首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gluten was extracted from flours of several different wheat varieties of varying baking quality. Creep compliance was measured at room temperature and tan δ was measured over a range of temperatures from 25 to 95 °C. The extracted glutens were heat-treated for 20 min at 25, 40, 50, 60, 70 and 90 °C in a water bath, freeze-dried and ground to a fine powder. Tests were carried out for extractability in sodium dodecyl sulphate, free sulphydryl (SH) groups using Ellman's method, surface hydrophobicity and molecular weight (MW) distribution (MWD) using field-flow fractionation and multi-angle laser light scattering. With increasing temperature, the glutens showed a decrease in extractability, with the most rapid decreases occurring between 70 and 90 °C, a major transition in tan δ at around 60 °C and a minor transition at 40 °C for most varieties, a decrease in free SH groups and surface hydrophobicity and a shift in the MWD towards higher MW. The poor bread-making variety Riband showed the highest values of tan δ and Newtonian compliance, the lowest content of free SH groups and the largest increase of HMW/LMW with increasing temperature. No significant correlations with baking volume were found between any of the measured parameters.  相似文献   

2.
Gluten samples were obtained from two wheat flours with different levels of total protein in the presence or absence of sodium chloride (2% flour base). The dynamic oscillation rheology, large extensional deformation, confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM) and chemical analysis of disulfide bond linkages and the ratio of polymeric glutenins and monomeric gliadins were used to investigate the effect of salt on the structure and rheological properties of gluten. CLSM and TEM images showed that NaCl caused the gluten to form fibrous structure. The presence of NaCl increased non-covalent interactions and β-sheet structure, measured by FTIR, in gluten proteins. The gluten matrix formed with salt resulted in higher tan δ values corresponding to a less elastic network when measured using oscillatory rheometry. Large deformation extensional measurements showed that the maximum force to fracture were lower for the gluten samples prepared in the presence of NaCl. The results from this study indicate that changes in the solvent quality due to the presence of NaCl during dough mixing result in different molecular conformation and network structure of gluten proteins which contributed to the differences in the rheological properties.  相似文献   

3.
The effect of low levels of nitrogen, phosphorus and a combination of the two on the distribution of polymeric and monomeric proteins in two high quality spring bread wheat cultivars was investigated for two consecutive seasons. Size exclusion-high performance liquid chromatography (SE-HPLC) was used to determine the quantity and relationships of monomeric and polymeric proteins, and their relationship with flour protein content (FPC) and SDS sedimentation volume (SDSS). The low nitrogen and combined low nitrogen and low phosphorus treatments had a much larger effect on the protein fractions than the low phosphorus treatment alone. The SDS-soluble large monomeric protein fraction and the percentage SDS-insoluble monomeric proteins, were significantly increased under low nitrogen and a combination of low nitrogen and low phosphorus treatments. The percentage SDS-insoluble large and total polymeric proteins was significantly reduced under low nitrogen and a combination of low nitrogen and phosphorus treatments. The SDS-soluble and -insoluble small polymeric proteins were significantly increased under both low nitrogen and a combination of low nitrogen and low phosphorus treatments. The low nitrogen treatment consistently caused the lowest FPC and SDSS values. Under low nitrogen conditions, there was a significant positive correlation between the SDS-soluble gliadins and SDSS, and FPC.  相似文献   

4.
Wheat is an important source of energy and protein for humans all over the world and is mainly consumed in form of baked goods, for which a high baking quality is required. The main parameter for bread-making quality predictions of wheat flours is the grain protein concentration (GPC). Therefore, the GPC determines the value of the harvested wheat. Unfortunately, the GPC appears to be no longer an appropriate parameter for baking quality evaluation, given that, especially for high protein varieties, the correlation between GPC and bread volume is poor. A late N application is commonly used to increase GPC and enhance the bread-making quality of wheat flours. To minimise the environmental problems involved in the late use of N fertilisers, it is important to know how much N is necessary to achieve the desired effects. Therefore, in this study, the effects of two different doses of late N application on the GPC, as well as storage protein composition and bread volume were tested in two wheat varieties from different quality groups under field conditions in Germany. The findings of this experiment demonstrate that a low late N application appears to be sufficient to achieve a good baking quality of wheat flours. These results confirm the presumption that GPC is not a suitable parameter for bread-making quality predictions. As the relationships between the single storage protein fractions and bread volume were poor, it can be concluded that only the combined alterations within all gluten protein fractions explain the rise in bread volume.  相似文献   

