首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To overcome soil nutrient limitation, many plants have developed complex nutrient acquisition strategies including altering root morphology, root hair formation or colonization by arbuscular mycorrhizal fungi (AMF). The interactions of these strategies and their plasticity are, however, affected by soil nutrient status throughout plant growth. Such plasticity is decisive for plant phosphorus (P) acquisition in P‐limited soils. We investigated the P acquisition strategies and their plasticity of two maize genotypes characterized by the presence or absence of root hairs. We hypothesized that in the absence of root hairs plant growth is facilitated by traits with complementary functions, e.g., by higher root mycorrhizal colonization. This dependence on complementary traits will decrease in P fertilized soils. At early growth stages, root hairs are of little benefit for nutrient uptake. Regardless of the presence or absence of root hairs, plants produced average root biomass of 0.14 g per plant and exhibited 23% root mycorrhizal colonization. At later growth stages of maize, contrasting mechanisms with functional complementarity explained similar plant biomass production under P limitation: the presence of root hairs versus higher root mycorrhizal colonization (67%) favored by increased fine root diameter in absence of root hairs. P fertilization decreased the dependence of plant on specific root traits for nutrient acquisition. Through root trait plasticity, plants can minimize trade‐offs for developing and maintaining functional traits, while increasing the benefit in terms of nutrient acquisition and plant growth. The present study highlights the plasticity of functional root traits for efficient nutrient acquisition strategies in agricultural systems with low nutrient availability.  相似文献   

2.
Recent discoveries of polyhalite (K2SO4.MgSO4.2CaSO4.2H2O) in the UK provide an alternative to conventional fertilizer sources. This work investigated the interaction of polyhalite, commercially known as POLY4, with soil using leaching columns. Different physical forms of polyhalite (powder, crushed rock and granules) were compared to potassium chloride (KCl) for the movement of potassium, calcium, magnesium and sulphur (as sulphate) through the soil profile using 19.7 L of water, equivalent to 4,500 mm rainfall. The nutrients from polyhalite were found to be available at 30 cm depth, with calcium showing signs of interacting with the soil clay particles to release cationic nutrients. Polyhalite granules showed the greatest release of sulphate, magnesium and calcium as a proportion of the additional nutrient with 127%, 71% and 102%, respectively leached. For potassium, all forms of polyhalite had greater release than KCl (powder = 58%; granules = 86%; crushed rock = 57% and KCl 16%). Nutrients from polyhalite and those mobilized from soil interactions are present in soil solution indicating availability for plant growth.  相似文献   

3.
The effect of soil heating on the dynamics of soil available nutrients in the rhizosphere was evaluated. A pot experiment was carried out by using a rhizobox; a pot which enables to sample soils and soil solutions not only temporally with plant growth but also spatially depending on the distance from the root-accumulating compartment. The experiment consisted of 4 treatments; soils with or without heating treatment (150°C, 3 h), each of which was either planted with maize (Zea mays L.) or not. During the 17-d experiment, soil solutions at 0–2 mm from the root-accumulating compartment were collected 5 times. Soils depending on the distance from the root-accumulating compartment and plants were also collected after the experiment. The ionic concentrations of the soil solutions and soil water extracts, and the nutrient contents of plants were analyzed. Immediately after soil heating, the concentrations of cations, SO4 2-, CI-, water-soluble P, and water-soluble organic carbon increased significantly. With plant growth, the total ionic concentration in the rhizosphere soil solution increased for heated soil, whereas it decreased for unheated soil. The increase of the concentrations of cations and SO4 2- in the rhizosphere of heated soil was appreciable, suggesting that the movement of cations such as Ca2+ and Mg2+ by mass flow was regulated by that of SO4 2-. Moreover soil heating inhibited nitrification, resulting in the supply of N mainly in the form of NH4 + within 10 mm from the root-accumulating compartment. As a result, the soil pH decreased in the rhizosphere of heated soil. The amount of nutrients absorbed by plants, on the other hand, did not change significantly by soil heating except for an increase of P uptake. The increase of P uptake could be explained not only by the immediate increase of the water-soluble P concentration but also by the dissolution of Ca-bound P and the hydrolysis of water-soluble organic P in the rhizosphere.  相似文献   

