首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 328 毫秒
1.
【目的】预测和研究蒙古栎天然林的生长与发展规律,以更好地经营蒙古栎天然林。【方法】以蒙古栎天然林为研究对象,基于吉林省汪清林业局195块蒙古栎林固定样地的2期复测数据,通过分析已有的16个普通树高曲线模型和16个标准树高曲线模型并对比2种模型的拟合结果,建立蒙古栎林的单木树高曲线模型。【结果】最终确定的蒙古栎林最优普通树高曲线模型的决定系数R2为0.728,调整决定系数Radj2为0.721,均方根误差为 2.291 m,相对均方根误差为0.158,平均误差为0.118 m,平均绝对误差为1.794 m。最优标准树高曲线模型的决定系数R2为0.907,调整决定系数Radj2为0.901,均方根误差为1.479 m,相对均方根误差为0.114,平均误差为0.094 m,平均绝对误差为1.381 m。【结论】增加了树木和林分因子的标准树高曲线模型,其精度较普通树高曲线模型有大幅提高。最优的蒙古栎单木标准树高曲线模型自变量包括胸径、林分每公顷株数、林分每公顷断面积、优势木平均高。建立的单木标准树高曲线模型有较好的生物学意义,可为吉林省汪清地区蒙古栎天然林的生长预测提供依据。  相似文献   

2.
【目的】基于林木分级构建大兴安岭地区兴安落叶松的树高曲线模型,为该地区兴安落叶松的生长规律提供理论依据及森林可持续经营提供技术支撑。【方法】以大兴安岭地区翠岗林场56块固定样地数据为基础,根据单木相对直径(d)把林木分为了优势木、平均木、被压木3个等级,依据调整决定系数(Radj2 )最大、均方根误差(RMSE)和赤池信息量(AIC)最小的标准筛选出天然兴安落叶松各等级林木的最优树高曲线基础模型,并进一步评价和比较分位数回归和哑变量回归对兴安落叶松不同等级林木树高曲线模型模拟精度的影响。【结果】天然兴安落叶松树高曲线的最优基础模型均为Wykoff方程;当将林分分级哑变量同时添加在Wykoff方程的参数a和b上时,模型的拟合效果最好,其中兴安落叶松树高曲线模型的调整系数(Radj2)、均方根误差(RMSE)和赤池信息量(AIC)分别为0.858 8、1.642 4和2 081.902;兴安落叶松中的不同等级林木对应的最优分位数模型与林分整体无差别,均表现为中位数模型最优(即τ=0.5),其树高曲线的3...  相似文献   

3.
【目的】选择7种模型拟合同一立地条件下马尾松和杉木人工林与天然林的树高生长曲线,并从中选出最优模型,为福建省马尾松和杉木人工林与天然林的合理经营奠定基础。【方法】基于福建省第7次森林资源一类清查数据,以同一立地条件下639株(人工林326株、天然林313株)马尾松标准木及687株(人工林498株、天然林189株)杉木标准木为研究对象,利用二次项方程、幂函数方程、对数方程、S曲线方程4种经验方程及Richards模型、Logistic模型、单分子式模型3种理论方程,拟合马尾松人工林和天然林、杉木人工林和天然林4种林分类型的树高曲线,并以调整决定系数、均方根误差、总相对误差和预估精度为评价指标,选择4种林分类型的最优树高模型。【结果】马尾松人工林与天然林分别以幂函数方程、二次项方程拟合效果较好,预估精度分别达到96.812%和96.474%;杉木人工林和天然林用Richards模型拟合效果最好,预估精度分别达到96.742%和96.495%。【结论】通过比较分析,获得了最适合模拟马尾松和杉木人工林与天然林的树高生长曲线模型。  相似文献   

