首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The effect of dual inoculation on three local cultivars (Miss Kelly, Portland Red, Round Red) of red kidney beans (Phaseolus vulgaris, L.) with four strains of Rhizobium leguminosarum bv. phaseoli and three species of vesicular-arbuscular mycorrhizal (VAM) fungi was examined in a clay loam soil. Rhizobial strains B 17 and B 36, each paired with Glomus pallidum or G. aggregatum, were the most effective pairings for cv. Miss Kelly. Inoculation of Miss Kelly with any of these pairings significantly (P=0.05) increased growth, number of nodules, nodule dry weight, mycorrhizal colonization, and shoot N and P content than other pairings. The growth response by cv. Portland Red was significantly improved by pairings of B 36 or B 17 with any of the three VAM fungi. For both cultivars (Miss Kelly and Portland Red), CIAT 652 or T 2 paired with VAM fungi did not give a positive growth response. In contrast, for cv Round Red the T 2 rhizobial strain in combination with any of the three VAM fungi showed a significant (P=0.05) growth improvement in all parameters. Our results suggest that while dual inoculation of VAM fungi and rhizobia significantly improves the growth response by red kidney beans, the best pairings of VAM fungus and rhizobia for each cultivar need to be carefully selected.  相似文献   

2.
Summary We examined the influence of a vesicular-arbuscular (VAM) fungus (Glomus pallidum Hall) on the competitive ability of introduced and native Bradyrhizobium strains to nodulate cowpeas [Vigna unguiculata (L) Walp]. Our experiments in non-sterilized soil revealed that in the presence of VAM fungus, introduced Bradyrhizobium spp. strains become more competitive than native rhizobia. For example, strain JRC29 occupied 59.2% of the total nodules when inoculated alone, but this figure increased to 71.2% when JRC29 was used in dual inoculations with VAM fungus. A similar pattern of enhanced competitiveness for nodule formation was observed with the two other strains in the presence of the VAM fungus. Our results suggest that the competitiveness of rhizobia can be enhanced by co-inoculating with a selected strain of a VAM fungus.  相似文献   

3.
Summary Five selected vesicular-arbuscular mycorrhizal (VAM) fungi and the native population of a cambisol were tested in sterilized soil conditions, with Trifolium pratense as host plant. Indigenous fungi were the most effective in enhancing plant growth and P uptake, which were correlated with a higher root colonization. Selected fungi did not spread further in the root after 4 months from sowing, occupying less than 10% at the end of the experiment; inoculation with Glomus fasciculatum E3 yielded a higher dry-matter production than any other VAM species, but did not significantly increase shoot P concentration above that of the non-mycorrhizal control. Interactions between indigenous and introduced VAM fungi were studied in unsterilized soil. Results from fresh and dry weights of shoots and the percentage of fungal infection showed that the native endophytes competed more efficiently in colonizing the root. Inoculation with selected VAM species did not improve plant growth. Sterilization altered the inorganic P fractions of the soil, particularly those extracted with NH4F and NaOH. Sterilized soil contained less inorganic P than unsterilized soil, but more soluble P. By the end of the experiment in sterilized soil, P extracted with NH4Cl, NH4F and NaOH and total inorganic P were significantly different among inoculation treatments, suggesting that VAM fungi may differ in their ability to take up P.  相似文献   

4.
Abstract

The response of peanut (Arachis hypogaea L.) to inoculation with vesicular-arbuscular mycorrhizal (VAM) fungi (Glomus etunicatum) and Bradyrhizobiurn sp. was studied in pots by the acetylene reduction activity (ARA) and ‘A-value’ methods. The soil used was a Light-coloured Andosol and the treatments consisted of the inoculation of VAM fungi only, inoculation of Bradyrhizobium only, dual inoculation of VAM fungi and Bradyrhizobium and control, under non-sterilized and sterilized soil conditions.

In the non-sterilized soil the ARA and nitrogen fixation determined by the ‘A-value’ method increased significantly only by dual inoculation of VAM fungi and Bradyrhizobium at 100 days after planting (DAP), but no significant difference was observed at 70 DAP. In the case of dual inoculation, 75% of the nitrogen of the plant was derived from fixation whereas the plants inoculated only with Bradyrhizobium derived 68% of their nitrogen from fixation and the control plants, 64%. Amount of P in plant increased significantly only by dual inoculation with VAM fungi and Bradyrhizobium.