4.
土壤养分空间异质性与根系觅食作用:从个体到群落   总被引:1,自引:1,他引:1  
土壤中分布着许多大小不一的养分富集区域(也称之为养分斑块)。植物为了适应环境最大限度的获取资源,会对这些养分斑块做出形态及生理上的响应。当根系接触到这些富集养分的区域就会大量的增生,尤其是比根长较大的细根,并且根系对养分的生理吸收能力也强于养分富集区域以外的根系。养分斑块的属性(大小、强度、组成和位置等)和植物体本身的属性(敏感性和觅食能力等)共同决定了养分空间异质性对于植物体生长的影响。由于不同物种的根系对于养分斑块的可塑性和养分斑块的属性的差异及植物根系接触到养分斑块的时间和规模的不同会加剧种间或种内的竞争强度;先接触到养分斑块的植物根系可能在其他植物的根系到达之前将养分斑块内部的养分大部分吸收或耗尽,从而引起根系间的不对称性竞争。养分空间异质性造成的群体内部竞争强度的增加甚至不对称性会引起群体内植株大小变异性的增加,从而进一步影响群体结构。同时养分空间异质性对根系竞争的影响也会改变群落内部物种的多样性及整个体系的生产力,这与群落内物种之间觅食精度及竞争力的差异有关;觅食能力较强的物种可能会高效整合并占据大量的小养分斑块从而提高自身生长,进而降低了小养分斑块对群落物种丰度的正效应。  相似文献   

5.
The impacts of tillage and cropping sequences on soil organic matter and nutrients have been frequently reported to affect the uppermost soil layers, but there is little published information concerning effects at greater depth. This article reports results on the distribution of soil organic carbon (SOC), active carbon (AC), N, Olsen‐P and extractable K within 100 cm in short (4 yr) and long (16 yr) term experiments under different tillage systems. Short (TT4) and long (TT16) traditional tillage are compared with conservation tillage, reduced (RT16) and non‐tillage (NT4). The results show more accumulation of SOC in the near‐surface under RT16 and NT4 in both experiments compared with traditional tillage. Moreover, greater C content occurs to 40 cm depth in the long‐term experiment. The results demonstrate the importance of time on C accumulation, not only in near‐surface layers but also at greater depths. Active C is an indicator of the increase in soil quality in the long‐term experiment. This trend is only apparent for the first 10 cm in the short‐term experiment. Patterns in N, Olsen‐P and extractable K are similar to that of SOC. However, only extractable K is significantly greater in soil under conservation tillage (RT16 and NT4) after short and long periods. Potassium availability is a good indicator of the changes caused by tillage. Our results indicate that studies of soils at depth could be very useful in long‐term experiments to demonstrate the effect of conservation tillage on C and nutrient distribution.  相似文献   

6.
生物有机肥用量对地黄生长和土壤养分的影响   总被引:1,自引:1,他引:1       下载免费PDF全文
针对黄河地区地黄品种退化、产量下降、功效降低的问题,从改善地黄产地土壤入手,以怀地黄为试材,研究生物有机肥用量对地黄生长、养分含量以及土壤根际与非根际土养分变化的影响.结果表明,与常规施肥相比,施用生物有机肥处理显著增加地黄的块根数和根粗,提高地黄产量和品质.随着生物有机肥用量的增加,地黄块根中大量元素积累量在增加,尤...  相似文献   

7.
8.
A recent trial found that the presence of coarse soil in fine soil increased nutrient uptake by two plant species (Smaill et al., 2014 ). To determine if the additional nutrient uptake was derived directly from the coarse soil, the changes in coarse soil nutrient stocks were assessed. In most cases nutrient stocks increased, despite being associated with greater plant nutrient uptake. This suggests coarse soil can promote nutrient release from fine soil through some currently unknown mechanism.  相似文献   

