首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

In order to monitor barley and weed development on a loamy sand soil subjected to different agronomic practices, field experiments were conducted for three growing seasons (1992–95) in a semi‐arid agrosystem in central Spain. For eight years, independent plots were managed with three crop sequences: barley (Hordeum vulgare L.)?vetch (Vicia sativa L.); barley? sunflower (Helianthus annuus L.); and a barley monoculture. In all cases, two tillage systems were implemented: no‐tillage and conventional tillage. In the years with standard rainfall (400 mm) an improvement in growth‐related cultivation variables and yield components of barley were observed in plots under barley?vetch rotation and/or conventional tillage. In drier conditions (<350 mm) the growth rate, crop yield and yield components of barley tended to improve under the no‐tillage system. Barley?vetch rotation and/or conventional tillage increased nitrate‐nitrogen (NO3‐N) content in barley plants. Similar results were found for the concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg). In addition, the plots under crop rotation showed a weed biomass with a high concentration of N, K, and Ca in comparison with plots under monoculture. The lack of spring herbicide treatment in the no‐tillage plots led to a 3‐fold increase in weed density compared with the plots under conventional tillage.  相似文献   

2.
Producers in the Canadian Prairies have begun to extend and diversify their cereal-based rotations by including oilseed and pulse crops, and by managing these newer cropping systems with minimum- and zero-tillage practices. This study examined the implications of these land use changes on non-renewable energy requirements (both direct and indirect), energy output, and energy use efficiency for monoculture cereal, cereal–oilseed, and cereal–oilseed–pulse rotations, each managed using conventional (CT), minimum (MT), and zero (ZT) tillage practices on a thin Black Chernozem in Saskatchewan, Canada. The crop rotations included: spring wheat (Triticum aestivum L.)–spring wheat–winter wheat–fallow (Ws–Ws–Ww–F), spring wheat–spring wheat–flax (Linum usitatissimum L.)–winter wheat (Ws–Ws–Fx–Ww), and spring wheat–flax–winter wheat–field pea (Pisum sativum L.) (Ws–Fx–Ww–P). The findings, based on 12 years of data, showed that non-renewable energy use for the complete cropping systems was largely unaffected by tillage method, but that it differed significantly with crop rotations. Energy requirements were lowest for Ws–Ws–Ww–F (average 6389 MJ ha−1), intermediate for Ws–Fx–Ww–P (11% more), and highest for the Ws–Ws–Fx–Ww (28% more). The substitution of pea for spring wheat in the Ws–Fx–Ww–P versus Ws–Ws–Fx–Ww rotation reduced total energy use by 13%, reflecting the minimal requirement for N fertilizer by pulses due to their ability to biologically fix N, and from the lower fertilizer N rate that was applied to spring wheat grown after the legume. The use of MT and ZT practices provided significant energy savings (compared to CT) in on-farm use of fuel and in machine operation and manufacture for some cropping system components (e.g., summerfallow preparation, spring wheat grown on pea stubble, and for pea grown on cereal stubble), but these savings were often offset by higher energy requirements for herbicides and for N fertilizer with conservation tillage management. Gross energy output averaged 32 315 MJ ha−1 for Ws–Ws–Ww–F, 41 287 MJ ha−1 (or 28% more) for Ws–Ws–Fx–Ww, and 42 961 (or 33% more) for Ws–Fx–Ww–P. Tillage method had little overall influence on energy output for the monoculture cereal and cereal–oilseed–pulse rotations, but it was generally lower with CT than with MT or ZT management for the cereal–oilseed rotation. Energy use efficiency, measured as grain produced per unit of energy input and as the ratio of energy output to energy input, was highest for the cereal–oilseed–pulse rotation (373 and 6.1 kg GJ−1, respectively) and lower, but generally similar, for the cereal–oilseed and monoculture cereal rotations (298 and 5.1 kg GJ−1, respectively). The use of conservation tillage management enhanced overall energy use efficiency for the two mixed rotations, but not for the monoculture cereal rotation. We concluded that adopting diversified crop rotations, together with minimum and zero tillage management practices, will enhance non-renewable energy use efficiency of annual grain production in this sub-humid region.  相似文献   

