首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Brassica rapa can be infected with Turnip mosaic virus (TuMV) as a result of manual inoculation or aphid transmission, but infected plants have not been found in the field. In this study, B. rapa plants grown from seed collected from two field sites in southern England were mechanically inoculated with one of two distinct isolates (pathotypes) of TuMV under glasshouse conditions. These had either been isolated from Brassica oleracea growing wild in Wales, (GBR 83, pathotype 3) or Dorset (GBR 98, pathotype 1). Use of ELISA as an index of infection in manually inoculated B. rapa showed that although seed provenance had a small effect on the proportion of plants infected, the biggest factor was the virus isolate. Both virus isolates infected both lines of B. rapa , but invaded at different rates, although both resulted in easily discernible symptoms. The severity of symptoms was not related to amounts of virus in the infected plants. A significantly greater proportion of plants were infected with GBR 83 at 45 days post-inoculation (d.p.i.) than GBR 98. but GBR 98 caused significantly more severe and obvious symptoms as well as greater mortality at 119 d.p.i., in plants from both sites than GBR 83.  相似文献   

2.
Screenhouse experiments conducted in Kenya showed that inoculation of cabbage seedlings with Turnip mosaic virus (TuMV), either alone, or in combination with Cauliflower mosaic virus (CaMV), reduced the number and weight of marketable harvested heads. When viruses were inoculated simultaneously, 25% of cabbage heads were non-marketable, representing 20-fold loss compared with control. By contrast, inoculation with CaMV alone had insignificant effects on cabbage yield. This suggests that TuMV is the more detrimental of these pathogens, and its management should be a priority. Early exposure to TuMV produced cabbages that were 50% lighter than non-infected plants, but later infection was less damaging suggesting that controlling virus infection at the seedling stage is more important. TuMV was far less damaging to kale than it was to cabbage; although high proportions of TuMV-inoculated kale plants showed symptoms (>90%), the marketability and quality of leaves were not significantly reduced, and no clear relationship existed between timing of infection and subsequent crop losses. Early inoculation of Swiss chard with Beet mosaic virus (BtMV) significantly impaired leaf quality (∼50% reduction in marketable leaf production), but the impact of disease was greatest in plants that had been inoculated at maturity, where average leaf losses were two and a half times those recorded in virus-free plants. Disease-management of BtMV in Swiss chard is important, therefore, not only at the seedling stage, but particularly when plants are transplanted from nursery to field.  相似文献   

3.
Pathotype-specific and broad-spectrum resistance to turnip mosaic virus (TuMV) have been identified in the diploid A genome brassica species Brassica rapa. The pathotype-specific resistance is effective against pathotype 1 isolates of TuMV, which are the most common in Europe. It is almost identical in its specificity to that of a mapped resistance gene (TuRB01) present in the A genome of the amphidiploid species Brassica napus. A mutant of a pathotype 1 isolate of TuMV (UK 1M) that is able to overcome TuRB01 also overcame the B. rapa resistance. This, combined with the fact that a single-nucleotide mutation in the cylindrical inclusion gene of TuMV that has been shown to induce a change from avirulence to virulence against TuRB01, had an identical effect on the B. rapa resistance, suggest that the two resistances are conditioned by the same gene. A second source of resistance in B. rapa prevented systemic spread of all TuMV isolates tested. A third source of resistance that appears to provide immunity to, or severely restrict replication of most isolates of TuMV has been characterised. This resistance source also prevented systemic spread of all TuMV isolates tested. Prior to this study, no resistance to pathotype 4 or pathotype 12 isolates of TuMV had ever been identified. For each of these three resistance sources, plant lines that are not segregating for some of the resistance phenotypes and that are presumably homozygous for the genes controlling these phenotypes have been generated. Strategies for further characterising and deploying these resistances in different Brassica species are described.  相似文献   