9.
The benefits of liming acidic or calcium (Ca)-deficient soils for soil structure and fertility are well documented. However, little is known about the effect of liming nearly neutral loess soils – lacking Ca – on interactions between soil nutrients. Over a 2-year period, 62 field trials were conducted in Germany and Austria with three treatments (0, 3 and 12 t CaO ha?1) on slightly acidic loess soils. Soil samples from the top soil layer were taken 4, 8, 16 and 24 weeks after liming. In addition to the pHCaCl2, the phosphorus (P), potassium (K) and Ca contents were analysed using electro-ultrafiltration (EUF). The application of lime increased the pH in average from 6.6 up to 7.0 and 7.2, but did not decrease EUF extractable P and K below the level of untreated control. Contrary to our expectations, EUF extractable P increased 4 weeks after liming in the treatment with 3 t CaO ha?1. At the end of incubation period, 24 weeks after liming, the EUF extractable K in treatment 12 t CaO ha?1 remained still 1.3 mg K 100 g?1 soil above the untreated control.  相似文献   

10.
Abstract

The uptake of phosphate from stirred solution by roots was not affected by root hairs. In contrast to this, root hairs appreciably increased the uptake of phosphate from a clay soil.  相似文献   

11.
ABSTRACT

Lentil (Lens culinaris L.), a pulse crop, is grown in nutrient-poor soils in many developing countries, often with little or no fertilization. Knowledge on root traits of lentil and the assessment of their role in nutrient capture would help to sustain its production in these nutrient-poor soils. Root traits (root length, root hairs, root-induced acidification, and phosphatase enzymes) of 10 lentil genotypes (Barimasur-3, Barimasur-4, PLX-79542, GP-8407-5, GP-8403, BLX-79542, L-5 × 8704(2), L-107 × 87012, L-5 × 87272 and 8406-122) were investigated and then related to the plant uptake of phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulphur (S), iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), boron (B), molybdenum (Mo), and cobalt (Co) in laboratory and pot experiments. There were significant (p < 0.05) differences in root length (RL) and root-hair density (number mm?1 root) among the genotypes. The genotypes did not differ to induce rhizosphere acidification and acid phosphatase activity (aptase). Uptake of most nutrients differed significantly (p < 0.05) among the genotypes, but root length (RL) was, in general, weakly correlated to the uptake of the most nutrients in the shoot dry matter (DM). The genotypes with prolific root-hair formation (Barimasur-4 and Barimasur-3) were particularly superior in uptake of those nutrients (K, P, Fe, Mn, Cu, Zn, Mo) whose availability in soils is usually low and whose transport to the roots is diffusion limited. The results of this investigation, though based on a small sample of lentil accessions/cultivars, suggest that genetic variation in lentil root traits and nutrient uptake can be pronounced. Screening of a large number of local and exotic cultivars or lines of lentil should be conducted by including more root traits (N2 fixation, organic acids, mycorrhizae) to find nutrient-efficient germplasm to promote lentil production.  相似文献   

12.
本文根据连续4年的试验结果表明,钾肥施用量与土壤中碱解氮和速效磷呈极显著负相关,与速效钾呈极显著正相关。钾肥用量与水稻植株体内全氮呈极显著负相关,与全磷关系不显著,与全钾呈极显著正相关。最高产量的钾肥用量为98.1kg/hm2,最佳经济用量89.0kg/hm2,增产率8.3%~12.3%。  相似文献   

13.
研究了种植葡萄30年重茬3次和种植葡萄3年新建葡萄园的根区土壤养分变化,结合盆栽试验,分析了不同葡萄园根区土壤对再植葡萄生长发育的影响。结果表明,连作葡萄园土壤有机质及大量元素N、P、K、水溶性Ca、Mg含量并未减少,表现出显著增加趋势,而微量元素变化较为复杂,随着葡萄种植时间延长,Fe、Mn含量减少,Zn、Cu含量增加,Zn/Mn、Zn/Fe、N/Fe、P/Fe、Zn/K等比例失调,其中Zn/Mn、Zn/Fe比例失调最为严重。与新植园土盆栽葡萄相比,连作园根区土盆栽葡萄的株高、茎粗、地上鲜重、地下鲜重、叶绿素含量和根系活力均较低,分别比新植园土盆栽葡萄降低39.80%、5.82%、47.97%、30.17%、30.36%和21.22%,表现出明显的重茬障碍症状。连作土壤中Fe含量减少,Zn/Mn、Zn/Fe比例失调可能是葡萄连作障碍产生的重要原因之一。  相似文献   

