首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: To investigate the effect of cellular Sloan-Kettering Institute (c-SKI) on the proliferation and endothelial-mesenchymal transition of human coronary artery endothelial cells (HCAECs). METHODS: HCAECs were treated with transforming growth factor-β1 (TGF-β1) at varying concentrations for different time points. Western blot was used to test the expression of c-SKI and mesenchymal markers such as α-smooth muscle actin (α-SMA) and vimentin. Meanwhile, the endothelial marker E-cadherin was also detected. HCAECs were transfected with c-ski gene mediated by lentivirus (LV), the efficiency of LV-SKI transfection was detected by RT-qPCR. The HCAECs were divided into 4 groups:control group, TGF-β1 (5 μg/L) group, LV-SKI+ TGF-β1 group, LV-NC+ TGF-β1 group. The cell viability and colony formation were measured by MTT assay and colony formation assay. The protein levels of vimentin, α-SMA, E-cadherin, Smad2, Smad3, p-Smad2 and p-Smad3 were determined by Western blot. RESULTS: The expression of c-SKI was down-regulated in the HCAECs treated with TGF-β1 (P<0.01). Over-expression of c-SKI inhibited the proliferation of HCAECs (P<0.01). Compared with LV-NC group, over-expression of c-SKI down-regulated the expression of α-SMA and vimentin (P<0.01), up-regulated the expression of E-cadherin (P<0.01), and inhibited the protein phosphorylation of Smad2 and Smad3 (P<0.01), reversed the endothelial-mesenchymal transition induced by TGF-β1. CONCLUSION: The expression of c-SKI in the HCAECs is down-regulated in the process of endothelial-mesenchymal transition. Over-expression of c-SKI inhibits proliferation and endothelial-mesenchymal transition of HCAECs, the mechanism may be related to regulation of the TGF-β1/Smad signaling pathway.  相似文献   

2.
AIM: To verify the hypothesis that treatment with insulin to control the blood glucose (BG) may relieve or slow down the development of diabetic nephropathy (DN) in diabetic rats by increasing the expression of Smad7. METHODS:The diabetic rat model was established by tail-vein injection of streptozotocin. Sixteen rats were divided into 2 groups. Eight of these animals in diabetes mellitus (DM) group had no treatment. The remaining eight of them in insulin treatment (INS) group were injected with insulin. After 13 weeks, the rats in INS group were given individual treatment with insulin to let the blood glucose level keep within 4 to 7 mmol/L. Meanwhile, 8 rats were used for normal control (NC group). After 16 weeks, the rats were sacrificed to detect the relevant biochemical parameters, and to observe the histophathological changes of the kidney and pancreas. In addition, immunohistochemical staining and Western blotting were employed to detect the protein expression of transforming growth factor β1 (TGF-β1), Smad ubiquitin regulatory factor 2 (Smurf2), Smad7, E-cadherin, α-sooth muscle actin (α-SMA), fibronectin (FN) and collagen I. RESULTS:Compared with NC group, the body weight was significantly reduced in DM group, whereas the body weight in INS group increased gradually. Compared with NC group, the levels of 24 h urine protein (24 h UP), BG and triglyceride (TG) were remarkably increased in DM group. Pathological detection on pancreas indicated that the islet was destroyed. The levels of TGF-β1, Smurf2, α-SMA, FN and collagenⅠ in the kidneys were increased in DM group, and the expression of Smad7 and E-cadherin, which were mainly located in renal tubular epithelial cells, was significantly reduced. Compared with DM group, the levels of 24 h UP and BG were significantly reduced in INS group, and the alleviated renal fibrosis was observed under light microscope. In addition, the protein levels of TGF-β1, Smurf2, α-SMA, FN and collagenⅠ in INS group were decreased compared with DM group, and the expression of Smad7 and E-cadherin was increased significantly. CONCLUSION:Target glucose control with insulin treatment restores the protein expression of Smad7 in the kidney of diabetic rats, reduces the accumulation of extracellular matrix and slows down DN progress. The decrease in TGF-β1 and Smurf2 expression, and the attenuation of Smad7 ubiquitination in renal tissues are the crucial parts in this process.  相似文献   