3.
Soil degradation is the single most important threat to global food production and security. Wind and water erosion are the main forms of this degradation, and conservation tillage represents an effective method for controlling this problem. The objective of this study was to quantify the effects of three tillage methods [zero (ZT), minimum (MT) and conventional (CT)] and three four-year crop sequences [spring wheat (Triticum aestivum L.)–spring wheat–winter wheat–fallow; spring wheat–spring wheat–flax (Linum usitatissimum L.)–winter wheat; spring wheat–flax–winter wheat–field pea (Pisum sativum L.] on crop establishment, plant height, seed weight, soil water storage, crop water use, crop water use efficiency and grain yield over a 12-year period under Canadian growing conditions. Plant establishment was not adversely affected by tillage systems or crop sequences except for flax, where a small reduction was observed with ZT and MT. Conservation tillage showed a yield benefit over CT of 7%, 12.5% and 7.4% for field pea, flax and spring wheat grown on cereal stubble, respectively over the 12 years of the study. Much of the yield increase was due to an increase in soil water in the 0–30 cm soil layer with ZT and MT. However, tillage systems had no effect on grain yield for spring wheat grown on fallow and field pea stubble due to a lack of differences in spring soil water content. Flax grown in sequence with cereals only yielded higher than when it was grown in the sequence which included field pea, even though flax was seeded on spring wheat stubble in both cases. Winter wheat yielded higher when grown on flax stubble than on spring wheat stubble. The results indicate that a one-year non-cereal break crop was enough to alleviate the negative effects of consecutive cereal crops on winter wheat. Spring wheat grown on field pea stubble always yielded more than when grown on cereal stubble. A 10% increase in water use efficiency was observed with flax grown with ZT and MT management. Crop sequence improved water use efficiency in flax and spring wheat. Growing spring wheat on field pea stubble as opposed to growing it on cereal stubble resulted in a 10% increase in water use efficiency. Overall, rainfall accounted for 73%, 72%, 67% and 65% of total water used by field pea, flax, winter wheat and spring wheat, respectively. This explains the large year effect as a result of variation in growing (May–August) season precipitation. The non-significant tillage system by year interaction implies that the positive benefits of ZT and MT occur over a wide range of growing conditions, while the absence of a tillage system by crop sequence interaction suggests that knowledge developed under CT management also applies to ZT and MT. The results of this study support the large shifts towards in conservation tillage being observed in the Canadian prairies.  相似文献   

4.
Three field experiments were conducted on Gray Luvisol (Typic Cryoboralf) soils in northeastern Saskatchewan to compare the effects of alfalfa (Medicago sativa Leyss) stand termination with tillage and herbicides at different times on mineral nitrogen (N) (ammonium-N and nitrate-N) and moisture content of soil in spring (experiments 1 and 2), soil moisture, volunteer alfalfa and dandelion control, plant density, seed yield, protein concentration and N uptake for wheat (Triticum aestivum L.), barley (Hordeum vulgare L), canola (Brassica rapa L.), and pea (Pisum sativum L.) crops (experiment 3). Termination treatments included combinations of times (in mid-June after cut 1, in mid-August after cut 2 and in mid-May during spring) and methods [tillage alone, herbicides alone (glyphosate + 2,4-D amine and also clopyralid + 2,4-D ester in experiment 3) and these herbicides + tillage]. Tillage alone significantly increased spring soil nitrate-N levels over herbicides alone or herbicides + tillage. Termination after cut 1 had the highest levels of soil nitrate-N. There was little effect of time and method of termination on soil ammonium-N and moisture content in spring. Herbicides + tillage generally provided better control of both volunteer alfalfa and dandelion in the four crops than tillage or herbicides alone. In general, alfalfa termination with herbicides alone significantly reduced plant density, seed yield, and N uptake of all crops and protein concentration of cereals only due to effects on levels of soil nitrate-N, dandelion control, and crop injury by clopyralid or 2,4-D residues in soil. Plant density, seed yield, N uptake and protein concentration of crops tended to decline with delay in termination time. The results of this study support the use of some tillage in alfalfa stand termination in helping to control volunteer alfalfa and dandelion and optimize annual crop yields and quality.  相似文献   