In the sterilized soil a highly significant increase in the ARA was observed of the dual inoculation at all the sampling times. Nitrogen fixation determined by the A-value technique and N and P contents in plant also increased significantly by dual inoculation. Results obtained by the A-value method showed that plants with dual inoculation derived 68% of their nitrogen from fixation while the plants inoculated only with Bradyrhizobium, 38%.

From our this study we conclude that nitrogen fixation as well as N and P contents in peanut increased significantly only by dual inoculation with VAM fungi and Bradyrhizobium.  相似文献   

5.
Summary The effect of inoculation with a selected isolate of Glomus etunicatum Becker and Gerdemann and one of G. intraradices Schenck and Smith on the growth and nutrient content of Macroptilium atropurpureum Urb. cv. Siratro and Aeschynomene americana L., at applied P levels of 10, 30, 60, and 120 kg ha-1, was studied under field conditions. At all P levels and for all harvests, the shoot dry mass of Siratro and A. americana were greater for the plants inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungi than the control plants. Differences between the VAM fungus-inoculated and the control plants were most marked between 30 and 90 kg ha-1 of applied P and diminished at 120 kg ha-1. At the first harvest of Siratro, the plants inoculated with G. etunicatum had a greater shoot dry mass than those inoculated with G. intraradices, for all levels of applied P. However, for subsequent harvest of Siratro and for the one harvest of A. americana the response of shoot dry mass to the two VAM fungi was equivocal. Fungal inoculation gave at least a 30% saving in the amount of P fertilizer required (40 kg ha-1) for the maximum yield. The plants inoculated with VAM fungi had a greater tissue concentration and total content of P and N than the control plants at low and intermediate levels of applied P. The percentage of root colonized by VAM fungi for the inoculated plants of the two legumes increased linearly with P additions up to 60 kg ha-1. The conclusion is that under amended (limed and fertilized) soil conditions, inoculation with selected VAM fungi can improve the establishement and growth of forage legumes in fields that contain ineffective populations of native VAM fungi.  相似文献   

6.
We examined the effect of a vesicular-arbuscular mycorrhizal (VAM) fungus Glomus pallidum Hall on the phosphatase activity and cytokinin concentration in cowpea [Vigna unguiculata (L.) Walp] roots at successive stages of plant growth. Both acid and alkaline phosphatase activity were significantly (P=0.05) higher in mycorrhizal than in non-mycorrhizal roots 30 days after inoculation. Similarly, the cytokinin content was significantly increased in mycorrhizal roots compared to non-mycorrhizal roots. Our study suggests that these biochemical changes may improve the growth of mycorrhizal cowpea plants.  相似文献   

7.
Summary Sweet potatoes were micropropagated and then transplanted from axnic conditions to fumigated soil in pots in the greenhouse. Spores of Glomus clarum were obtained from Brachiaria decumbens or from sweet potatoes grown in soil infected with this fungus and with an enrichment culture of Acetobacter diazotrophicus. Three experiments were carried out to measure the beneficial effects of vesicular-arbuscular mycorrhizal (VAM) fungi-diazotroph interactions on growth, nutrition, and infection of sweet potato by A. diazotrophicus and other diazotrophs obtained from sweet potato roots. In two of these experiments the soils had been mixed with 15N-containing organic matter. The greatest effects of mycorrhizal inoculation were observed with co-inoculation of A. diazotrophicus and/or mixed cultures of diazotrophs containing A. diazotrophicus and Klebsiella sp. The tuber production was dependent on mycorrhization, and total N and P accumulation were increased when diazotrophs and G. clarum were applied together with VAM fungal spores. A. diazotrophicus infected aerial plant parts only when inoculated together with VAM fungi or when present within G. clarum spores. More pronounced effects on root colonization and intraradical sporulation of G. clarum were observed when A. diazotrophicus was co-inoculated. In non-fumigated soil, dual inoculation effects, however, were of lower magnitude. 15N analysis of the aerial parts and roots and tubers at the early growth stage (70 days) showed no statistical differences between treatments except for the VAM+Klebsiella sp. treatment. This indicates that the effects of A. diazotrophicus and other diazotrophs on sweet potato growth were caused by enhanced mycorrhization and, consequently, a more efficient assimilation of nutrients from the soil than by N2 fixation. The possible interactions between these effects are discussed.  相似文献   