3.
AIM: To study the preventive and curative roles of Danshensu (DA) in bleomycin (BLM)-induced pulmonary fibrosis in rats. METHODS: Pulmonary fibrosis was induced in SD rats by intratracheal instillation of BLM. The rats were intraperitoneally injected with dexamethasone (1 mg·kg-1·d-1, DXM group), DA (15 mg·kg-1·d-1, DA group), or physiological saline (2 mL·d-1, BLM group). Normal controls (NC group) received physiological saline both intratracheally and intraperitoneally. At the 28th day after modeling, the histological changes of the lungs were evaluated by hematoxylin-eosin (HE) and Masson’s trichrome staining. The protein levels of α-smooth muscle actin (α-SMA) in the lung tissues were detected by the method of immunohistochemistry. The mRNA expression of transforming growth factor beta 1 (TGF-β1), Smad3 and Smad7 was assessed by real-time fluorescence quantitative PCR. RESULTS: Compared with BLM group, the degree of inflammation and fibrosis of the lung in DA group was obviously reduced, and so was the expression of α-SMA in the lung tissues. The mRNA expression of TGF-β1 and Smad3 in the lung tissues of the rats decreased and the mRNA expression of Smad7 increased. CONCLUSION: DA alleviates BLM-induced pulmonary fibrosis in rats in the early stage by inhibiting the expression of TGF-β1/Smad3 and stimulating the expression of Smad7 in the lung tissues.  相似文献   

4.
AIM: To investigate the effects of proteasome inhibitor MG132 on the expression of SnoN in renal tubule epithelial cells incubated in high glucose, and to explore the possible mechanism and function that MG132 reduces or slows down renal tubular interstitial injury after incubated in high glucose. METHODS: The NRK-52E cells were divided into normal control group (NG), high glucose group (HG) and high glucose plus pretreatment with different doses of MG132 group (HG+MG132). The immunofluorescence staining was used to detect the protein expression of E-cadherin and α-smooth muscle actin (α-SMA) in NRK-52E cells under different conditions. The relative protein expression levels of SnoN, Smad ubiquitination regulatory factor 2 (Smurf2), Arkadia, E-cadherin, α-SMA and collagen type Ⅰ(Col-Ⅰ) were detected by Western blotting. RESULTS: Compared with NG group, the expression of E-cadherin and SnoN was decreased (P<0.05), while the expression of α-SMA, Col-Ⅰ, Smurf2 and Arkadia was increased (P<0.05). Compared with HG group, the protein expression of SnoN and E-cadherin was significantly up-regulated in HG+MG132 group (P<0.05), and the protein expression of α-SMA and Col-Ⅰ was significantly down-regulated in a dose-depended manner (P<0.05). However, no effect on the protein expression of Smurf2 and Arkadia was observed. CONCLUSION: MG132 inhibits the degradation of SnoN protein induced by high glucose, thus reducing the renal fibrosis.  相似文献   

5.
AIM:To investigate the effect of Sedum sarmentosum Bunge (SSB) extract on epithelial-mesenchymal transition (EMT) and collagen accumulation induced by aristolochic acid (AA) in renal tubular epithelial cells. METHODS:Rat renal tubular epithelial NRK-52E cells were randomly divided into 3 groups, including control group (only treated with solvent), AA group (treated with AA at concentrations ranging from 1 to 100 mg/L) and SSB group (treated with AA at a concentration of 10 mg/L plus SSB extract at concentrations ranging from 10 to 2 000 mg/L). After cultured for 24 h, the morphology of the NRK-52E cells was observed under inverted phase-contrast microscope. The level of transforming growth factor β1 (TGF-β1) in the culture supernatant was measured by ELISA. Immunofluorescent analysis was performed to detect the expression of epithelial marker α-smooth muscle actin (α-SMA), mesenchymal marker E-cadherin, and extracellular cell matrix component type III collagen. The mRNA expression of E-cadherin, α-SMA, bone morphogenetic protein 7 (BMP-7) and type I collagen was also quantified by real-time PCR. RESULTS: Fibrosis-like reaction observed under microscope was obviously increased in AA-treated NRK-52E cells, and aggravated as the increase in the concentration of AA. AA at concentrations of 1 and 10 mg/L increased the expression of α-SMA, type I and type III collagens, and decreased the expression of E-cadherin. With SSB extract treatment, fibrosis in NRK-52E cells was alleviated, accompanied with the decreasing expression of α-SMA, type I and type III collagen, and the enhancing expression of E-cadherin and BMP-7.Moreover, SSB extract down-regulated TGF-β1 level in a concentration-dependent manner. CONCLUSION: AA-induced fibrosis-like reaction in renal tubular epithelial cells is reduced by the treatment with SSB extract. The possible mechanism is that SSB extract decreases TGF-β1 level, and inhibits renal EMT and collagen accumulation induced by AA.[KEY WORDS]Sedum sarmentosum Bunge|Aristolochic acid|Transforming growth factor β1|Epithelial-mesenchymal transition|Collagen  相似文献   