5.
Field experiments were conducted for 2 years on a well drained upland sandy loam soil under rainfed conditions to study the effects of previous summer season crops of jute (Corchorus olitorius L.) and direct seeded rice (Oryza sativa L.) in unpuddled and unbunded soil followed by a short duration legume crop (rice bean (Vigna umbellata (Thunb.) Ohwi and Ohashi) for forage or greengram (Vigna radiata (L.) Wilczek) for grains) and fallow on the (i) productivity winter crops of barley (Hordeum vulgare L.), lentil (Lens esculenta Moench), field peas (Pisum sativum L.), linseed (Linum usitatissimum L.), mustard (Brassica juncea (L.) Czern & Coss) and sunflower (Helianthus annuus L.), (ii) soil profile moisture storage and (iii) its utilization. The winter crops were established with minimum (making sowing slots of 5 cm depth with a hand-drawn seed drill and without maintenance of mulch over surface) and conventional (four ploughings up to 15 cm depth with bullock drawn plough) methods of land preparation. The results revealed that compared to jute/fallow and jute/legume sequences, rice/fallow and rice/legume sequences resulted in higher soil moisture storage and, hence, a greater degree of seedling emergence per unit area, higher root weight and water use, and consequent higher grain yields and water use efficiency (WUE) of the subsequent winter crops. Winter crops yielded 17% more following direct seeded rice than after jute. Growing of short duration legume (rice bean or greengram) after jute or rice depleted stored moisture but increased yield and WUE of all winter crops.Grain yields of winter crops were 19% higher in tilled than in untilled soils. Under conventional tillage the soil moisture was slightly reduced at the time of sowing of winter crops but it resulted in increments in root weight, water use, grain yields and WUE of winter crops. WUE of barley was highest followed by field peas, which utilized more of soil moisture conserved at lower soil depths than other crops. Mustard gave the highest return (Rs.4663) followed by field peas (Rs.4603).  相似文献   

6.
Tillage and crop management effects on soil erosion in central Croatia   总被引:4,自引:0,他引:4  
Soil erosion continues to be a primary cause for soil degradation and the loss of soil quality throughout the world. Our objectives were to quantify soil erosion (referred to as erosional drift) and to assign erosion risk to six tillage and crop management treatments evaluated from 1995 to 1999 for a 5-year maize (Zea mays L.), soybean (Glycine hyspida L.), winter wheat (Triticum aestivum L.), oil-seed rape (Brassica napus var. oleifera L.), and spring barley (Hordeum vulgare L.) plus double-crop soybean rotation on Stagnic Luvisols in central Croatia. Standard black fallow (tilled, unsown, and without any vegetative cover) Universal Soil Loss Equation (USLE) plots were used to establish the erosion potential associated with the rainfall pattern for each year. Soil loss from the check plots was several times greater than the T value, which is estimated to be 10 t ha−1 per year. During the 2 years when spring seeded maize or soybean were grown (1995 and 1996) erosion risk was extremely high, especially for treatments where tillage and planting (row direction) were up and down the slope. When autumn seeded winter wheat or oil-seed rape were grown (1996/1997 or 1997/1998), soil erosion was insignificant. Also, except when plowing and sowing were up and down slope, erosion loss for the spring barley plus double-crop soybean crops in 1999 was insignificant. With no-tillage, soil erosion from the maize and soybean crops was reduced 40 and 65% compared to plowing up and down slope, even though the planting direction was still up and down the slope. With the exception of maize in 1995, erosion losses were moderate to insignificant when plowing and planting were performed across the slope. We conclude that erosion risk can be used as a reliable indicator of sustainable land management and that using no-tillage or plowing and planting perpendicular to the predominant slope are effective soil conservation practices for this region.  相似文献   

7.
The recent adoption of conservation farming systems in the semi-arid Canadian prairies opens up the possibility of replacing the traditional fallow period with non-cereal crops (oilseeds, legumes). However, information on changes to soil water regimes by inclusion of these crops, especially in combination with zero tillage, is sparse. A study was initiated in 1984 on a sandy clay loam soil at Lethbridge, Alberta, to investigate the performance of winter wheat (Triticum aestivum L.) under conventional, minimum and zero tillage in monoculture and in 2-year rotations with fallow, canola (Brassica campestris L.) or lentils (Lens culinaris Medic.)/flax (Linum usitatissimum L.). Conventional tillage in the Lethbridge region is shallow cultivation (10 cm) with a wide-blade (sweep) cultivator. Continuous cropping greatly depleted soil water reserves, resulting in some crop failures. Averaged over 10 years, available water for establishment of winter wheat in fall was least after canola (45 mm), followed by continuous winter wheat (59 mm), lentils/flax (74 mm) and fallow (137 mm). In this semi-arid region, the effect of rotation on soil water was much greater than that of tillage. Zero tillage had relatively little impact on available water to 1.5 m depth. However, once the experiment had been established for 6–7 years, available water in the 0–15 cm depth under winter wheat in spring was greatest under zero tillage. Precipitation storage efficiency during the fallow year was generally unaffected by tillage system.  相似文献   