4.
芜菁花叶病毒对油菜致病力差异及壳蛋白基因序列分析   总被引:1,自引:0,他引:1  
 2004年春季参试的湖北、安徽2省11个芜菁花叶病毒(Turnip mosaic virus,TuMV)分离物感染4个油菜品种,病情指数幅度为26.2~76.0;秋季参试5个TuMV分离物感染14个油菜品种,病情指数幅度为38.3~55.9,均值方差分析表明,致病力差异分别达到极显著和显著水平。壳蛋白(CP)基因序列分析表明,来源于2省油菜、白菜、红菜薹、芝麻和萝卜的17个TuMV分离物与浙江分离物ZJB3序列同源性在97%以上,同属于MB类群;而另一个萝卜分离物WRS1与ZJR1、CH1和CH2分离物序列同源性在95.4%~98.7%之间,属于MR类群。类群间分离物序列同源性仅为88.0%~92.2%。遗传进化树分析表明,萝卜分离物WRS2在MB类群中单独构成一个分支,可能是MR类群和MB类群发生重组的后代。  相似文献   

5.
大白菜抗芜菁花叶病毒基因EST-PCR-RFLP分子标记的研究   总被引:3,自引:0,他引:3  
 本试验以高抗芜菁花叶病毒C3株系(TuMV-C3)的高代自交系A156-2和感病自交系P9805杂交后代的F2代为群体,根据大白菜的抗性相关的表达序列标签(EST)设计引物,利用分离群体分群分析法(BSA),筛选出2个与TuMV-C3株系抗病基因紧密连锁的EST-PCR-RFLP分子标记BS300及BS160,遗传距离均为6.5 cM,为大白菜分子辅助育种、抗病基因克隆以及研究抗病基因编码特性等奠定基础。  相似文献   

6.
Preliminary studies were undertaken to establish the occurrence of Turnip mosaic virus (TuMV) resistance phenotypes in 99 Brassica napus and 32 B. carinata accessions, breeding lines and cultivars mostly from Africa, Australia, the Indian sub-continent or China. An isolate of TuMV pathotype 8 (WA-Ap1) was used in most inoculations. The influence of temperature on expression of resistance phenotypes was determined. Those identified were O (extreme resistance), RN (localised hypersensitivity), R (resistance to systemic movement without necrosis), +N (systemic infection with some necrosis), + (susceptibility), and RN/+ (systemic infection with necrosis limited to inoculated leaves). In the initial glasshouse evaluations with B. napus, 18 lines developed phenotype O, 42 RN, two + (both from Australia), and 30 segregated for O and RN, two for R and RN, one for O and R, two for O, R and RN, one for O, RN and +N, and one for RN and +N. Phenotype +N only occurred in two lines from India. In the initial glasshouse evaluations with B. carinata, 14 lines developed O, two RN or R, and one +; the 13 remaining lines segregated for phenotypes O and R (12), or RN and R (1). In B. carinata, phenotype RN only occurred in African lines, and phenotype + only in a line from Pakistan. The 18 B. napus and 14 B. carinata lines that developed phenotype O uniformly were re-evaluated at low (16 and/or 18 °C) and high (25 °C) temperatures in the glasshouse three or two times, respectively, and again under controlled environment room conditions at 16 and at 28 °C. While in most lines phenotype O was replaced by other phenotypes or segregated with other phenotypes at the higher temperatures, it occurred uniformly regardless of temperature in Chinese B. napus line (06-6-3777) and three African B. carinata lines (IP 117, ST 18 and ST 50). Graft inoculations confirmed extreme resistance in these four lines. Other promising lines which displayed phenotype O in >75 % of inoculated plants included for B. napus Chinese lines 06-p71-1 and 06-p74-4 and French line Cresor, and for B. carinata African lines Mbeya Green, ML-EM-1, ML-EM-7 and ML-EM-8, and Australian lines P 195923.3 and 30200533. Five promising lines segregated for phenotype RN, B. napus Ding 110, Hyola 42, Fan 028, ZY 007 and Qu 1104. Chinese B. napus line Ding 110 developed phenotype RN uniformly at high (25 and 28 °C) temperatures. Thus, in plants developing phenotypes RN, R and +, low temperature retarded virus multiplication in inoculated leaves to below the level at which it can be identified using ELISA. No clear phenotypic differences attributable to TuMV pathotype were found in tests in which isolates from pathotypes 1, 7 and 8 were used. This highlights the need for future evaluations for TuMV resistance in Brassica germplasm to be done at higher temperatures. This study also highlights the need to identify additional genes responsible for the different resistance and susceptibility reactions found, especially in B. carinata. The four lines that developed phenotype O uniformly at all temperatures and also withstood graft-inoculation will be particularly valuable for developing new TuMV-resistant cultivars of oilseed and forage Brassicas.  相似文献   