8.
Abstract

A greenhouse experiment was carried out to investigate the influence of Glomus clarum (mycorrhiza) on the growth of tomato seedlings grown in both sterilized and non-sterilized soils. Highest growth parameter values were recorded in tomato plants inoculated with mycorrhiza but grown in sterilized soil, followed by those grown in non-sterilized soil but inoculated with mycorrhiza also. Sterilized but non-inoculated tomato plants also had growth and were closely followed by non-sterilized, non-inoculated tomato plants. There was no significant difference in all the treatments when girth of the tomato plants used was measured in this study. Nutrient uptake (N,P,K) was significantly found highest in the inoculated sterilized tomato plants while it was found lowest in the non-sterilized, non-inoculated tomato plants. Generally, mycorrhizal-inoculated tomato plants (whether sterilized or non-sterilized) showed better growth in all the treatments used.  相似文献   

9.
To assess the effect of five vesicular arbuscular mycorrhizae (VAM) isolates of Glomus mosseae screened out from different farming situations, two pot experiments were conducted on maize and soybean in a phosphorus (P)–deficient Himalayan acid Alfisol. There was variation in VAM spore populations of Glomus mosseae isolates screened out from maize harvested fields, soybean fields, vegetable fields, tea orchard, and citrus orchard. Glomus mosseae isolate from vegetable-based cropping system exhibited maximum root colonization at flowering in maize (32%) and soybean (28%), followed by Glomus mosseae isolate from soybean fields, and exhibited the lowest in Glomus mosseae isolate from tea farm. Glomus mosseae isolate from vegetable-dominated fields was at par with Glomus mosseae isolate from soybean-based cropping system, again resulting in significantly high root biomass, nitrogen (N)–P–potassium (K) uptake, and grain and straw productivity both in maize and soybean crops besides the greatest Rhizobium root nodule biomass in soybean. There was a considerable reduction in soil fertility with respect to NPK status over initial status in pot soils inoculated with Glomus mosseae isolate from vegetable-dominated ecosystem, thereby indicating greater nutrient dynamics by this efficient VAM strain in the plant–soil system and greater productivity in a P-deficient acidic Alfisol. Overall, VAM isolates from different cropping systems and farming situations with variable size and composition of VAM mycoflora resulted in differential effects on growth, productivity, and nutrient dynamics in field crops. Overall, Glomus mosseae isolates from vegetable and soybean fields proved to be superiormost in terms of root colonization, growth, and crop productivity as well as nutrient dynamics in above study. Thus, isolation, identification, and selection of efficient VAM strains may prove as a boon in low-input intensive agriculture in P-deficient Himalayan acidic Alfisol.  相似文献   

10.
Cowpea is an important crop that serves as a legume and vegetable source to many smallholder farmers in sub-Saharan Africa. Soil fertility is a significant limitation to its production thus; inoculation with beneficial soil biota such as arbuscular mycorrhizal fungi (AMF) could improve its performance. However, plant–AMF interaction could vary based on crop cultivar hence affecting overall crop production. The present study aimed at determining the effect of AMF inoculation and soil sterilization on root colonization and growth of a wild-type and three modern cowpea cultivars grown by smallholder farmers in Kenya. Potted cowpea plants were inoculated with a commercial AMF inoculum comprising of Rhizophagus irregularis, Funneliformis mosseae, Glomus aggregatum and Glomus etunicatum and maintained in a greenhouse for 40 days. After harvesting, mycorrhizal colonization, nodule number and dry weight, root and shoot dry weights, nitrogen (N,) phosphorus (P) and potassium (K) content were determined. Interestingly, the modern cultivars showed significantly (p < 0.001) higher root colonization, nodulation, shoot P and N compared to the wild-type cultivar. Moreover, a strong positive correlation between AMF root colonization and shoot P (r2 = 0.73, 0.90, p < 0.001), AMF root colonization and shoot N (r2 = 0.78; 0.89, p < 0.001) was observed in both sterilized and non-sterilized soil, respectively. Soil sterilization affected root colonization and growth parameters with plants grown in non-sterilized soil performing better than those grown in sterilized soil. This study provides major evidence that modern cowpea cultivars are still responsive to mycorrhizal inoculation suggesting that modern breeding programs are not deleterious AMF symbiosis.  相似文献   