8.
Seasonal changes in the levels of soil microbial biomass C (MBC) and N (MBN), N-mineralization rate and available-N concentration were studied in rice–barley supporting tropical dryland (rainfed) agroecosystem under six combinations of tillage (conventional, minimum and zero tillage) and crop residue manipulation (retained or removed) conditions. Highest levels of soil MBC and MBN (368–503 and 38.2–59.7 μg g−1, respectively) were obtained in minimum tillage residue retained (MT+R) treatment and lowest levels (214–264 and 20.3–27.1 μg g−1, respectively) in conventional tillage residue removed (CT−R, control) treatment. Along with residue retention tillage reduction from conventional to zero increased the levels of MBC and MBN (36–82 and 29–104% over control, respectively). The proportion of MBC and MBN in soil organic C and total N contents increased significantly in all treatments compared to control. This increase (28% in case of C and 33% N) was maximum in MT+R and minimum (10% for C and N both) in minimum tillage residue removed (MT−R) treatment. In all treatments concentrations of N in microbial biomass were greater at seedling stage, thereafter these concentrations decreased drastically (21–38%) at grain-forming stage of both crops. In residue removed treatments, N-mineralization rates were maximum during the seedling stage of crops and then decreased through the crop maturity. In residue retained treatments, however, N-mineralization rates were lower than in residue removed treatments at seedling stage of both crops. At grain-forming stage in all instances the N-mineralization rates in residue retained treatments considerably exceeded the rates in corresponding residue removed treatments. Tillage reduction and residue retention both increased the proportion of organic C and total N present in soil organic matter as microbial biomass. Microbial immobilization of available-N during the early phase of crops and its pulsed release later during the period of greater N demand of crops enhanced the degree of synchronization between crop demand and N supply. The maximum enhancement effects were recorded in the minimum tillage along with residue retained treatment. In the dryland agroecosystem studied, two management practices in combination proved more advantageous than either practice alone in maintaining soil fertility levels. For soil fertility amelioration in dryland agroecosystems with least dependence upon chemical fertilizer input, post-harvest retention of about 20 cm shoot biomass (accounting for 25–40% aboveground biomass) of previous crop and its incorporation in soil through minimum tillage in the succeeding crop is suggested, especially in the case of cereal.  相似文献   

9.
Under semiarid Mediterranean climatic conditions, soils typically have low organic matter content and weak structure resulting in low infiltration rates. Aggregate stability is a quality indicator directly related to soil organic matter, which can be redistributed within soil by tillage. Long-term effects (1983–1996) of tillage systems on water stability of pre-wetted and air dried aggregates, soil organic carbon (SOC) stratification and crop production were studied in a Vertic Luvisol with a loam texture. Tillage treatments included conventional tillage (CT), minimum tillage (MT) and zero tillage (ZT) under winter wheat (Triticum aestivum L.) and vetch (Vicia sativa L.) rotation (W–V), and under continuous monoculture of winter wheat or winter barley (Hordeum vulgare L.) (CM). Aggregate stability of soil at a depth of 0–5 cm was much greater when 1–2 mm aggregates were vacuum wetted prior to sieving (83%) than when slaked (6%). However, slaking resulted in tillage effects that were consistent with changes in SOC. Aggregate stability of slaked aggregates was greater under ZT than under CT or MT in both crop rotations (i.e., 11% vs. 3%, respectively).

SOC under ZT tended to accumulate in the surface soil layer (0–5 and 5–10 cm) at the expense of deeper ones. At depths of 10–20 and 20–30 cm no differences in SOC were encountered among tillage systems, but CT exhibited the highest concentration at 30–40 cm depth. Nevertheless, when comparisons were made on mass basis (Mg ha−1), significant differences in stocked SOC were observed at depths of 0–10 and 0–20 cm, where ZT had the highest SOC content in both rotations. The stock of SOC to a depth of 40 cm, averaged across crop rotations, was greater under ZT (43 Mg ha−1) than under CT (41 Mg ha−1) and MT (40 Mg ha−1) although these figures were not significantly different. Likewise, no significant differences were encountered in the stock of SOC to a depth of 40 cm among crop rotations (i.e., 42 Mg ha−1 for W–V vs. 40 Mg ha−1 for CM).