6.
AIM: To investigate the effect of cyclopamine on Hedgehog (HH) signaling, phenotypic transformation and matrix accumulation induced by aristolochic acid (AA) in renal tubular epithelial cell NRK-52E. METHODS: NRK-52E cells were randomly divided into control group (treated with solvent only), AA group (treated with AA at concentrations of 1, 5, 10 mg/L) and cyclopamine group (treated with AA at concentration of 10 mg/L plus cyclopamine at concentrations of 1, 5, 10 μmol/L). After cultured for 24 h, the mRNA expression of Ptch1, Smo, α-SMA, E-cadherin, ZO-1, BMP-7, type I collagen and type III collagen was quantified by real-time PCR. The protein levels of Shh and TGF-β1 were detected by ELISA. Immunofluorescence staining was used to evaluate the expression of Ptch1, Smo, α-SMA, E-cadherin and type III collagen in the NRK-52E cells. RESULTS: AA increased the expression of TGF-β1, α-SMA and type III collagen, decreased the expression of E-cadherin and ZO-1 protein, and down-regulated the expression of Ptch1, Shh and Smo mRNA in the NRK-52E cells, indicating that AA activated HH signaling, and phenotypic transformation and matrix accumulation occurred in AA-treated NRK-52E cells. Treatment with cyclopamine inhibited HH signaling by decreasing Smo expression and increasing Ptch1 expression. Moreover, cyclopamine also down-regulated the expression of TGF-β1, α-SMA, type I collagen and III collagen, and up-regulated the expression of BMP-7, ZO-1 and E-cadherin. CONCLUSION: AA induces phenotypic transformation and matrix accumulation in renal tubular epithelial cells, which can be inhibited by cyclopamine treatment. The possible mechanism is that cyclopamine suppresses the activation of HH signaling, resulting in the reduction of epithelial-to-mesenchymal transition and matrix deposition.  相似文献   

7.
AIM:To investigate the effect of salvianolic acid B (Sal B) on high glucose-induced phenotypic transition and extracellular matrix (ECM) secretion in human glomerular mesangial cells (HGMCs) and the underlying mechanisms. METHODS:HGMCs were randomly divided into control group, high glucose group and high glucose plus high dose, medium dose and low dose of Sal B groups. The HGMCs except those in control group were exposed to high glucose (33.3 mmol/L) for 72 h, while those in Sal B groups were co-incubated with indicated concentrations of Sal B. The protein levels of α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1) and phosphorylated Smad2 and p38 mitogen-activated protein kinase (MAPK) were determined by Western blot. The secretion levels of collagen type I (Col I), collagen type Ⅲ (Col Ⅲ), fibronectin (FN) and laminin (LN) were measured by ELISA. RESULTS:Exposure to high glucose markedly increased the protein expression of α-SMA, TGF-β1, Col I, Col Ⅲ, FN and LN in the HGMCs (P<0.01). The phosphorylation levels of Smad2 and p38 MAPK were also significantly increased (P<0.01). Co-incubation with Sal B evidently decreased the protein expression of α-SMA, TGF-β1, Col I, Col Ⅲ, FN and LN in the HGMCs induced by high glucose (P<0.05 or P<0.01). The phosphorylated levels of Smad2 and p38 MAPK were also reduced noticeably (P<0.05 or P<0.01). CONCLUSION:Sal B significantly suppresses high glucose-induced phenotypic transition and ECM secretion in the HGMCs, which might be attributed, at least partly, to inhibition of TGF-β1/Smad signaling pathway and p38 MAPK activation.  相似文献   

