumor virus or a viroid could not be isolated. Cultures ofCorynebacterium fascians, isolated from tumours ofN. megalosiphon were highly infectious and induced tumours in healthyN. megalosiphon andBegonia. Tumorous tissue homogenates ofPelargonium zonale, Dahlia sp.,Gladiolus sp., andLilium sp. also caused tumours inN. megalosiphon, from whichC. fascians was isolated. It was not possible to produce tumours inN. megalosiphon with homogenates from roses with symptoms of bud proliferation.Samenvatting In 1975 werden vele tumoren waargenomen inBegonia Schwabenland op Aalsmeerse bedrijven (Fig. 1). De infectiositeit van tumorweefsel kon goed en snel worden vastgesteld door de wortels van zaailingen vanNicotiana megalosiphon in een homogenaat van tumorweefsel te dompelen. Tumoren ontstonden na twee weken, de eindbeoordeling geschiedde na een maand (Fig. 2). Ook verschillende andereNicotiana spp.,Melilotus officinalis (Fig. 3) enPisum odoratum (Fig. 4) werden aangetast.Bij de infectiositeitstoets gaven zeer korte dompeltijden even goede resultaten als langere (Tabel 1). Infectieus sap verloor zijn infectievermogen na 10 min verhitting bij 50°C. Bladluizen brachten de smetstof over. Propyleenoxide verminderde de infectiositeit wel, doch onderdrukte deze niet totaal. Bij filtratie door een 450 nm filter bleef het infectieuse agens op het filter achter. Het tumor-inducerende agens was ook aanwezig in die delen van planten met tumoren welke gezond leken en het ging voor een gering deel over met zaad (Tabel 2).Uit tumoren konden wij geen tabakstumorvirus of een viroïde isoleren. Culturen vanCorynebacterium fascians, geïsoleerd uit tumoren vanN. megalosiphon bleken zeer infectieus en veroorzaakten tumoren inN. megalosiphon enBegonia. Homogenaten van tumorweefsel vanPelargonium zonale, dahlia (Fig. 5), gladiool (Fig. 6) enLilium Mid Century Hybrid Enchantment (Fig. 7) veroorzaakten ook tumoren opN. megalosiphon, waaruitC. fascians werd geïsoleerd. Met sap van kroeskopzieke rozen konden wijN. megalosiphon niet besmetten.  相似文献   

16.
A virus isolated from apple and pear, and coded GE36, was purified from sap ofChenopodium quinoa by bentonite clarification followed by differential centrifugation and rate-zonal centrifugation on a sucrose gradient in a zonal rotor. Infectious fractions contained spherical virus-like particles. An antiserum with a titer of 64 was prepared. No serological relation was found with 22 known spherical viruses and alfalfa mosaic virus. GE36 virus differs from any other sap-transmissible virus from apple and pear previously described.Samenvatting Proeven werden uitgevoerd om te komen tot een nadere identificatie van het eerder door van der Meer (1968) geïsoleerde GE36 virus. Deze proeven hadden voornamelijk betrekking op de zuivering en de serologie. Voor vermeerdering van het virus werdChenopodium quinoa gebruikt. In ruw sap van deze planten, 1 op 10 verdund met 0,2 M buffers, verloor het virus zijn infectievermogen reeds binnen 24 uur. Werd het sap 1 op 10 verdund met 0,02 M buffers of met gedestilleerd water, dan bleef het virus aanmerkelijk langer infectieus (Tabel 1 en 2).Een goede klaring van het sap met behoud van infectievermogen kon worden verkregen door toevoeging van een bepaalde hoeveelheid van een 1% bentoniet-suspensie gevolgd door centrifugering bij laag toerental van het mengsel (Tabel 3). Bovendien bleek het aantal vlekjes bij inoculatie opPhaseolus vulgaris door toevoeging van bentoniet sterk toe te nemen (Tabel 4).Het virus kon worden geconcentreerd door ultracentrifugeren. Werden voorgezuiverde en geconcentreerde preparaten van gezonde en zieke planten vanC. quinoa vergeleken door middel van centrifugeren op een suikergradiënt in een zonerotor, dan bevatte het zieke materiaal twee componenten extra (Fig. 1). Deze waren infectieus en bevatten bolvormige virusachtige deeltjes (Fig. 2).Antiserum (titer 64), bereid tegen gezuiverde viruspreparaten, reageerde alleen met preparaten van zieke planten vanC. quinoa en niet met preparaten van gezonde planten. Antisera tegen 22 bekende bolvormige virussen en het luzernemozaïekvirus reageerden niet met GE36 virus. Het virus bleek niet identiek te zijn met enig ander reeds beschreven virus. Het cryptogram van GE36 is (*/* */*S/SS/*).  相似文献   