Crop production with wheat–vetch and continuous cereal showed no differences among tillage systems. Yields were strongly limited by the environmental conditions, particularly the amount of rainfall received in the crop growth season and its distribution. Similar yield and improved soil properties under ZT suggests that it is a more sustainable system for the semiarid Mediterranean region of Spain.  相似文献   


10.
Abstract

Understanding seasonal soil nitrogen (N) availability patterns is necessary to assess corn (Zea mays L.) N needs following winter cover cropping. Therefore, a field study was initiated to track N availability for corn in conventional and no‐till systems and to determine the accuracy of several methods for assessing and predicting N availability for corn grown in cover crop systems. The experimental design was a systematic split‐split plot with fallow, hairy vetch (Vicia villosa Roth), rye (Secale cereale L.), wheat (Triticum aestivum L.), rye+hairy vetch, and wheat+hairy vetch established as main plots and managed for conventional till and no‐till corn (split plots) to provide a range of soil N availability. The split‐split plot treatment was sidedressed with fertilizer N to give five N rates ranging from 0–300 kg N ha‐1 in 75 kg N ha‐1 increments. Soil and corn were sampled throughout the growing season in the 0 kg N ha‐1 check plots and corn grain yields were determined in all plots. Plant‐available N was greater following cover crops that contained hairy vetch, but tillage had no consistent affect on N availability. Corn grain yields were higher following hairy vetch with or without supplemental fertilizer N and averaged 11.6 Mg ha‐1 and 9.9 Mg ha‐1 following cover crops with and without hairy vetch, respectively. All cover crop by tillage treatment combinations responded to fertilizer N rate both years, but the presence of hairy vetch seldom reduced predicted fertilizer N need. Instead, hairy vetch in monoculture or biculture seemed to add to corn yield potential by an average of about 1.7 Mg ha‐1 (averaged over fertilizer N rates). Cover crop N contributions to corn varied considerably, likely due to cover crop N content and C:N ratio, residue management, climate, soil type, and the method used to assess and assign an N credit. The pre‐sidedress soil nitrate test (PSNT) accurately predicted fertilizer N responsive and N nonresponsive cover crop‐corn systems, but inorganic soil N concentrations within the PSNT critical inorganic soil N concentration range were not detected in this study.  相似文献   

11.
The study on energy-use efficiency and economics of soybean based cropping system, viz., soybean–wheat (Glycine max 9 L., Triticum aestivum L. emend. Fiori & Paol.), soybean–lentil (Lens culinaris Medicus) and soybean–field pea (Pisum sativum L., sensu lato), was carried out at the Hawalbagh experimental farm of Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, India during 2001–2003 (29°36′ N, 79°40′ E). These cropping systems, under rainfed conditions, were evaluated with different tillage management practices, viz., zero tillage (ZT), minimum tillage (MT) and conventional tillage (CT). Each tillage management practice, under each cropping system was evaluated for total energy output, energy input–output ratio, gross income, net income and marginal income, to variable cost of cultivation. Results revealed that the maximum energy was consumed in terms of chemical fertilizers, followed by seed and plant protection chemicals, in all cropping systems. Equivalent energy was used from literature for conversion purpose. The maximum output energy was observed in CT (44,253 MJ/ha), followed by MT for soybean–lentil cropping system (43,450 MJ/ha). The output–input energy ratio was maximum in ZT for soybean–lentil (4.9) followed by MT for soybean–pea cropping system (4.6). The economic analysis also revealed that the maximum benefits could be obtained from these sequences. Conventional tillage for all cropping sequences was found to be a better option as compared to minimum tillage and zero tillage. Benefit–cost ratios were higher in conventional tillage in all the three cropping systems. However, from the point of energy saving or cost reduction, zero tillage and minimum tillage may be considered depending on resources.  相似文献   