11.
Summary Cucumber was grown in a partially sterilized sand-soil mixture with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum or left uninoculated. Fresh soil extract was places in polyvinyl chloride tubes without propagules of mycorrhizal fungi. Root tips and root segments with adhering soil, bulk soil, and soil from unplanted tubes were sampled after 4 weeks. Samples were labelled with [3H]-thymidine and bacteria in different size classes were measured after staining by acridine orange. The presence of VAM decreased the rate of bacterial DNA synthesis, decreased the bacterial biomass, and changed the spatial pattern of bacterial growth compared to non-mycorrhizal cucumbers. The [3H]-thymidine incorporation was significantly higher on root tips in the top of tubes, and on root segments and bulk soil in the center of tubes on non-mycorrhizal plants compared to mycorrhizal plants. At the bottom of the tubes, the [3H]-thymidine incorporation was significantly higher on root tips of mycorrhizal plants. Correspondingly, the bacterial biovolumes of rods with dimension 0.28–0.40×1.1–1.6 m, from the bulk soil in the center of tubes and from root segments in the center and top of tubes, and of cocci with a diameter of 0.55–0.78 m in the bulk soil in the center of tubes, were significantly reduced by VAM fungi. The extremely high bacterial biomass (1–7 mg C g-1 dry weight soil) was significant reduced by mycorrhizal colonization on root segments and in bulk soil. The incorporation of [3H]-thymidine was around one order of magnitude lower compared to other rhizosphere measurements, probably because pseudomonads that did not incorporate [3H]-thymidine dominated the bacterial population. The VAM probably decreased the amount of plant root-derived organic matter available for bacterial growth, and increased bacterial spatial variability by competition. Thus VAM plants seem to be better adapted to compete with the saprophytic soil microflora for common nutrients, e.g., N and P, compared to non-mycorrhizal plants.  相似文献   

12.
Comparative performance of five geographical isolates of Glomus mosseae screened from maize fields, soybean fields, vegetable fields, tea orchard, and citrus orchard was assessed in three major field crops (wheat, maize, and soybean) under low-input management in three glass-house pot experiments in a phosphorus (P)–deficient acid Alfisol. These geographical isolates of Glomus mosseae varied with respect to vesicular arbuscular mycorrhizal (VAM) spore count and root colonization in these crops with greatest spore count (240 per 250 g soil) and root colonization (28–34%) using previously screened local Glomus mosseae culture (VAML) of CSK Himachal Pradesh Agricultural University, Palampur, India, followed in order by VAM isolate from vegetable-based cropping system, Glomus mosseae isolate from soybean fields, and Glomus mosseae isolate from tea farm. Glomus mosseae isolate from vegetable-based cropping system remaining at par with local VAM culture (VAML), resulting in significantly greatest grain productivity in these field crops under low-input management. There was a considerable reduction in soil fertility with respect to NPK status over the control and initial status in pot soils inoculated with Glomus mosseae isolate from vegetable-based cropping system followed by local VAM strain (VAML), thereby indicating greater nutrient mobilization and productivity as well through this efficient Glomus mosseae strain in P-deficient acid Alfisol. In addition, Glomus mosseae isolates from different farming situations resulted in differential productivity and soil fertility under these field crops. Overall, Glomus mosseae isolate from vegetable-based cropping system proved its superiority in realizing greater productivity and nutrient mobilization compared to local Glomus mosseae VAM culture under low-input management in P-deficient acid Alfisol.  相似文献   