14.
Plant species have different traits for mobilizing sparingly soluble phosphorus (P) resources, which could potentially lead to overyielding in P uptake by plant species mixtures compared to monocultures due to higher P uptake as a result of resource (P) partitioning and facilitation. However, there is circumstantial evidence at best for overyielding as a result of these mechanisms. Overyielding (the outcome) is easily confused with underlying mechanisms because of unclear definitions. We aimed to define a conceptual framework to separate outcome from underlying mechanisms and test it for facilitation and complementarity with respect to P acquisition by three plant species combinations grown on four soils. Our conceptual framework describes both mechanisms of complementarity and facilitation and outcomes (overyielding of mixtures or no overyielding) depending on the competitive ability of the species to uptake the mobilized P. Millet/chickpea mixtures were grown in pots on two calcareous soils mixed with calcium-bound P (CaP) and phytate P (PhyP). Cabbage/faba bean mixtures were grown on both acid and neutral soils mixed with P-coated iron (hydr)oxide (FeP) and PhyP. Wheat/maize mixtures were grown on all four soils. Rhizosphere carboxylate concentration and acid phosphatase activity (mechanisms) as well as plant P uptake and biomass (outcome) were determined for monocultures rhizosphere and species mixtures. Facilitation of P uptake occurred in millet/chickpea mixtures on one calcareous soil. We found no indications for P acquisition from different P sources, neither in millet/chickpea, nor in cabbage/faba bean mixtures. Cabbage and faba bean on the neutral soil differed in rhizosphere acid phosphatase activity and carboxylate concentration, but showed no overyielding. Wheat and maize, with similar root exudates, showed overyielding (the observed P uptake being 22% higher than the expected P uptake) on one calcareous soil. We concluded that although differences in plant physiological traits (root exudates) provide necessary conditions for complementarity and facilitation with respect to P uptake from different P sources, they do not necessarily result in increased P uptake by species mixtures, because of the relative competitive ability of the mixed species.  相似文献   

15.
16.
通过盆栽试验,研究等养分投入条件下,施用化肥与不同有机肥(猪粪、牛粪、鸡粪、麸酸有机无机复混肥)对花生营养吸收、土壤酶活性及速效养分的影响。结果表明,与化肥相比,施用有机肥脲酶活性提高6.2%~22.1%,磷酸酶活性提高7.9%~27.9%,过氧化氢酶活性提高45.1%~65.2%,分别以猪粪、鸡粪、麸酸有机无机复混肥最高,而转化酶活性各处理表现不一。施用有机肥较化肥促进了N、P、K养分向花生果仁转移累积,果仁吸N量、吸P量、吸K量、吸S量分别较化肥提高22.7%~78.0%、47.1%~74.5%、65.2%~91.6%、5.6%~61.2%,其NPK养分总吸收量以麸酸有机无机复混肥最高。施肥均提高了种植花生后的土壤N、P、K速效养分含量,施用麸酸有机无机复混肥还明显改善了土壤S素营养。  相似文献   

17.
Maize plant has an absolute requirement of nutrients (N, P, and K) for growth and development. The microbial application can facilitate in addressing limited access to chemical fertilizer concern. Moreover, biochar and phosphorus-solubilizing bacterial (PSB) community can contribute together in nutrient availability. Both have the P-supply potential to the soil, but their interaction has been tested less under semiarid climatic conditions. The purpose of the study was to evaluate the potential of biochemically tested promising PSB strains and biochar for maize plant growth and nutritional status in plant and soil. Therefore, two isolated PSB strains from maize rhizosphere were biochemically tested in vitro and identified by 16S rDNA gene analysis. The experiment was conducted in the greenhouse where the plant growth and nutrient availability to the plants were observed. In this regard, all the treatments such as PSB strain-inoculated plants, biochar-treated plants, and a combination of PSBs + biochar-treated plants were destructively sampled on day 45 (D45) and day 65 (D65) of sowing with four replications at each time. PSB inoculation, biochar incorporation, and their combinations have positive effects on maize plant height and nutrient concentration on D45 and D65. In particular, plants treated with sawdust biochar + Lysinibacillus fusiformis strain 31MZR inoculation increased N (32.8%), P (72.5%), and K (42.1%) against control on D65. Besides that, only L. fusiformis strain 31MZR inoculation enhanced N (23.1%) and P (61.5%) than control which shows the significant interaction of PSB and biochar in nutrient uptake. PSB and biochar have the potential to be used as a promising amendment in improving plant growth and nutrient absorption besides the conventional approaches.  相似文献   

18.