12.
ABSTRACT

In humid climates, the risk of nitrate leaching and topsoil loss due to erosion is high on bare soil in the fall after potato (Solanum tuberosum L.) harvest and in the spring with snowmelt. This 2-year study (2016–2017) compared three winter cover crops. Two of these are used as cash crops (winter rye [Secale cereale L.], winter wheat [Triticum aestivum L.]), and one is a winter-killed cover crop (spring barley, Hordeum vulgare L.). They were all seeded on two dates after potato harvest (end of September or first week of October) in Prince Edward Island, Canada. The measured parameters included soil nitrate measured at different times in fall and in the following spring and summer, splash detachment, C and N contents in splashed sediments, cereal straw dry matter yield, and cereal grain yield. In both years, all winter cover crops decreased splash detachment compared with the no winter cover control, with winter rye having the greatest reduction. A similar trend was observed for C and N contents in splashed sediments. There was a trend toward lower soil nitrate following winter cover crops in comparison with bare soil, but the trend was not consistent across trials and sampling dates. Winter wheat grain yield ranged from 4.5 to 7.6 Mg ha?1, while that associated with winter rye ranged from 3.2 to 5.1 Mg ha?1. Therefore, winter cereal seeded after potato harvest can constitute a good source of revenue while mitigating the risk of soil erosion and reducing nitrate leaching in some cases.  相似文献   

13.
The fertile, but naturally poorly drained soils of the western Fraser Valley in British Columbia, Canada are located in an area subject to about 1200 mm of rainfall annually. These soils were under intensive conventional tillage practices for years, which contributed to their poor infiltrability, low organic matter, and overall poor structure. Development of tillage practices that incorporate winter cover crops and reduce traffic in spring is required to reduce local soil degradation problems. The objective of this study was to determine short-term responses of soil physical properties to fall and spring tillage (ST) and fall and no spring tillage (NST) systems, both using spring barley (Hordeum vulgare L.) and winter wheat (Triticum aestivum L.) as winter cover crops. Field experiments were conducted for 3 years following seeding of the winter cover crops in fall 1992 on a silty clay loam Humic Gleysol (Mollic Gleysol in FAO soil classification). Average aeration porosity was 0.15 m3 m−3 on NST and 0.22 m3 m−3 on ST, while bulk density was 1.22 Mg m−3 on NST and 1.07 Mg m−3 on ST at the 0–7.5 cm depth. Neither of these two soil properties should limit seedling and root growth. After ST, mechanical resistance was consistently greater for 500–1000 kPa in NST than in ST, but never reached value of 2500 kPa considered limiting for root growth. The NST system did not increase soil water content relative to ST, with soil water contents being similar at 10 and 40 cm depth in all years. In 2 out of 3 years NST soil was drier at the 20 cm depth than was ST soil. Three years of NST did not result in a significant changes of aggregate stability relative to ST. This experiment showed that limiting tillage operations to the fall did not adversely affect soil physical conditions for plant growth in a humid maritime climate.  相似文献   

14.
Compacted subsoil may reduce plant root growth with resulting effects on plant uptake of water and nutrients. In organic farming systems subsoil loosening may therefore be considered an option to increase nutrient use. We investigated the effect of subsoil loosening with a paraplow to ca. 35 cm depth within a four-crop rotation in an organic farming experiment at Foulum (loamy sand) and Flakkebjerg (sandy loam) in Denmark. In each of the years 2000–2003, half of four plots per site were loosened in the autumn bearing a young grass-clover crop (mixture of Lolium perenne L., Trifolium repens L. and Trifolium pratense L.) established by undersowing in spring barley (Hordeum vulgare L.). The grass-clover was grown for another year as a green manure crop and was followed by winter wheat (Triticum aestivum L.), lupin (Lupinus angustifolius L.):barley and spring barley in the following 3 years. On-land ploughing was used for all cereal and pulse crops. Penetration resistance was recorded in all crops, and the results clearly showed that subsoil loosening had effectively reduced the plough pan and that the effect lasted at least for 3.5 years. Measurements of wheat root growth using minirhizotrons at Foulum in 2002/2003 did not show marked effects of subsoil loosening on root frequency in the subsoil. Subsoil loosening resulted in reduced growth and less N uptake of the grass-clover crop in which the subsoil loosening was carried out, probably due to a reduced biological nitrogen (N) fixation resulting from a smaller clover proportion. This had a marked effect on the growth of the succeeding winter wheat. Negative effect of subsoil loosening on yield of winter wheat and spring barley was observed without manure application, whereas small positive yield effect of subsoil loosening was observed in crops with a higher N supply from manure. Yield decrease in winter wheat was observed in years with high winter rainfall. There was no significant effect of subsoiling on grain yield of the lupin:barley crops, although subsoiling had a tendency to increase crop growth and yield during dry summers. Our results suggest that subsoil loosening should not be recommended in general under Danish conditions as a measure to ameliorate subsoil compaction.  相似文献   