7.
The most common and effective way to control phoma stem canker (blackleg) caused by Leptosphaeria maculans in oilseed rape (Brassica napus) is through the breeding of resistant cultivars. Race specific major genes that mediate resistance from the seedling stage have been identified in B. napus or have been introgressed from related species. Many race specific major genes have been described and some of them are probably identical in B. napus (allotetraploid AACC) and the parental species B. rapa (diploid AA). More work is needed using a set of well-characterised isolates to determine the number of different major resistance genes available. In some B. napus cultivars, there is resistance which is polygenic (mediated by Quantitative Trait Loci) and postulated to be race non-specific. Many of these major genes and Quantitative Trait Loci for resistance to L. maculans have been located on B. napus genetic maps. Genes involved in race specific and polygenic resistance are generally distinct.  相似文献   

8.
 用RT-PCR方法从长春感染芜菁花叶病毒( Turnip mosaic virus,TuMV)的十字花科蔬菜中扩增获得该病毒的p3基因,并对其序列进行了比较分析。结果表明,本研究所获得的10个TuMV分离物p3基因含1 065个核苷酸,其序列一致率为98.8%~99.6%,与GenBank中其他15个TuMV分离物核苷酸一致率为80.9%~99.4%。根据p3基因核苷酸序列构建的系统进化树显示:25个TuMV分离物可分为4个组,本研究得到的10个TuMV分离物均属于basal-BR组。将TuMV JCR06分离物p3基因N端663 bp片段克隆至原核表达载体pET-28a(+),并在大肠杆菌BL21(DE3) pLysS中表达出分子量约为28 kDa的融合蛋白。以纯化的融合蛋白为抗原免疫家兔,制备了P3蛋白的特异性抗血清。以TuMV侵染的萝卜为抗原,间接ELISA测定抗血清的效价为1∶2 048。Western blotting分析表明,制备的抗血清能与诱导表达的融合蛋白发生特异性反应。  相似文献   

9.
 从浙江宁波雪里蕻上获得97株呈花叶症状的病毒样品,利用三抗体夹心酶联免疫吸附测定(TAS-ELISA)在97株雪里蕻花叶样品中均检测到芜菁花叶病毒(Turnip mosaic virus,TuMV),所有的样品都没有检测到黄瓜花叶病毒(Cucumber mosaic virus,CMV)和烟草花叶病毒(Tobacco mosaic virus,TMV);利用免疫捕捉反转录PCR (IC-RT-PCR)对部分TuMV样品中的CP和HC-Pro基因进行了扩增,所有样品都得到约0.8kb和1.4kb的2条特异条带,因此宁波雪里蕻花叶病的主要病原是TuMV。对53个雪里蕻栽培品种在温室和大田进行了人工接种,共鉴定出抗病品种7个,耐病品种22个,感病品种24个,未发现高抗品种。总的来说,细叶型品种比花叶型和板叶型品种抗病。利用TAS-ELISA方法对接种的53个雪里蕻品种中的TuMV浓度进行测定,在接种后10、15、20和30d,TuMV检出率分别为45.28%、90.57%、100%和100%,大多数雪里蕻OD405值随接种后天数的增加而呈上升趋势,说明TuMV可以在雪里蕻抗性品种内繁殖,抗性品种的抗性主要表现为耐病。  相似文献   

10.
The pathogenesis of clubroot, a disease of cruciferous crops caused by the fungusPlasmodiophora brassicae, starts with infection of the root hairs. This process was studied in 13 accessions ofBrassica oleracea, B. napus and B. rapa with varying levels of plant resitance toP. brassicae. Seedlings were grown in a mineral solution, inoculated with resting spores ofP. brassicae, and the number of plasmodia developing in root hairs was recorded. When compared with the standard susceptible cultivar Septa, both higher and lower resistance to root hair infection was found in the accessions of the differentBrassica species. No complete resistance to root hair infection was found. Over the accessions studied, there was no correlation between the plant resistance estimated from greenhouse tests and the resistance to root hair infection of seedlings. The resistance of all accessions must at least partly be caused by other mechanisms which operate after the root hair plasmodia are formed.  相似文献   