Background

In practical farming, there is often a need for short-term availability of information on the soil nutrient status.

Aims

To develop a new express method for the extraction of major plant-available nutrients and measurement of soil nutrients. In future, this method shall serve for in-field measurements of soil samples with an ion-sensitive field-effect transistor (ISFET).

Methods

Various extraction conditions such as type of extractant, soil-to-solution ratio, time, and intensity were investigated on a broad selection of dried soil samples in the laboratory. Based on 83 field-moist soil samples with varying clay contents, these conditions were compared to standard laboratory methods.

Results

With increasing extraction time, the nutrient concentrations increased. When the soil-to-solution ratio was reduced, a greater share of nutrients was extracted, independent of soil type. H2O and 0.01 M CaCl2 and standard calcium-acetate-lactate (CAL) solution proved to be too weak in the short period to reach the ISFET sensor measurement range. Higher concentrated CAL solutions performed much better. Finally, a 5-min CaCl2 extraction followed by the removal of an aliquot for the determination of soil pH and NO3 was found to be effective. The remaining solution was then mixed with 0.20 M CAL solution for the analysis of H2PO4 and K+ at 10 min of extra extraction time. This extraction method showed very good correlations with the values based on the German laboratory reference methods for pH (R2 = 0.91) and for nitrate (R2 = 0.95). For phosphorus and potassium, we obtained an R2 of 0.70 and 0.81, respectively, for all soils. When soils were grouped according to clay content higher correlations were found.

Conclusions

A new express method based on a wet-chemical approach with a soil preparation procedure was successfully developed and validated. This seems to be a valuable basis for future in-field measurements via ISFET.  相似文献   

19.
本文研究了山东省陵县土壤养分定位监测试区土壤速效磷、钾养分随时间的变异。结果表明,1992~2002年10年间,耕层土壤速效磷含量呈上升趋势,增加0 33mg L-1 a-1;而土壤速效钾含量呈下降趋势,降低1 52mg L-1 a-1。土壤速效磷和速效钾养分时间变异趋势与土壤磷养分平衡处于盈余状态和钾养分平衡处于亏缺状况有关,土壤 作物系统内磷素(P)盈余平均为38 6kg hm-2 a-1,其实际平衡盈余率大大超过合理的范围,磷肥用量明显偏高,未得到合理高效利用;而钾素(K)亏缺平均为95 7kg hm-2 a-1,其实际平衡亏缺率略低于允许平衡亏缺率,若试区土壤钾素长期处于亏缺状态,会明显降低土壤供钾能力。  相似文献   

20.
我国东南部地区土壤养分的退化   总被引:1,自引:0,他引:1  
A total of 2 190 soil nutrient data in the Second National Soil Survey of China were collected to assess the degradation of soil nutrients in the hilly region of Southeast China. The definition of soil nutrient degradation is suggested firstly, then the evaluation criteria are set up and the current status of degradation of red soil and latosol is assessed. The percentages of areas in four grades of soil nutrient degradation, i.e., slightly deficient, medium deficient, severely deficient and extremely deficient, were 21.3%, 43.3%, 16.2% and 3.0% for soil total N; 0.7%, 6.4%, 16.7% and 76.2% for soil available P; and 25.4%, 26.3%, 8.6% and 5.0% for soil available K, respectively. The severity of soil nutrient degradation was in the order of P > N > K. The major factors leading to the degradation of soil nutrients in quantity include soil erosion, leaching and the consumption by crops. And the principal factor affecting the degradation of soil nutrients in availability is the fixation of N, P and K, especially the fixation of phosphorus. The average amount of P fixed by soils is 408 mg kg-1, and upland soils can fix more P than paddy soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号