15.
Fusarium head blight (FHB) is an important disease which has been causing damage to wheat and barley crops in western Canada. Because crop residues are an important source of inoculum, it is important to know the ability of Fusarium spp. to colonize and survive in different residue types, and how their populations might be affected by agronomic practices. Sampling of residue types on producers’ fields for quantification of Fusarium and other fungi was conducted in 2000–2001 in eastern Saskatchewan. Fusarium spp. were isolated from most fields, whereas their mean percentage isolation (MPI) was over 50% for cereal and pulse residues, and under 30% for oilseed residues. The most common Fusarium, F. avenaceum, had a higher MPI in pulse and flax (45–48%) than in cereal or canola (10–22%) residues. This was followed by F. equiseti, F. acuminatum, F. graminearum, F. culmorum and F. poae which were isolated from all, or most, residue types. Factors affecting Fusarium abundance in residues included the current crop, cropping history, and tillage system. In cereal residues, the MPI of F. avenaceum was higher when the current crop was another cereal (24%) versus a noncereal (4–8%). When the current crop was another cereal, the lowest MPI of F. avenaceum and F. culmorum occurred when the field had been in summerfallow (SF) two years previous (F. avenaceum: 17% for SF, 28% for a crop; F. culmorum: 1% for SF, 4% for a crop); in contrast, F. equiseti and Cochliobolus sativus were most common in residues of cereal crops preceded by SF (F. equiseti: 16% for SF, 10% for a crop; C. sativus: 22% for SF, 13% for a crop). The MPI of F. graminearum was higher when the crop two years previous was an oilseed (7%) versus a cereal (4%). In regards to tillage effects, when the current crop was a cereal, the MPI of F. avenaceum was higher under minimum (MT) and zero tillage (ZT) (22–37%) than conventional tillage (CT) (15%), that of F. graminearum was lowest under ZT (3% for ZT, 7–11% for CT-MT), whereas that of C. sativus was highest under CT (27% for CT, 6–11% for MT-ZT). Under ZT, previous glyphosate applications were correlated positively with F. avenaceum and negatively with F. equiseti and C. sativus. These observations generally agreed with results from previous FHB and root rot studies of wheat and barley in the same region. Percentage isolation of F. avenaceum from noncereal and of F. graminearum from cereal residues were positively correlated with FHB severity and percentage Fusarium-damaged kernels of barley and wheat caused by the same fungi.  相似文献   

16.
Abstract. Field peas (Pisum sativum L.) were grown in sequence with winter wheat (Triticum aestivum L.) or spring barley (Hordeum vulgare L.) in large outdoor lysimeters. The pea crop was harvested either in a green immature state or at physiological maturity and residues returned to the lysimeters after pea harvest. After harvest of the pea crop in 1993, pea crop residues (pods and straw) were replaced with corresponding amounts of 15N‐labelled pea residues grown in an adjacent field plot. Reference lysimeters grew sequences of cereals (spring barley/spring barley and spring barley/winter wheat) with the straw removed. Leaching and crop offtake of 15N and total N were measured for the following two years. These treatments were tested on two soils: a coarse sand and a sandy loam. Nitrate concentrations were greatest in percolate from lysimeters with immature peas. Peas harvested at maturity also raised the nitrate concentrations above those recorded for continuous cereal growing. The cumulative nitrate loss was 9–12 g NO3‐N m–2 after immature peas and 5–7 g NO3‐N m–2 after mature peas. Autumn sown winter wheat did not significantly reduce leaching losses after field peas compared with spring sown barley. 15N derived from above‐ground pea residues accounted for 18–25% of the total nitrate leaching losses after immature peas and 12–17% after mature peas. When compared with leaching losses from the cereals, the extra leaching loss of N from roots and rhizodeposits of mature peas were estimated to be similar to losses of 15N from the above‐ground pea residues. Only winter wheat yield on the coarse sand was increased by a previous crop of peas compared to wheat following barley. Differences between barley grown after peas and after barley were not statistically significant. 15N lost by leaching in the first winter after incorporation accounted for 11–19% of 15N applied in immature pea residues and 10–15% of 15N in mature residues. Another 2–5% were lost in the second winter. The 15N recovery in the two crops succeeding the peas was 3–6% in the first crop and 1–3% in the second crop. The winter wheat did not significantly improve the utilization of 15N from the pea residues compared with spring barley.  相似文献   