17.
An attempt was made to identify a mosaic disease inHippeastrum hybridum. Infectious virus material could be demonstrated in roots, leaves, stem, perianth, stamen and pistil. Inclusion bodies were found in the epidermis of leaves, stem, spatha leaves and in the perianth. Virus concentration in a young stage was high but decreased by aging of the perianth. Efforts to transmit the virus by aphids failed. However, the virus was transmitted by seed in a few cases. Plants of 30 species reacted negatively upon inoculation with the virus.Hippeastrum hybridum, Gomphrena globosa, Chlorophytum spec. andLycopersicum esculentum could be infected experimentally. On account of the host range and presence of inclusion bodies the mosaic symptoms inHippeastrum are not caused by tomato spotted wilt virus or Cucumber mosaic virus. Results suggest that the virus under investigation is theHippeastrum mosaic virus. Dr.M. K. Corbett, Wageningen, succeeded in purifying the virus by density gradient centrifugation. Whe preparation contained flexuous rod particles. Plants ofDatura stramonium, Nicotiana glutinosa andN. tabacum Samsun could be infected. Within two weeks after inoculation with purified virus solution these plants showed systemic symptoms.
Samenvatting In een kwekerij te Hoorn werden planten vanHippeastrum hybridum aangetroffen, die mozaïekverschijnselen vertoonden. De oorzaak hiervan werd nagegaan. Infectieus virusmateriaal kon worden aangetoond in wortels, bladeren, bloemstengel, bloemdekbladen, meeldraden en stijl. Celinsluitsels kwamen voor in de epidermis van bladeren en stengel en in de bloemschede. De aanwezigheid van insluitsels in het bloemdek was afhankelijk van de ouderdom van de bloem. Er schijnt een omgekeerd evenredige relatie te bestaan tussen de virusconcentratie en het aantal insluitsels in bloemen.Pogingen om het virus over te brengen door bladluizen mislukten. In enkele gevallen had zaadoverdracht plaats.Dertig plantesoorten reageerden negatief op een inoculatie met virushoudend sap.Hippeastrum hybridum, Gomphrena globosa, Chlorophytum spec. enLycopersicum esculentum konden wel worden geïnfecteerd. Gezien de waardplantenreeks en het voorkomen van celinsluitsels kunnen de mozaïeksymptomen inHippeastrum niet toegeschreven worden aan Tomato spotted wilt-virus of het komkommer-mozaïek-virus, maar is het waarschijnlijk dat zij worden veroorzaakt door hetHippeastrum-mozaïek-virus, reeds beschreven doorBrierley (1948),Johnson (1951) enProcenko & Procenko (1964).Dr.M. K. Corbett, Wageningen, slaagde erin het virus te zuiveren door middel van density gradient-centrifugering.Datura stramonium, N. glutinosa enN. tabacum Samsun werden systemisch ziek binnen twee weken na inoculatie met de gezuiverde virus-oplossing.
  相似文献   