8.
AIM: To investigate the role of canonical transient receptor potential channel 1 (TRPC1) in the epithelial-mesenchymal transition (EMT) of human bronchial epithelial (HBE) cells induced by transforming growth factor-β1 (TGF-β1). METHODS: EMT of 16HBE cells induced by TGF-β1 were identified by microscopy, immunofluorescence and Western blotting. Immunofluorescence, real-time PCR and Western blotting were applied to detect the mRNA and the protein expression of TRPC1 in the 16HBE cells. The influence of SKF96365 (a TRPC1 blocker) and siRNA-mediated silencing of TRPC1 on the EMT of the 16HBE cells were detected by microscopy and Western blotting. RESULTS: Treatment with TGF-β1 induced significant morphological changes of the 16HBE cells. Exposure to TGF-β1 decreased the expression of E-cadherin protein (P<0.01) and increased the expression of α-SMA protein (P<0.05) in the 16HBE cells. Immunofluorescence observation indicated that TRPC1 expression in the 16HBE cells was positive. The expression of TRPC1 at mRNA and protein levels was significantly increased in the 16HBE cells after stimulation with TGF-β1 (P<0.05). The morphological changes of the 16HBE cells induced by TGF-β1 were inhibited by SKF96365 and TRPC1 silencing compared with TGF-β1 group. The protein expression of E-cadherin and α-SMA induced by TGF-β1 were inhibited by SKF96365 and TRPC1 silencing compared with TGF-β1 group (P<0.05). CONCLUSION: TGF-β1 induces EMT with the mechanism of up-regulating TRPC1 in human bronchial epithelial cells.  相似文献   

9.
AIM: To study the inhibitory effect of metformin on alveolar epithelial-mesenchymal transition (EMT) in rats with pulmonary fibrosis and the possible mechanism. METHODS: SD rats (n=48) were used, 12 of which were set up as normal control group, and 36 of which were induced by bleomycin (5 mg/kg) by tracheal instillation to establish pulmonary fibrosis. The pulmonary fibrosis rats were randomly divided into bleomycin group, low dose (100 mg/kg) of metformin group, and high dose (300 mg/kg) of metformin group. The rats in metformin groups were given the corresponding dose of metformin daily for 4 weeks. HE staining and Masson staining were used to observe the changes of lung histopathology and collagen deposition. Real-time PCR, Western blot and innunohistochemical staining were used to detect the mRNA and protein expression of α-smooth muscle actin (α-SMA), E-cadherin, vimentin, zonula occludens-1 (ZO-1), collagen I, collagen III and transforming growth factor-β1 (TGF-β1), and the protein phosphorylation levels of Smad2/3 and extracellular signal-regulated kinase 1/2 (ERK1/2) were also determined. RESULTS: Metformin up-regulated the expression of E-cadherin and ZO-1, down-regulated the expression of α-SMA, vimentin, collagen I and collagen III, and the protein phosphorylation levels of Smad2/3 and ERK1/2 were also decreased (P<0.05). CONCLUSION: Metformin inhibits alveolar EMT in the rats with pulmonary fibrosis, and its mechanism may be related to the inhibition of TGF-β1 signal transduction pathway.  相似文献   

10.
11.
AIM: To investigate the relationship between transforming growth factor-β (TGF-β)/Smads signaling pathway and pulmonary arterial endothelial-mesenchymal transition (EndoMT) in hypoxia-hypercapnia pulmonary hypertension (HHPH) process and the regulatory effect of Yiqi-Wenyang-Huoxue-Huatan formula (YWHHF). METHODS: Healthy male SD rats were randomly divided into 5 groups:normal control (N) group, hypoxia-hypercapnia (HH) group, high-dose YWHHF (YH) group, middle-dose YWHHF (YM) group and low-dose YWHHF (YL) group. The rats in N group was housed in normoxic environment, and the rats in the other 4 groups were housed in hypoxia-hypercapnia environment (9%~11% O2 and 5%~6% CO2) for 4 weeks, 8 h/d, 6 d/week. The excess water vapor was absorbed by anhydrous CaCl2, and CO2 was absorbed by sodium hydroxide. The rats in YWHHF groups were put into the oxygen chamber before the same volume of YWHHF at different concentrations were given (200 g/L for YH group, 100 g/L for YM group and 50 g/L for YL group). The average pulmonary artery pressure and the average carotid artery pressure were measured during the operation. After operation, the right ventricular free wall and left ventricle plus interventricular septum were collected for determining the right ventricular hypertrophy index. Moreover, the morphological changes of the lung tissues were observed under light microscope. The mRNA and protein levels of α-smooth muscle actin (α-SMA), CD31, TGF-β1 and Smad2/3, and the protein level of p-Smad2/3 were detected by RT-PCR and Western blot. RESULTS: Compared with N group, the pulmonary artery mean pressure, the mRNA and protein expression of α-SMA, TGF-β1 and Smad2/3, and the protein level of p-Smad2/3 were increased, the levels of CD31 were decreased (P<0.05), and the lung tissue damage was observed in the other 4 groups. Compared with HH group, the pulmonary artery mean pressure, the mRNA and protein expression of α-SMA, TGF-β1 and Smad2/3, and the protein level of p-Smad2/3 were decreased, while the mRNA and protein levels of CD31 were increased. Moreover, the lung tissue damage was reduced in YH, YM and YL groups. CONCLUSION: TGF-β/Smads pathway may be involved in the process of EndoMT under hypoxia and hypercapnia condition, and YWHHF may reduce EndoMT by inhibiting the expression of TGF-β/Smads pathway-related molecules.  相似文献   