11.
12.
为明确褐飞虱Nilaparvata lugens对环氧虫啶的抗性遗传方式, 进而指导田间合理用药。经过34代选育获得抗环氧虫啶褐飞虱品系(CYC-R), 其抗性水平相较于敏感品系(CYC-S)提高了102.42倍。抗性遗传方式分析结果表明, 环氧虫啶对CYC-R和CYC-S的正、反交后代(F1RS和F1SR)的毒力无显著性差异, 且正、反交后代显性度分别为0.33和0.34, 表明褐飞虱对环氧虫啶的抗性为常染色体、不完全显性遗传。自交和回交的后代(F2RS、F2SR和F2BC)经环氧虫啶处理后的实际死亡率与期望值经卡方检验, 均差异显著, 表明褐飞虱对环氧虫啶的抗性由多基因控制。因此, 一旦褐飞虱田间种群对环氧虫啶产生抗性, 环氧虫啶的使用寿命将会缩短, 抗性治理难度较大, 建议采用预防性抗性治理策略。  相似文献   

13.
Sclerotinia stem rot (SSR) of oilseed rape (OSR, Brassica napus), caused by Sclerotinia sclerotiorum, is a serious problem in the UK and worldwide. As fungicide‐based control approaches are not always reliable, identifying host resistance is a desirable and sustainable approach to disease management. This research initially examined the aggressiveness of 18 Sclerotinia isolates (17 S. sclerotiorum, one S. subarctica) on cultivated representatives of B. rapa, B. oleracea and B. napus using a young plant test. Significant differences were observed between isolates and susceptibility of the brassica crop types, with B. rapa being the most susceptible. Sclerotinia sclerotiorum isolates from crop hosts were more aggressive than those from wild buttercup (Ranunculus acris). Sclerotinia sclerotiorum isolates P7 (pea) and DG4 (buttercup), identified as ‘aggressive’ and ‘weakly aggressive’, respectively, were used to screen 96 B. napus lines for SSR resistance in a young plant test. A subset of 20 lines was further evaluated using the same test and also in a stem inoculation test on flowering plants. A high level of SSR resistance was observed for five lines and, although there was some variability between tests, one winter OSR (line 3, Czech Republic) and one rape kale (line 83, UK) demonstrated consistent resistance. Additionally, one swede (line 69, Norway) showed an outstanding level of resistance in the stem test. Resistant lines also had fewer sclerotia forming in stems. New pre‐breeding material for the production of SSR resistant OSR cultivars relevant to conditions in the UK and Europe has therefore been identified.  相似文献   

14.
The genetic structure of Potato virus Y (PVY) populations was investigated in naturally-infected pepper ( Capsicum annuum ) fields, collected at eight different localities in northern Tunisia, where 23% of the sampled plants were homozygous for the pvr21 recessive resistance allele, while the other plants carried the dominant susceptibility allele pvr2+ . Restriction fragment length polymorphism analysis at three PVY genome segments revealed a high level of viral diversity, with a majority of cases showing co-infection of individual plants by several PVY haplotypes and a strong genetic differentiation of viral populations collected in the different localities. Geographic distances affected the differentiation of PVY populations and isolation by distance among these populations was significant. However, the occurrence of the pvr21 resistance allele did not contribute to the structure of viral populations, suggesting that the virulence properties of the virus did not significantly affect its fitness. Consequently, greater deployment of the pvr21 gene would probably not be a suitable strategy to control PVY, and other resistance genes should be preferred.  相似文献   