18.
Summary Helopeltis antonii was bred at different constant temperatures at the experimental station at Semarang in 1939 and 1940. Some of the results concerning the duration of development from hatching of the egg untill the imaginal stage are recorded in the table and the graph. By comparing these data with those published byLeefmans (1916) (Helopeltis bred on tea in West Java) andZehntner (1901) (Helopeltis bred on cocoa in Central Java) we find that the time of development mentioned by these authors is shorter. In accordance with the experiments ofBonnemaison (1946) this probably can be attributed to the breeding ofHelopeltis at alternating temperatures (day and night). The duration of development at 19°C, mentioned byLeefmans (19 days), however, differs so much from the duration found in this investigation (32–34 days) that this explanation seems improbable. Other experiments at constant temperature, that will be published elsewhere, show that the population used for breeding was well adapted to the average temperature at the estate, Djati Rungo, from where this population came. This extreme adaptation suggests that this may also occur at other localities. Therefore it is probable that the populations ofH. antonii from different localities do not have the same genetical composition. The differences mentioned above can probably be attributed therefore to this fact. Data are given to strengthen this supposition. The existence of genetically different populations has already been suggested by ProfessorRoepke in 1909. He called them biological races. The occurrence of the varietybradyi ofH. antonii is probably caused by such a difference too and thus could better be considered as a subspecies.Helopeltis theobromae Mill. is without doubt only a subspecies ofH. theivora.Thus we suggest:Helopeltis antonii subspec.bradyi Wat. new comb. Helopeltis theivora subspec.theobromae Mill. new comb.

Deventer  相似文献   

19.
Summary Sorghum red stripe virus (S.R.S.V.) from Italy and sugar cane mosaic virus (S.C.M.V.) from Puerto Rico were investigated at Wageningen serologically and with the electron microscope.By means of the microprecipitation test (van Slogteren, 1955) a qualitative relationship was established between the two viruses (Table 1). Electron microscopical investigations showed that with regard to their length there was no difference between the two viruses (Fig. 1 and 2).Samenvatting Sorghum red stripe virus (S.R.S.V.), afkomstig uit Italië, en suikerrietmozaïekvirus (S.C.M.V.) uit Portorico zijn te Wageningen serologisch en elektronenmicroscopisch onderzocht. Met behulp van de microprecipitatietoets (van Slogteren, 1955) kon een kwalitatieve verwantschap tussen de beide virussen aangetoond worden (tabel 1). Elektronenmicroscopisch onderzoek wees uit, dat er wat betreft de lengte der virusdeeltjes geen verschil bestaat tussen de twee genoemde virussen (fig. 1 en 2).  相似文献   

20.
Summary For some years past at several places in the province of Brescia a mosaic disease of wheat has been detected which probably must be attributede to a virus (Grancini, 1959). Presumably the same disease has recently been constatated in other provinces of North Italy.Electron microscopical study of diseased wheat leaves showed that the preparations which were obtained with the dipping method ofBrandes (1957) all contained rod-shaped virus particles with a length of 300 m. These particles were absent from healthy plants. Whether or not this virus is directly responsible for the mosaic disease could not be established, since we did not succeed in transmitting the virus artificially.Samenvatting Sedert einige jaren wordt op verschillende plaatsen in de provincie Brescia een mozaïekziekte bij de tarwe gevonden, waarvna de oorzaak waarschijnlijk aan een virus moet worden toegeschreven (Grancini, 1959).Bij elektronemicroscopisch onderzoek van zieke bladeren is gevonden, dat de preparaten, welke met de doop-methode vanBrandes (1957) verkregen waren, alle staafvormige virusdeeltjes ter lengte van 300 m bevatten (fig. 1). In preparaten van gezond bladmateriaal kwamen deze deeltjes niet voor. Of dit virus direct aansprakelijk is voor de mozaïekziekte kon nog niet aangetoond worden, aangezien het tot nu toe niet gelukt is het virus langs kunstmatige weg over te brengen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号