5.
为明确不同类型小麦的面粉改良方案,为我国优质面包专用粉的生产提供理论与技术支持,以三个筋力不同的小麦品种宁麦13、扬麦16和郑麦9023为材料,通过洗面筋法提取各供试材料的湿面筋,将其冷冻干燥后按照7%、8%、9%、10%、11%的添加比例与各自面粉进行配比,对配粉的面包烘焙品质、面粉理化性质和面团流变学特性进行了测定分析。结果发现,随着面筋蛋白添加量的提高,配粉的蛋白质、湿面筋、谷蛋白大聚体(GMP)含量和沉降值逐步上升;粘度参数和面团弱化度有所下降;糊化温度和糊化时间呈上升趋势。在同一添加量下,强筋小麦的烘焙品质和面粉理化性质始终优于中筋小麦和弱筋小麦。随着面筋蛋白添加量的提高,面包体积、弹性、回复性、内聚力增大,而硬度、咀嚼性减小,感官品质得到改善。面筋蛋白添加量超过一定范围(宁麦13、扬麦16添加9%,郑麦9023添加8%),面包品质改良效果变缓,且色泽不断加深。综上所述,适量添加面筋蛋白可改变面粉的理化性质,提高其面包烘焙品质;配粉的蛋白质含量为18%左右是最经济的面包烘焙品质改良方案。  相似文献   

6.
The potential of sourdough to improve bread quality of barley and oat enriched wheat breads may depend on the characteristics of the added flour (cereal type, variety, extraction rate). We compared the effect of different barley flours and oat bran (substitution level 40%), unfermented and as sourdoughs (20% of total flour), on composite wheat dough and bread characteristics by combining empirical rheological analyses (DoughLab, SMS/Kieffer Dough and Gluten Extensibility Rig) with small-scale baking of hearth loaves. Whole grain barley flour sourdough increased resistance to extension (Rmax) of the dough and improved the form ratio of hearth loaves compared to unfermented whole grain barley flour. However, sourdough showed little effect on the breads prepared with sifted barley flour or oat bran. The breads made with oat bran showed highest bread volume, lowest crumb firmness and highest β-glucan calcofluor weight average molecular weight (MW). The heat treatment of oat bran inactivated endogenous enzymes resulting in less β-glucan degradation. High MW β-glucans will increase the viscosity of the doughs water phase, which in turn may stabilise gas cells and may therefore be the reason for the higher bread volume of the oat bran breads observed in our study.  相似文献   

7.
Extruded wheat flours, due to their increased water absorption capacity, constitute an opportunity to increase bread output in bakery production. However extrusion may modify dough and bread characteristics. The aim of this study was to investigate the effect of the substitution of 5% of the wheat flour by extruded wheat flour (produced with different time-temperature extrusion treatments) on dough mixing, handling and fermentation behaviour and bread volume, shape, texture and colour. The RVA curves indicate that extrusion intensity increases with increasing temperature or water content. Water absorption capacity rises with increasing treatment intensity, but dough stability tends to decrease. Adding extruded flours decreases dough extensibility but increases tenacity and gas production. Differences in dough structure were observed on photomicrography, though there were no clear differences in bread quality. These results indicate that it is possible to obtain adequate dough and bread characteristics using dough with 5% extruded wheat flour.  相似文献   

8.
Sodium chloride (NaCl) is an essential ingredient to control the functional properties of wheat dough and bread quality. This study investigated the effect of NaCl at 0, 1 and 2%, (w/w, flour base) on the gluten network formation during dough development, the dough rheology, and the baking characteristics of two commercial flours containing different levels of protein (9.0 and 13.5%) and with different glutenin-to-gliadin ratios. Examination of the dough structure by confocal microscopy at different stages of mixing show that the gluten network formation was delayed and the formation of elongated fibril protein structure at the end of dough development when NaCl was used. The fibril structure of protein influenced the dough strength, as determined by strain hardening coefficient and hardening index obtained from the large deformation extension measurements. NaCl had a greater effect on enhancing the strength of dough prepared from the low protein flour compared to those from the high protein flour. The effect of NaCl on loaf volume and crumb structure of bread followed a similar trend. These results indicate that the effect of NaCl on dough strength and bread quality may be partially compensated by choosing flour with an appropriate amount and quality of gluten protein.  相似文献   