12.
AIM: To investigate the effect and potential mechanism of microRNA-181a (miR-181a) on cigarette smoke extract (CSE)-induced the productions of pro-inflammatory factors and the expression of collagen IV, fibronectin and α-smooth muscle actin (α-SMA) in human bronchial epithelial cells (HBECs). METHODS: CSE-induced miR-181a expression was detected by RT-qPCR in the HBECs. After tansfected with miR-181a mimic, the releases of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6 and transforming growth factor-β1 (TGF-β1) were measured by ELISA, the protein expression of collagen IV, fibronectin and α-SMA was determined by Western blot. The activation of NF-κB/TGF-β1/Smad3 pathway was also evaluated by Western blot. RESULTS: CSE increased the levels of TNF-α, IL-1β, IL-6 and TGF-β1 and the expression of collagen IV, fibronectin and α-SMA, and decreased the expression of miR-181a in the HBECs (P<0.05). However, transfected with miR-181a mimic partially prevented the releases of TNF-α, IL-1β, IL-6 and TGF-β1, and inhibited the expression of collagen IV, fibronectin and α-SMA (P<0.05). Additionally, the activation of NF-κB/TGF-β1/Smad3 evoked by CSE was attenuated after transfected with miR-181a mimic. CONCLUSION: Up-regulation of miR-181a prevents the releases of CSE-induced pro-inflammatory factors and expression of collagen IV, fibronectin and α-SMA in the HBECs, and its mechanism may be related to the inhibition of NF-κB/TGF-β1/Smad3 pathway.  相似文献   

13.
AIM:To construct a lentiviral vector carrying mitofusin 2 (Mfn2), and to investigate the inhibitory effect of Mfn2 on the activation of rat hepatic stellate cells and its mechanism of reducing the formation of hepatic fibrosis-related factors. METHODS:The lentiviral over-expression vector CV072-pCMV-Mfn2-EGFP containing Mfn2 was constructed and transfected into the hepatic stellate cells. The expression of green fluorescent protein was observed under fluorescence microscope, and the transfection efficiency was evaluated. The protein levels of Bax, Bcl-2, cleaved caspase-3, α-SMA, TGF-β1, Smad2 and Smad3 were detected by Western blot. The levels of type I collagen, type Ⅲ collagen and type IV collagen in the cell culture supernatants were determined by ELISA. RESULTS:Compared with control group, the apoptosis of the hepatic stellate cells transfected with lentivirus over-expression vector CV072-pCMV-Mfn2-EGFP was increased, and the protein levels of proapoptotic molecules Bax and cleaved caspase-3 were increased (P<0.01). TGF-β1/Smad pathway-related proteins TGF-β1, p-Smad2 and p-Smad3 were decreased, and the levels of fibrosis-related proteins α-SMA, type I collagen, type Ⅲ collagen and type IV collagen were decreased (P<0.01). CONCLUSION:Transfection of lentiviral over-expression vector CV072-pCMV-Mfn2-EGFP effectively inhibits hepatic stellate cell activation in vitro and may reduce the production of hepatic fibrosis-related factors by inhibiting TGF-β1/Smad pathway.  相似文献   