4.
【目的】研究估测坡垒叶绿素含量的高光谱模型,探讨融合光谱反射率与时频特征估测叶绿素含量的可行性,为坡垒叶绿素含量的快速无损检测提供参考。【方法】以2年生坡垒为研究对象,设置N0(0 kg/hm2)、N1(35 kg/hm2)、N2(70 kg/hm2)3个氮肥水平,测定不同氮肥水平下坡垒冠层叶绿素含量和光谱曲线,采用离散傅里叶变换(DFT)和短时傅里叶变换(STFT)方法提取光谱时频特征,采用偏最小二乘回归(PLSR)算法,构建基于光谱反射率、时频特征及其二者融合特征的不同氮水平的分区模型以及全氮肥水平下的综合模型,估测不同氮肥水平下坡垒叶绿素含量,并以决定系数(R2)、平均绝对百分比误差(MAPE)、相对均方根误差(RRMSE)作为评价指标比较各模型精度,确定最优估测模型。【结果】(1)不同叶绿素含量下坡垒冠层光谱反射特征的整体变化趋势相似,在可见光波段(380~750 nm)内,光谱反射率随着叶绿素含量的增加而降低。(2)在构建的分区模型中,基于光谱反射率和时频特征构建的模型均能较好地估测坡垒叶绿素含量,检验R2分别为0.626~0.816,0.662~0.797,检验MAPE分别为4.966%~9.269%,6.029%~8.181%,检验RRMSE分别为6.827%~11.593%,8.247%~9.792%;基于融合光谱反射率与时频特征(融合特征)构建的分区模型检验R2为0.913~0.951,检验MAPE和RRMSE均低于10%。(3)在构建的综合模型中,当引入哑变量时,基于融合光谱反射率与时频特征(融合特征)构建模型的检验R2为0.814,MAPE和RRMSE分别为7.212%和8.578%,二者较基于光谱反射率构建的模型分别降低了37%和36%,较基于时频特征构建的模型分别降低了47%和45%。【结论】基于融合光谱反射率和时频特征(融合特征)构建的模型能够提高坡垒叶绿素含量估测的精度,对于不同氮肥水平下坡垒叶绿素含量有较好的估测效果,可作为估测坡垒叶绿素含量的优选方法。  相似文献   

5.
基于交角的林木竞争指数应用研究   总被引:1,自引:0,他引:1  
【目的】基于交角的林木竞争指数(CI)简洁,能同时表达出竞争木上方的遮盖和侧翼的挤压。探讨不同林分用胸径(D)或通过胸径-树高(D-H)曲线预估树高后替代实测树高计算该竞争指数的可行性,以期给出基于交角的林木竞争指数的最优经验计算途径。【方法】以3个地区共6块样地的天然林和人工林为研究对象,利用全站仪测定并记录林木坐标、树种、胸径、树高、冠幅和健康状况,并计算和分析各样地林木通过胸径得到的竞争指数(CID),通过胸径-树高曲线预估树高后得到的竞争指数(CI_(D-H))与通过实测树高得到的竞争指数(CIH)间的关系。【结果】不同森林类型林分通过胸径和胸径-树高曲线预估树高后计算得到林木竞争指数的2个经验计算途径都是可行的,且都能表达出通过实测树高计算得到林木竞争指数(CIH)结果的95%以上。2个经验计算途径的效果与胸径-树高曲线模型精度呈显著正相关,当胸径-树高曲线模型精度低(R20.53)时,CI_(D-H)效果略差。【结论】由于CI_(D-H)计算过程较复杂,且当林分胸径-树高曲线模型精度较低时,竞争指数CI_(D-H)的应用效果比竞争指数CI_D略差,因此以胸径替代实测树高可作为该竞争指数的最佳经验计算途径。  相似文献   