13.
Vesicular arbuscular mycorrhizal (VAM) fungi symbiosis confers benefits directly to the host plant's growth and yield through acquisition of phosphorus and other macro- and micronutrients, especially from phosphorus (P)–deficient acidic soils. The inoculation of three VAM cultures [viz., local culture (Glomus mosseae), VAM culture from Indian Agricultural Research Institute (IARI), New Delhi (Glomus mosseae), and a culture from the Centre for Mycorrhizal Research, Energy Research Institute (TERI), New Delhi (Glomus intraradices)] along with P fertilization in wheat in a P-deficient acidic alfisol improved the root colonization by 16–24% while grain and straw yields increased by 12.6–15.7% and 13.4–15.4%, respectively, over the control. Uptake of nitrogen (N), P, potassium (K), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) was also improved with VAM inoculation over control, but the magnitude of uptake was significantly greater only in the cases of P, Fe, Zn, and Cu. Inoculation of wheat with three VAM cultures in combination with increasing inorganic P application from 50% to 75% of the recommended P2O5 dose to wheat through the targeted yield concept following the soil-test crop response (STCR) precision model resulted in consistent and significant improvement in grain and straw yield, macronutrient (NPK) uptake, and micronutrient (Fe, Mn, Zn, Cu) uptake in wheat though root colonization did not improve at P2O5 doses beyond 50% of the recommended dose. The VAM cultures alone or in combination with increasing P levels from 50% to 75% P2O5 dose resulted in reduction of diethylenetriaminepentaacetic acid (DTPA)–extractable micronutrient (Fe, Mn, Zn, Cu) contents in P-deficient acidic soil over the control and initial fertility status, although micronutrient contents were relatively greater in VAM-supplied plots alone or in combination with 50% to 75% P2O5 dose over sole application of 100% P2O5 dose, thereby indicating the positive role of VAM in nutrient mobilization and nutrient dynamics in the soil–plant system. There was significant improvement in available N and P status in soil with VAM inoculation coupled with increasing P levels upto 75% P2O5 dose, although the greatest P buildup was obtained with sole application of 100% P2O5 dose. The TERI VAM culture (Glomus intraradices) showed its superiority over the other two cultures (Glomus mosseae) in terms of crop yield and nutrient uptake in wheat though the differences were nonsignificant among the VAM cultures alone or at each P level. Overall, it was inferred that use of VA-mycorrhizal fungi is beneficial under low soil P or in low input (nutrient)–intensive agroecosystems.  相似文献   

14.
The effect of salinity on the efficacy of two arbuscular mycorrhizal fungi, Glomus fasciculatum and G. macrocarpum, alone and in combination was investigated on growth, development and nutrition of Acacia auriculiformis. Plants were grown under different salinity levels imposed by 0.3, 0.5 and 1.0 S m-1 solutions of 1 M NaCl. Both mycorrhizal fungi protected the host plant against the detrimental effect of salinity. The extent of AM response on growth as well as root colonization varied with fungal species, and with the level of salinity. Maximum root colonization and spore production was observed with combined inoculation, which resulted in greater plant growth at all salinity levels. AM fungal inoculated plants showed significantly higher root and shoot weights. Greater nutrient acquisition, changes in root morphology, and electrical conductivity of soil in response to AM colonization was observed, and may be possible mechanisms to protect plants from salt stress.  相似文献   

15.
Summary Spores of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus clarum obtained from sweet potatoes grown in soil inoculated with this fungus and with an enrichment culture of Acetobacter diazotrophicus contained A. diazotrophicus and several other bacteria, including a diazotrophic Klebsiella sp. Inoculation of micropropagated sweet potatoes with G. clarum and A. diazotrophicus enhanced spore formation in soil compared to VAM inoculation alone. Plants inoculated with VAM spores containing the bacteria showed additional increases in the number of spores formed within roots. A. diazotrophicus infected aerial plant parts only when inoculated together with VAM or when present within VAM spores. Micropropagated sugarcane seedlings inoculated with the same VAM spores containing the diazotrophs also contained much higher numbers of A. diazotrophicus in aerial parts than seedlings inoculated in vitro with the bacteria alone. When grown in non-sterile soil, the sugarcane seedlings again showed the greatest infection of aerial parts after inoculation with VAM spores containing the diazotrophs. This treatment also increased VAM colonization and the numbers of spores formed within roots. Similar effects were observed in sweet sorghum except that the aerial plant parts were not infected by A. diazotrophicus.  相似文献   

16.
Summary The symbiotic effectiveness of vesicular-arbuscular mycorrhizal (VAM) fungi present in widely differring tropical soils was evaluated in a greenhouse experiment. Small volumes of field soil, a standard inoculum (Glomus aggregatum) or both were introduced into a fumigated sand-soil medium amended with nutrients for optimum VAM activity. Leucaena leucocephala (Lam.) de Wit var. K8 was grown in the medium as an indicator plant. VAM effectiveness was monitored as a function of time by determining the P status of pinnules. The soils differed from each other with respect to the time their endophytes required for the expression of initial and maximum effectiveness and in the level of maximum effectiveness they exhibited. The effect of mycorrhizal inoculation, calculated as the ratio of the areas enclosed by the effectiveness curve of G. aggregatum to that enclosed by the effectiveness curves of test soils, was found to be a good indicator of the response of L. leucocephala to inoculation of soils with G. aggregatum Hawaii Institute of Tropical Agriculture and Human Resources Journal series No. 3285  相似文献   