9.
The aim of this study was to identify the biochemical parameters that alter the soft wheat flour functionality for biscuit-making quality. A 9-point simplex centroid was used to investigate the effect of varying the ratios of gluten, water-solubles and starch-fractions isolated from three different flour grades (patent, middle-cut and clear flours) which exhibited a wide range of compositional and functionality characteristics on the dough rheological behaviour and the semi-sweet biscuit quality parameters. The amounts of soluble and insoluble proteins and pentosans as well as the endogenous lipids in each flour fraction were quantified. Dough consistency, elongational viscosity, hardness, half-relaxation time, relaxation rate constant, cohesiveness and springiness as well as biscuit density, firmness, tearing force and spatial frequency for the different flour fraction combinations were also assessed. Regression models have been developed to predict the responses of the rheological attributes of the dough as well as the biscuit quality characteristics to the compositional changes of the flour blends; in addition to the main linear terms (concentration of starch, gluten and water-solubles isolated from the different flour grades), significant interaction terms were identified which cannot be neglected in any prediction scheme for the dough and biscuit properties. Contour plots were drawn in an effort to better understand the overall property responses of the dough and biscuits. Significant relationships among certain dough rheological parameters and biscuit characteristics were found, implying a functional role for the total, soluble and insoluble proteins, pentosans and lipids in biscuit making.  相似文献   

10.
The aim of this study was to improve the baking quality of whole-wheat saltine cracker (WWSC) using endoxylanases, vital wheat gluten (VWG), and gum Arabic. SRC results showed both water-SRC and sucrose-SRC of soft white whole-wheat flour (SWWW) were significantly reduced by gum Arabic (r = 0.94, P < 0.05). Alveograph results indicated that the tenacity and extensibility of the whole-wheat dough (WWD) were increased by VWG. Rheometer G′ and G″ moduli increased with higher addition levels of endoxylanases, VWG, and gum Arabic. Low-field nuclear magnetic resonance (LF-NMR) detected three CPMG proton populations (T21, T22, and T23) in WWD. T21 peak area ratio (tightly bound water) reduced and T22 peak area ratio (less tightly bound water) increased with the levels of each additive. LF-NMR results revealed increased water mobility from T21 population to T22 population with addition of these additives, which was beneficial for gluten to form a continuous network. Both stack height and specific volume of WWSC were improved by the use of endoxylanases, VWG, and gum Arabic, but the breaking strength varied. The results of Orthogonal experimental design showed that the most-improved quality WWSC could be produced by combining 0.035% endoxylanases, 1.5% VWG, and 1.5% gum Arabic into SWWW flour.  相似文献   

11.
The supplementation effects of maize fiber arabinoxylans (MFAX, 0%–6%), laccase (0–2 U/g flour) and water absorption level (90%–100%) on gluten-free (GF) batter rheology and bread quality were analyzed. From viscoamylograph analysis, lower starch amount in GF flour due to MFAX addition decreased peak viscosity and retrogradation. Surface response plots showed that laccase did not have significant effect on GF batter rheology and bread quality, whilst water was the most important variable. Higher levels of water absorption benefited bread texture. Higher water level (>100 mL/100 g flour) was needed in the experimental design to evaluate correctly the effect of 6% MFAX replacement on GF bread quality. Further analyses were carried in order to adjust water absorption of batters according to their consistency index (K ≈ 100 Pa sn), resulting an optimal water absorptions of 95%, 100% and 105% for control flour and flours supplemented with 3% or 6% MFAX, respectively. Thus, MFAX addition enhanced water-binding capacity of flour and yielded GF breads with higher specific volume and softer crumb texture. These quality parameters were best rated with 6% MFAX addition to flours. This research demonstrated the potential of MFAX to develop GF breads with improved quality, when optimal water level is used.  相似文献   

12.
In soft wheat breeding programs, the gluten strength of flours from specific genotypes is determined by various chemical and rheological tests. Based on such tests, the experimental wheat lines with very weak flour gluten are typically selected for the production of soft-dough biscuits, while the lines with medium gluten strength and extensibility are reserved for hard-dough biscuits. Often, the genotypes having high gluten strength are removed from such breeding programs. In the present study, the usability of the GlutoPeak tester on whole wheat flour samples was investigated for assessing the gluten strength of soft wheat breeding materials. In the study, 25 soft wheat genotypes, grown in seven locations for three years, were categorized by commonly used gluten-quality-related parameters. Based on the results of the study GlutoPeak whole wheat flour PMT values ranging from 30.0 to 50.0 s and AM values from 15.0 to 20.0 GPU were found to be suitable for soft-dough biscuit products, whereas the values between 40.0 and 60.0 s and 20.0 and 23.0 GPU were appropriate for hard-dough biscuit products. The genotypes exhibiting AM values > 24.0 GPU and PMT values > 60.0 s were judged to have too-strong gluten, and thus eliminated from the breeding program. The gluten aggregation energy (AGGEN), and the torque after the maximum torque (PM) values were only useful and applicable to flours for soft-dough products. The maximum torque (BEM) values were not effective in discriminating against the genotypes. The results of this study demonstrated that the GlutoPeak whole wheat PMT and AM parameters can be recommended as quick and accurate parameters especially for early generation screening with small-scale tests in soft wheat improvement programs.  相似文献   