6.
【目的】对黄龙山蔡家川林场主要森林类型的碳储量和碳密度进行计算,为该区域森林碳汇功能研究提供参考。【方法】利用1986和1997年黄龙山蔡家川林场森林资源二类调查数据,依据不同森林类型生物量与蓄积量之间的回归方程以及森林生物量与碳储量、碳密度的关系,对该林场主要森林类型(柏木(Cypress)林、杨树(Populus)林、桦木(Betula)林、栎树(Quercus)林、油松(Pinus tabulaeformis)林、杂木林(Nonmerchantable woods))的碳储量、碳密度进行推算和分析,并与全国及西北五省(区)相同森林类型碳密度进行了对比。【结果】1986和1997年,该林场2年平均森林总碳储量为387 740 t,平均森林碳密度为17.7 t/hm2;1997年森林总碳储量比1986年减少9.65%,森林平均碳密度增长3.38%。各森林类型1986和1997年的平均碳密度大小顺序依次为栎树林(28.06 t/hm2)、油松林(24.35 t/hm2)、桦木林(21.04 t/hm2)、杂木林(11.86 t/hm2)、柏木林(11.03 t/hm2)和杨树林(10.04 t/hm2);1986和1997年不同生长阶段林分平均碳密度大小顺序依次为近熟林(25.56 t/hm2)、幼龄林(25.49 t/hm2)、中龄林(24.77 t/hm2)、成熟林(13.53 t/hm2)、过熟林(12.84 t/hm2)。该林场柏木林、桦木林、栎树林、杨树林、杂木林的森林碳密度均低于全国平均水平,但油松林的平均碳密度较全国平均水平高92.0%。【结论】1986和1997年,该林场森林具有较好的碳汇能力,但这2年间森林碳汇能力变化不显著;森林类型不同或同期林分生长阶段不同,其所具有的碳汇能力存在差异;保护和管理好栎树林、油松林、桦木林,并大力开展幼龄林、中龄林和近熟林的经营抚育工程,对增加该林场森林的碳汇功能具有重要贡献。  相似文献   

7.
【目的】准确构建库布齐沙漠地区4种人工灌木林生物量预测模型,为估算当地灌木林生态系统碳储量提供基础。【方法】以库布齐沙漠地区4种人工灌木林(柠条、沙棘、沙柳、杨柴)为研究对象,采用平均株收获法测定4种灌木不同营养器官(干、枝、叶、根)的生物量,将实测生长因子(地径D、株高H、冠幅直径C)及其组合因子(冠幅面积S、植冠体积V、植株体积D2H)作为自变量,利用生物量模型法选取一元线性函数、二次函数、对数函数、幂函数和指数函数,构建4种灌木各器官、地上及全株生物量模型。【结果】4种灌木不同器官中,柠条叶生物量最优模型为幂函数,干、枝、根3种器官生物量最优模型均为二次函数。沙棘干生物量最优模型为幂函数,枝、叶、根3种器官生物量最优模型均为一元线性函数。沙柳干、枝、根生物量最优模型均为一元线性函数,叶生物量最优模型为二次函数。杨柴干生物量最优模型为一元线性函数,枝、叶、根3种器官生物量最优模型均为二次函数。4种灌木地上生物量与全株生物量最优模型相同,柠条和杨柴最优模型为二次函数,沙棘和沙柳最优模型为一元线性函数。4种灌木全株与地上生物量模拟方程平均相对误差(RMA)为13.46%~24.07%,总相对误差(RS)为-11.19%~7.66%,拟合精度较高。【结论】构建的4种人工灌木林全株与地上生物量预测模型拟合精度较高,可用于库布齐沙漠地区区域尺度生物量和碳储量估算。  相似文献   

8.
【目的】研究北京市蒙古栎天然林的林分树高生长规律,为林分的科学、合理经营管理提供参考。【方法】根据北京市蒙古栎一类清查数据,以Richards方程为基础,采用度量误差模型方法建立林分相容性平均树高曲线方程组。【结果】经检验,所建模型在置信水平α=0.05时显著,对林分树高、胸径的预估精度分别为96.39%和97.23%。随着蒙古栎林分林龄的增长,胸径生长速生期滞后于树高生长速生期,大约在15年时,林分树高生长速度最快,大约在23年时,林分胸径生长速度最快;而林分树高随其胸径的生长变化则是在林分胸径为10cm左右时生长最快,此后逐渐减缓。【结论】所建立的林分树高曲线联立方程组比较合理,既使得林分树高曲线与林分胸径、树高生长过程曲线之间具有相容性和一致性,也考虑了模型中自变量的度量误差。  相似文献   