15.
Studies were undertaken to compare susceptible and resistant host responses to Pseudocercosporella capsellae in cotyledons of Brassica carinata, B. juncea and B. napus in order to define the mechanisms of resistance in these three species. On both resistant and susceptible hosts, hyphal penetration was always through stomatal openings and without infection pegs or appressoria. On resistant B. carinata ATC94129P, up to 72% of spores disintegrated and, generally, germination (<22%) and germ tube lengths (<25 μm) were comparatively low. Resistant B. napus Hyola 42 had the lowest germination (8%) and susceptible B. carinata UWA#012 had the highest (51%). On resistant B. carinata ATC94129P, germ tube extension was impeded across 24–60 h post‐inoculation (hpi) and percentage stomatal penetration lower (4%) at 60 hpi compared with susceptible B. carinata UWA#012 (26%). Stomatal densities (stomata/14 757 μm2) on resistant B. juncea Dune (2·12) and B. napus Hyola 42 (1·62) were lower than for susceptible B. juncea Vardan (2·40) and B. napus Trilogy (2·03). Resistant B. carinata ATC94129P had greater stomatal density (1·89) than susceptible B. carinata UWA#012 (1·58). Overall, B. juncea had greater stomatal density (2·26) compared with B. napus (1·83) and B. carinata (1·74). In resistant B. carinata ATC94129P, P. capsellae induced 28% stomata to close, while in susceptible B. carinata UWA#012 no such closure was induced. Epicuticular wax crystalloids were present only on resistant B. carinata ATC94129P and probably also contribute towards resistance.  相似文献   

16.
Two potyvirus isolates from endive, originating from southern France (Ls252) and from the Netherlands (Ls265), that were highly and poorly pathogenic on lettuce, respectively, were compared with a common isolate (Ls1) of lettuce mosaic virus (LMV) and with two highly deviant Greek isolates fromHelminthia (Picris) echioides (Gr4) and endive (Gr5), earlier recognized as LMV. The isolates could not be distinguished by particle morphology and serology, and were all identified as LMV. Leaf curling, plant stunting and necrosis were more characteristic of the virus than mosaic. The isolates studied varied considerably on differential host species and a range of lettce cultivars including pathotype differentials of Pink et al. [1992b]. Ls1 and Ls265 reacte largely as pathotype II, including the common strain of the virus, but Ls265 was least pathogenic on lettuce. Ls252 fitted pathotype IV and was very similar to LMV-E (the Spanish strain). The Greek isolates were very similar to each other in causing very severe symptoms on some non-lettuce hosts and a number of lettuce cultuvars. In lettuce variectal reaction Gr4 resembled pathotype I, but Gr5 severely affected Salinas 88, resistant to pathotypes I, II and III, and it appears to be a novel pathotype. Genetic interaction between lettuce and LMV is not following a simple yes-or-no pattern, and it is not a mere matter of resistance versus susceptibility. Adoption of a more realistic resistance terminology is proposed. None of the lettuce cultivars tested was resistant to the most pathogenic isolate Ls252, but resistance to it was found in 2 out of 12 wildLactuca species tested (Lactuca perennis andL. tatarica) while the symptomless plants ofL. perennis clearly reacted in ELISA.  相似文献   

17.
A number ofCapsicum accessions including nine species were tested for resistance to TMV based on hypersensitivity. The tobacco strain MA and the tomato strain SPS, which were both isolated from tomato, and two pathogenically distinct pepper strains P 11 and P 8, were used. Of the 73Capsicum accessions tested 58 were resistant to MA and SPS, 31 were resistant to P 11 and five were resistant to P 8.Samenvatting Om verschillen in pathogeniteit tussen twee in Nederland voorkomende paprikastammen van het TMV nader vast te stellen, werd een aantalCapsicum-herkomsten, waaronder negen soorten, op resistentie getoetst. Hierbij werden de representatieve paprika-isolaten P 11 en P 8 vergeleken met de uit tomaat afkomstige isolaten MA en SPS als vertegenwoordigers van respectievelijk de tabaks- en tomatestam van het TMV. Bij het beoordelen van de symptomen duidden lokale, necrotische vlekken en afvallen van geïnoculeerde bladeren op resistentie, systemische necrosen of mozaïeksymptomen op vatbaarheid. In deze symptomen kwamen tussen de gebruikte stammen verschillen in virulentie tot uitdrukking. Er werden echter vooral verschillen in agressiviteit waargenomen met betrekking tot zowel afzonderlijke, voor resistentie uitsplitsende,Capsicum-herkomsten als het totale aantal getoetste herkomsten. Van de ruim 73 herkomsten waren er 58 resistent tegen MA en SPS, 31 daarvan tegen P 11, maar slechts vijf daarvan tegen P 8. Deze resistentie tegen P 8 werd gevonden inC. chinense.  相似文献   