17.
Traditional Mediterranean rainfed cereal/fallow systems are being replaced by cereal monoculture due to land-use pressure. Food or forage legumes in rotation with cereals are an alternative sustainable cropping system. Complex cropping systems can only be assessed by long-term trials. This 11-year rainfed barley-based rotation trial in northern Syria assessed rotation effects on yields of barley and legumes, with particular emphasis on the management of vetch. The mean order of barley grain yields from the rotations was: vetch for hay, vetch for grazing > fallow = medic = vetch for seed > lentil, and continuous barley. Straw yields followed a similar pattern. Nitrogen (60 kg ha?1) increased grain (39%) and straw (65%) yields. The N fertilization of barley had no carryover effect on the alternative legume crops. Although there were no significant differences in seed or straw yield between lentil and vetch, seasonal rainfall influenced overall yields. Total biomass yields were in the order of vetch, medic and lentil. There is a compelling case for annual vetch paired with barley in rotations for the Mediterranean region. Thus, barley/vetch rotations can potentially enhance barley yields and improve soil quality, and provide valuable fodder for small ruminants as well in the region's agricultural systems.  相似文献   

18.
ABSTRACT

Cover crops improve the recovery and recycling of nitrogen and impart weed suppression in crop production. A two-year study with six weekly plantings of cover crops including non-winterkilled species (hairy vetch, Vicia villosa L.; winter rye Secale cereale L.) and winterkilled species (oat, Avena sativa L.; forage radish, Raphanus sativus L.) were assessed for effects on growth of forage rape (Brassica napus L.) and weed suppression. Early planting of cover crops gave the highest biomass and highest nitrogen accumulation. Delaying planting from early-September to mid-October suppressed cover-crop biomass by about 40%. Forage radish produced more biomass in the fall than other cover crops but was winter killed. Spring biomass was highest with rye or vetch. All cover crops suppressed weeds, but suppression was greatest under rye or hairy vetch. Hairy vetch accumulated the largest nitrogen content. Forage rape plants yielded more biomass after a cover crop than after no-cover crop.  相似文献   

19.
Much uncertainty exists among growers concerning the need to adjust N-fertilizer application to cereals when reduced tillage is adopted. Studies in long-term trials are required to give an adequate answer to this question, which is of both economic and environmental interest. N-fertilizer requirements of spring cereals and of soil mineral nitrogen contents at different times of the year were measured over the period 1991–1996 in two long-term tillage trials established in 1980 at Kise (60°46′N, 10°49′E) on morainic loam soil. Tillage treatments comprised conventional tillage with autumn ploughing and reduced tillage without ploughing and with harrowing in spring kept to the minimum necessary for seeding. Four levels of N-fertilizer (0, 60, 90 and 120 kg N/ha) were compared in 1991–1995 in barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.), and their residual effect was measured in 1996. Levels of soil mineral nitrogen before fertilization in spring were on an average 8% lower with reduced tillage than with conventional tillage. Plant development was delayed with reduced tillage, but this was compensated for later in the season. A two-year incubation study under covered plots in the field did not reveal any effect of tillage on net nitrogen mineralisation. There was a tendency to higher straw yield with reduced tillage, but no overall effect on grain yield. Responses to N-fertilizer were almost identical with both the tillage systems, and yields increased up to the highest level of application. Crop nitrogen contents were monitored, but only minor differences were found between tillage systems in total uptakes and apparent N-fertilizer recoveries. On the basis of these results it is concluded that long-term reduced tillage does not affect the N-fertilizer requirements of spring cereals on loam soils under cool climatic conditions.  相似文献   

20.
The poor physical, chemical and biological properties make Stagnic Luvisol highly susceptible to water erosion on sloping terrains. The objective of this paper is to estimate the effect of different tillage treatments and crops (maize, soybean, winter wheat, spring barley, oilseed rape) on water erosion. The highest erosion in investigation period (1995–2014) was recorded in the control treatment with fallow, followed by the treatment that involved ploughing and sowing up and down the slope. Significantly, lower soil losses were recorded in no-tillage and treatments with ploughing and sowing across the slope. Regarding the crops significantly higher soil losses were recorded in spring row crops (maize and soybean) compared to high-density winter crops (wheat and oilseed rape) and double crop (spring barley with soybean). In the studied period, an average loss of 46 mm of the plough layer was recorded in the control treatment, while in treatment with ploughing and sowing up and down the slope average annual soil loss was 10 mm. According to the results of this study no-tillage and tillage across the slope are recommended as tillage which preserves soil for the next generations in agro-ecological conditions of continental Croatia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号