17.
Summary Increasing concentrations of humic acids were tested in order to determine their effects on the microbial rhizosphere and the growth of laurel (Laurus nobilis L.). Plants that were treated with 300 mg kg-1 of humic acids had the heaviest weights of both fresh and dry shoots; however, doses of 3000 mg kg-1 were highly phytotoxic and inhibited the growth of laurel. Total aerobic bacteria and actinomycetes were stimulated by doses of 1500 and 3000 mg kg-1 of humic acids at the first harvest. Nevertheless, at the end of the experiment no significant differences were found among the different doses. The number of fungi living in the laurel rhizosphere was not affected by any concentration of humic acids. Vesicular-arbuscular mycorrhizal (VAM) colonization was only slightly affected by the addition of increasing concentrations of humic substances to the soil, while the hyphal growth of Glomus mosseae was reduced.  相似文献   

18.
Summary Red clover was grown in soil previously treated with P at various rates, and growth, nutrient uptake, nutrient uptake in relation to phosphorus values, and levels of vesicular-arbuscular mycorrhizal (VAM) infection were determined. The soil was a silty clay loam and Glomus lacteum was the only fungus colonizing the plant roots. An examination of the effects of various rates of P application and of VAM colonization on nutrient (P, K, Ca, Mg, Mn, Fe, and Zn) uptake showed that the Mg : P ratio significantly increased and the Mn : P ratio significantly decreased with increasing VAM infection. It is concluded that in the Trifolium pratense-Glomus lacteum symbiosis, mycorrhizae improve Mg uptake and depress Mn uptake.  相似文献   

19.
Apple (Malus hupehensis Rehd) seedlings were grown in sterilized and non‐sterilized soil with or without phosphorus (P) added and inoculated by VA mycorrhizal (VAM) fungi (Glomus versifome Daniels et Tappe and Glomus macrocarpum Tul et Tul). In sterilized soil, the VAM infection increased the transpiration rate (Tr.) of the leaves, reduced the stomatal resistance (Sr.) and the permanent wilting percentage (PWP) and enhanced the rate of recovery of the plant from the water stress and the plant growth (e.g. leaf number, stem diameter and dry weight). It also increased absorption of most minerals, especially Zn and Cu by the roots and weakened the P‐Cu and P‐Zn interactions. Phosphorus fertilization had some positive effects on the water status, P nutrition and growth, but it reduced the Cu concentration. VAM improved the water status and enhanced drought tolerance of the trees by enhancing absorption and translocation of water by the external hyphae. The efficiency of inoculation in nonsterile soil was not obvious.  相似文献   

20.
In the past century, the excessive exploitation of the environment by human beings has resulted in the depletion of valuable broadleaf hardwood trees in Italian forests, creating a need for re-forestation. The aim of this research was to verify whether a vescicular-arbuscular mycorrhizal (VAM) fungus is able to colonise the root of valuable hardwood trees and to evaluate the impact of the VAM fungus on growth and macroelement nutrition of its plant hosts.Four species of valuable broadleaf hardwood trees, Prunus avium L., Fraxinus excelsior L., Acer pseudoplatanus L., and Juglans nigra L., were inoculated with Glomus mosseae, a VAM fungus, and cultivated in a greenhouse. Infection after inoculation and root colonization by the fungus, tree growth, and macro-element nutrition were evaluated two-years after inoculation. G. mosseae formed mycorrhizae on all plants. However, different morphological aspects - predominantly the formation of Arum type arbuscles in P. avium and F. excelsior - were observed. A general improvement of macro-element nutrition from species to species characterised an enhanced growth of mycorrhizal plants. Therefore, it is plausible that the association of VAMs with these broadleaf trees, could overcome the difficulties encountered in the transplanting and the slow growth typical of these tree species.Although numerous articles have reported the beneficial effects of ectomycorrhizal fungi on trees, there is a sparse literature on the association of VAM with tree species. Therefore, this study contributes to the understanding of the role of the symbiosis between valuable broadleaf trees and VAM fungi in macroelement nutrition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号