14.
AIM:To evaluate the effect of chronic alcohol intake on the histopathological changes of the liver and to determine the contribution of epithelial-mesenchymal transition (EMT) to hepatic fibrogenesis. METHODS:Thirty male C57BL/6 mice were randomly divided into 3 groups as following: the mice in control group was given (ig) water; the mice in low-dose alcohol group (2.0 g·kg -1·d -1) and high-dose alcohol group (4.0 g·kg -1·d -1) were given (ig) alcohol for 5 months. Alcohol-induced histopathological changes of the liver or development of hepatic fibrosis were evaluated using the histological methods with HE and Masson trichrome staining. The apoptosis of the liver was detected by TUNEL fluorometric staining (counterstained with DAPI). The activity of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) was measured by an automated biochemical analyzer. The expression of fibroblast-specific protein 1 (FSP-1), α-smooth muscle actin (α-SMA) and E-cadherin in the hepatic tissues was detected by immunofluorescence examination. The protein levels of E-cadherin, α-SMA, FSP-1, transforming growth factor β 1 (TGF-β 1) and hypoxia-inducible factor 1α (HIF-1α) were analyzed by Western blotting. RESULTS:Compared with control, the activity of serum ALT and AST, and apoptotic index of liver tissues were increased in the mice treated with alcohol for 5 months. The histopathological changes of the livers in the mice of low-dose alcohol group included steatosis and mild liver fibrosis, while severe liver fibrosis was observed in the high-dose alcohol-treated mice. Chronic alcohol consumption induced the increase in malondialdehyde (MDA) level, and the decreases in the activity of superoxide dismutase (SOD) and catalase (CAT) in the livers. It also reduced E-cadherin expression and increased α-SMA expression. FSP-1 immunostaining and albumn immunostaining positive cells were co-localized in the hepatocytes of low-dose alcohol group, but only FSP-1 positive hepatocytes were observed in high-dose alcohol group. Chronic alcohol consumption decreased E-cadherin expression and increased α-SMA, FSP-1, TGF-β 1 and HIF-1α expression in a dose-dependent manner, but the HIF-1α expression was not altered between the 2 alcohol-treated groups. CONCLUSION:Chronic alcohol intake induces the progression of hepatic fibrosis. Some fibroblasts derive from hepatocytes in liver fibrosis via EMT. The underlying mechanism is associated with the changes of the redox state, and increased TGF-β 1 generation and HIF-1α expression.  相似文献   

15.
AIM: To investigate the effect of CKLF1-C19 polypeptide (C19) on differentiation of human lung fibroblast (LFB) into myofibroblast (MFB) induced by TGF-β. METHODS: LFBs were cultured and identified. LFBs were treated with TGF-β (5 μg/L) to establish the cell model of LFB differentiate into MFB. The LFBs were divided into 6 experimental groups including control group, TGF-β group, and TGF-β plus different doses (1, 0.1, 0.01, 0.001 mg/L) C19 groups. The cell morphology, cell proliferation rate, and the expression of α smooth muscle actin (α-SMA) and collagen I were observed. RESULTS: Human primary LFB was successfully cultured and was confirmed by the method of immunofluorescence. TGF-β at 5 μg/L induced proliferation and differentiation of LFB. The mRNA levels of α-SMA and collagen I in TGF-β group were higher than that in control group (P<0.05).The cell proliferation rates, mRNA levels of α-SMA and collagen I, and the protein expression of α-SMA in 0.01 mg/L+TGF-β group and 0.001 mg/L+TGF-β group were markedly lower than those in TGF-β group (P<0.05). CONCLUSION: C19 at 0.01 mg/L and 0.001 mg/L effectively inhibits differentiation of LFB into MFB induced by TGF-β, thus inhibiting the process of airway remodeling and fibrosis to some extent.  相似文献   