18.
Effects of pretreatment of Brassica napus leaves with ascospores of Leptosphaeria biglobosa or chemical defence activators [acibenzolar- S -methyl (ASM) or menadione sodium bisulphite (MSB)] on infection by ascospores of Leptosphaeria maculans (phoma stem canker) and development of disease were studied in controlled-environment (phoma leaf spot) and field (phoma leaf spot and stem canker) experiments. In controlled-environment experiments, pretreatment of oilseed rape leaves (cv. Madrigal) with L. biglobosa , ASM or MSB delayed the appearance of L. maculans phoma leaf spot lesions. These pretreatments also decreased the phoma leaf spot lesion area in both pretreated leaves (local effect) and untreated leaves (systemic effect). In winter oilseed rape field experiments in the 2002/03 and 2003/04 growing seasons, pretreatment with L. biglobosa or ASM in October/November decreased not only the number of phoma leaf spot lesions per leaf caused by L. maculans in autumn/winter, but also the severity of phoma stem canker in the subsequent spring/summer. Effects were greater in 2002/03 (when natural L. maculans ascospore release began in September 2002) than in 2003/04 (when ascospore release began in December following a period of dry weather in August/September 2003). These results suggest that pretreatment with biological or chemical defence activators can induce local and systemic resistance to L. maculans , with both short-term effects on the development of phoma leaf spotting and long-term effects on the development of stem canker 8 months later.  相似文献   

19.
White leaf spot disease (Pseudocercosporella capsellae) is widespread across oilseed, vegetable and forage brassicas. Light (LM) and scanning electron (SEM) microscope studies were undertaken to investigate host–pathogen interactions on cotyledons of resistant and susceptible Brassica carinata, B. juncea and B. napus. Under LM, unique brown structures were present, particularly on susceptible genotypes, in two morphologically distinct forms: first, as thread‐like structures within cortical tissue by 24 h post‐inoculation (hpi) and secondly, as brown ropy strand structures either within cortical tissues (internal ropy strands), or extruded out through stomatal pores (ropy strand extrusions). Under LM, these brown structures were most prevalent in highly susceptible B. juncea ‘Vardan’ that had both a high incidence within cortical tissue (70%) and of ropy strand extrusions (73%), as did susceptible B. napus ‘Trilogy’ within cortical tissue (60%). Under SEM, both these genotypes showed thread‐like structures smaller than hyphae forming highly branched networks and ropy strand‐like structures. While there were fewer brown structures in susceptible B. carinata UWA #012 (35%), fine, thread‐like structures forming networks were again prominent (SEM). In contrast, for resistant genotypes, brown structures (LM) were of very low frequency or absent; only 5% in resistant B. juncea ‘Dune’ and none in resistant B. napus ‘Hyola 42’ or highly resistant B. carinata ATC94129P. Under SEM, fine, thread‐like structures were present in the resistant B. juncea ‘Dune’ and B. napus ‘Hyola 42’. Liquid chromatographic analyses of brown structures revealed that both internal ropy strands within cortical tissues and ropy strand extrusions contained the mycotoxin cercosporin.  相似文献   

20.
 为了明确葡萄霜霉病菌对甲霜灵的田间抗药性水平发展态势,于轮换用药前后,采用叶盘漂浮法测定了河北、山西、河南3省葡萄主要种植区11个葡萄园试验地葡萄霜霉病菌对甲霜灵敏感性变化动态。结果表明:田间采集的葡萄霜霉病菌对甲霜灵抗药的菌株其抗药性可以稳定遗传;不同地区轮换用药后,葡萄霜霉病菌对甲霜灵的抗药水平变化态势因用药流程的不同而发生相应的变化。采用不同作用机制的杀菌剂轮换或混合用药进行葡萄霜霉病菌对甲霜灵的抗药性治理时,需制定合理的施药流程,并根据抗药性治理的效果不断完善治理措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号