9.
杉木人工林胸径生长神经网络建模研究   总被引:6,自引:0,他引:6  
【目的】探索神经网络技术对杉木人工林胸径生长的模拟和预测能力,以寻求最优模型。【方法】以江西大岗山杉木人工林为研究对象,依据林木生长理论,用林龄(A)、立地指数(SI)和初植密度(N)3个因子构建平均胸径生长BP模型;通过定量和定性分析相结合的方法对模型选优,并将最佳模型与拓展的Richards模型比较;最后将优化模型应用于未参与建模的样地。【结果】最佳BP模型为Levenberg-Marquardt算法3∶5∶1结构模型(LM351),R2=0.984,MSE=0.196;拓展的Richards模型R2=0.964,MSE=0.433。LM351模型经校正后,适合预测福建邵武杉木人工林胸径生长规律(R2=0.995)。【结论】LM351神经网络模型在精度上优于传统Richards模型,适于林龄6~28年、立地指数12~17 m、初植密度1 667~9 967株/hm2的杉木林分平均胸径的模拟和预测。  相似文献   

10.
【目的】探讨亏缺灌溉和覆盖模式对芒果幼树光合特性、光响应曲线和干物质累积量的影响,寻找不同水分条件下适宜的光响应模型,为芒果科学水分管理提供实践参考。【方法】以2 a生芒果幼树为试验材料,设置3个灌水水平(正常水分灌溉(W1)、轻度水分亏缺灌溉(W2)、重度水分亏缺灌溉(W3))和4种覆盖模式(裸地不覆盖(M0)、地表覆盖黑色地膜(M1)、地表覆盖松针(M2)、地表覆盖黑色遮阳网(M3)),共12个处理,测定不同处理的土壤体积含水率(VWC)和温度以及芒果幼树光合特性、光合-光响应曲线(净光合速率(Pn)-光强(PAR)曲线)和主干、根、叶片干物质累积量,采用不同模型(直角双曲线模型(RH模型)、非直角双曲线模型(NRH模型)、指数模型(EX模型)和直角双曲线修正模型(MRH模型))对不同水分条件下的Pn-PAR曲线进行拟合,并对干物质累积总量与光合参数之间的关系进行分析。【结果】随着时间的延长,亏缺灌溉和覆盖模式对土壤VWC和温度有明显影响。当灌水量相同时,地表覆盖处理提高了土壤VWC和温度。相同PAR和覆盖模式下,Pn随着灌水量的增加而增大。相同PAR下,随着灌水量的减少,芒果幼树最大净光合速率(Pn max)降幅增大。MRH模型适用于不同水分条件下Pn-PAR曲线的拟合(R2>0.97),而RH模型、NRH模型和EX模型只适合高水分条件下(W1和W2)芒果叶片Pn-PAR曲线的拟合(R2>0.92)。当覆盖模式相同时,与W1处理相比,W2处理光合参数(Pn、蒸腾速率(Tr)、瞬时水分利用效率(WUEi)、胞间CO2浓度(Ci))和主干、根、叶片干物质累积量总体无显著变化,W3处理以上指标均明显降低。当灌水量相同时,与M0处理相比,地表覆盖处理增加了Pn和主干、根、叶片干物质累积量。相关分析表明,干物质累积总量与PnTr以及WUEi呈显著正相关。【结论】与正常水分灌溉处理相比,重度水分亏缺灌溉显著降低了芒果的光合作用和干物质累积量,轻度水分亏缺灌溉对芒果幼树生长没有产生不利影响,而地表覆盖处理有利于增强芒果幼树光合作用,促进干物质累积。4种模型中,MRH模型是拟合不同水分条件下芒果幼树Pn-PAR曲线的最适模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号