16.
AIM: To investigate the effect of TGFβ1/Smad3 signaling pathway on the changes of lysyl hydro-xylase2 (LH2) activity, and to study the role in the relationship between LH2 and collagen deposition of pulmonary fibrosis. METHODS: Human lung fibroblast cell line HFL1 was cultured in F12 medium with 10% fetal bovine serum. The cells were divided into control group, TGFβ1 (10 μg/L) stimulation group, and minoxidil (5 μmol/L) intervention group. The cells in control group were treated with the equivalent volume of medium. The RNA and protein were collected after 48 h. The mRNA levels of PLOD2, α-SMA and COLⅠ were detected by RT-qPCR. The protein levels of LH2, total Smad3, phosphorylated Smad3, α-SMA, COLⅠ and COL Ⅳ were determined by Western blot. Hydroxylysylpyridinoline (HP) content was detected by ELISA. RESULTS: After stimulation with TGFβ1, the mRNA expression of PLOD2, α-SMA and COLⅠ was increased (P<0.01), and the protein levels of LH2, p-Smad3, α-SMA, COLⅠ and COL Ⅳ were also up-regulated, but the total Smad3 protein did not change. Treatment with minoxidil decreased the levels of above indexes (P<0.01). Compared with control group, stimulation with TGFβ1 increased the content of HP. However, treatment with minoxidil decreased the synthesis of HP (P<0.05). CONCLUTION: Activation of TGFβ1/Samd3 signaling pathway enhances LH2 expression. Minoxidil inhibits the TGFβ1/Samd3 signaling transduction, thereby reducing the expression of LH2 and the synthesis of hydroxylysyl collagen pyridine chain, and reducing pulmonary fibrosis.  相似文献   

17.
AIM:To investigate the effects of advanced glycation end products on activation of Smad signaling pathway and collagenⅠ synthesis in proximal tubular epithelial cells. METHODS:Advanced glycation end products (AGE-BSA) were prepared by incubation of bovine serum albumin (BSA) with D-glucose. Normal rat proximal tubular epithelial (NRK52E) cells were cultured in RPMI-1640 medium with AGE-BSA. Phosphorylation and nuclear translocation of Smad2/3 were examined by immunocytochemistry. Levels of TGF-β1 in supernatant of cell culture were measured by enzyme-linked immunosorbent assay (ELISA). Expression of TGF-β1, Smad2, Smad3 and Smad7 mRNA were detected by RT-PCR. Expression of α-SMA , E-cadherin and collagenⅠproteins were detected by Western blotting.RESULTS:AGE-BSA induced Smad2/3 phosphorylation and nuclear translocation, two peaks occured at 30 min (68% vs 16%, P<0.05) and 24 h (76% vs 16%, P<0.05) compared to 0 min. The level of TGF-β1 markedly increased in supernatant of cell culture by induced AGE-BSA at 24 h and 48 h. The expression of TGF-β1 mRNA markedly increased at 24 h, and associated with high expression of Smad2, Smad3 and Smad7 mRNA at 48 h. AGE-BSA up-regulated significantly the expression of α-SMA and collagenⅠproteins, down-regulated the expression of E-cadherin protein. CONCLUSION:AGEs induces activation of Smad signaling, as well as transdifferentiation and collagenⅠ synthesis in proximal tubular epithelial cells.  相似文献   

18.
AIM: To explore the effect of atorvastatin on the expression of α-SMA and TGF-β1 in the adventitia of ApoE-/- mice with atherosclerosis, and to investigate the underlying mechanism of atorvastatin therapy. METHODS: Male ApoE-/- mice (n=40) at 6-weeks of age were used to establish the atherosclerosis model by feeding with high fat diet. The mice were randomly divided into model group and atorvastatin group. In atorvastatin group, the mice were lavaged with atorvastatin at dose of 20 mg·kg-1·d-1. The mice in model group were given normal saline. C57BL/6 mice of the same age served as control group, feeding with ordinary food. The mice were respectively sacrificed at the time points of 10 and 15 weeks after feeding with different diets. The ascending aorta was removed for serial sectioning. Some sections were performed with Movat staining in order to observe the morphological changes of the tissues, and to measure the relative atherosclerotic plaque area and the thickness of the adventitia. Some sections were stained with Sirius red to identify the collagen synthesis. Immunohistochemistry assay was prepared to observe the expression of α-SMA and TGF-β1 in the adventitia at different time points. The expression of TGF-β1 at mRNA and protein levels in the thoracoabdominal aorta was measured by RT-qPCR and Western blot.RESULTS: Compared with model group, the formation of plaque in atorvastatin group significantly descended. Meanwhile the adventitial thickness and collagen synthesis also decreased. The results of immunohistochemical staining showed that compared with 10 weeks-model group, α-SMA and TGF-β1 in 15 weeks-model group was increased. The expression of α-SMA and TGF-β1 in atorvastatin group decreased significantly compared with model group. The expression of TGF-β1 at mRNA and protein levels in model group were higher than those in control group. They decreased in atorvastatin group compared with model group. Compared with 10 weeks-model group, the mRNA and protein of TGF-β1 in 15 weeks-model group were increased.CONCLUSION: Atorvastatin modulates adventitial fibroblast phenotype differentiation by suppressing expression of TGF-β1 and intervenes atherosclerotic development in ApoE-/- mice.  相似文献   

19.
AIM:To investigate the regulatory effect of RhoA/Rho-associated coiled-coil-forming protein kinase (ROCK) pathway mediated by transforming growth factor β1 (TGF-β1) on the differentiation of pulmonary fibroblasts into myofibroblasts. METHODS:Primarily cultured fibroblasts were obtained by trypsin digestion from the lung of neonatal rats. The fibroblasts were stimulated with TGF-β1 for different durations and were divided into control group, TGF-β1 induction group and Y-27632 treatment group. The distribution and expression of p-RhoA, ROCK, phosphorylated myosin binding subunit of myosin light chain phosphatase (p-MBS), serum response factor (SRF), α-smooth muscle actin (α-SMA),type I collagen and type Ⅲ collagen in the cells were detected by the methods of immunocytochemistry and Western blotting. RESULTS:A lot of parallel and cross arranged filaments labeled by α-SMA antibody appeared in the cells after TGF-β1 stimulation. The cultured cells stimulated with TGF-β1 were all myofibroblasts at 24 h determined by immunocytochemistry. The expression levels of p-RhoA, ROCK, p-MBS, SRF, α-SMA and type I and type III collagens were increased gradually with the extension of TGF-β1 stimulation time. The expression of RhoA/ROCK signaling protein in the cells stimulated with TGF-β1 (peaking at 6 h of exposure) was 2.96 folds higher as compared with the non-stimulated cells. The expression of SRF protein (peaking at 12 h of TGF-β1 exposure) was 4.55 folds higher as compared with the non-sti-mulated cells. The expression levels of α-SMA and type I and type III collagens (peaking at 24 h of TGF-β1 exposure) were 4.06 folds, 2.19 folds and 3.04 folds higher as compared with the non-stimulated cells, respectively. Compared with TGF-β1 induction group, the protein expression levels of ROCK, p-MBS, SRF, α-SMA and type I and type III collagens were significantly decreased at the corresponding time points in Y-27632 treatment group. CONCLUSION:TGF-β1 induces the differentiation of pulmonary fibroblasts into myofibroblasts, and then promotes the synthesis of collagen through the activation of ROCK pathway, which possibly plays an important role in the formation of pulmonary fibrosis.  相似文献   

20.
AIM: To investigate the effect of rhein on bleomycin-induced pulmonary fibrosis and the expression of microRNA-21 (miR-21) and transforming growth factor-β1 (TGF-β1)/Smad signaling molecules in rats. METHODS: A single dose of bleomycin was intratracheal injected into the SD rats to induce pulmonary fibrosis. After injection of bleomycin, the rats were randomly divided into low-, medium-and high-dose rhein treatment groups and model group. The rats that were instilled with normal saline intratracheally served as control group. After the treatment for 28 d, the pulmonary pathologic changes were observed under microscope with hematoxylin-eosin staining. The lung coefficient and hydroxyproline content were also measured. The expression of miR-21 and the mRNA levels of TGF-β1 and Smad7 in the lung tissues were detected by real-time PCR. The protein levels of TGF-β1 and Smad7 were determined by Western blot. RESULTS: Rhein significantly attenuated the experimental alveolitis, pulmonary fibrosis, lung coefficient and hydroxyproline contents in the rats. Rhein obviously decreased the expression of miR-21,and the mRNA and protein levels of TGF-β1, but significantly increased the mRNA and protein levels of Smad7 in the lung tissues. CONCLUSION: Rhein effectively prevents bleomycin-induced pulmonary fibrosis by inhibiting the expression of miR-21 and promoting the expression of Smad7, thus regulating the TGF/Smad signaling pathway to decrease extracellular matrix deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号