13.
Gluten is a fundamental component for the overall quality and structure of breads. The replacement of the gluten network in the development of gluten-free cereal products is a challenging task for the cereal technologist. The functionality of proteins from gluten-free flours could be modified in order to improve their baking characteristics by promoting protein networks. Transglutaminase (TGase) has been successfully used in food systems to promote protein cross-linking. In this study, TGase was investigated for network forming potential on flours from six different gluten-free cereals (brown rice, buckwheat, corn, oat, sorghum and teff) used in breadmaking. TGase was added at 0, 1 or 10 U/g of proteins present in the recipe. The effect of TGase on batters and breads was evaluated by fundamental rheological tests, Texture Profile Analysis and standard baking tests. Three-dimensional elaborations of Confocal Laser Scanning Microscopy (CLSM) images were performed on both batters and breads to evaluate the influence of TGase on microstructure. Fundamental rheological tests showed a significant increase in the pseudoplastic behaviour of buckwheat and brown rice batters when 10 U of TGase were used. The resulting buckwheat and brown rice breads showed improved baking characteristics as well as overall macroscopic appearance. Three-dimensional CLSM image elaborations confirmed the formation of protein complexes by TGase action. On the other side, TGase showed negative effects on corn flour as its application was detrimental for the elastic properties of the batters. Nevertheless, the resulting breads showed significant improvements in terms of increased specific volume and decreased crumb hardness and chewiness. Under the conditions of this study, no effects of TGase could be observed on breads from oat, sorghum or teff. Overall, the results of this study show that TGase can be successfully applied to gluten-free flours to improve their breadmaking potentials by promoting network formation. However, the protein source is a key element determining the impact of the enzyme.  相似文献   

14.
The aim of this study was to evaluate the effect of different polymerization degree of inulin on plain wheat dough rheology and quality of steamed bread. It was found the water absorption of dough decreased with the increasing of short-chain (FS) and natural inulin (FI) and increased with the increasing of long-chain inulin (FXL) higher than 7.5%. Three kinds of inulin all increased the development time, stability and farinograph quality number and decreased softening degree of the dough. When proof time was less than 90min, the extensibility increased with the substitution of 5% of FS, 5% of FI and 2.5% of FXL. The resistance to extension, ratio number of resistance to extensibility and energy all increased with the increasing of FS and FI as well as the time. While the energy increased with FXL substation at 45min and dropped thereafter, regardless of the concentration. The addition of inulin all enhanced the brightness, specific volume and hardness of steamed bread and decreased the water content, vaporization enthalpy, springiness, recovery, and cohesiveness. During the storage, inulin reduced the change rates of relative hardness, recovery, and cohesiveness and increased the change rate of relative enthalpy, which restrained the staling rate of steamed bread.  相似文献   

15.
播种方式对费乌瑞它马铃薯生长与产量品质的影响   总被引:1,自引:0,他引:1  
试验通过改变马铃薯种薯播种方式(芽眼朝向),研究其对南方冬作区费乌瑞它马铃薯生长、产量与品质的影响。结果表明,播种深度10 cm,以芽眼朝下方式播种马铃薯,收获的马铃薯产量与商品薯率(667 m22150.66 kg,90.59%)均比芽眼朝上(667 m2 2 001.95 kg,80.44%)播种方式高,并且植株长势健壮,青薯率低。南方地区适合运用种薯芽眼朝下播种方式进行马铃薯种植。  相似文献   

16.
The aim of this study was to investigate variation in protein content and gluten viscoelastic properties in wheat genotypes grown in two mega-environments of contrasting climates: the southeast of Norway and Minnesota, USA. Twelve spring wheat varieties, nine from Norway and three HRS from Minnesota, were grown in field experiments at different locations in Norway and Minnesota during 2009–2011. The results showed higher protein content but lower TW and TKW when plants were grown in Minnesota, while the gluten quality measured as Rmax showed large variation between locations in both mega-environments. On average, Rmax of the samples grown in Minnesota was higher than those grown in Norway, but some locations in Norway had similar Rmax values to locations in Minnesota. The data showed inconsistent relationship between the temperature during grain filling and Rmax. Our results suggest that the weakening effect of low temperatures on gluten reported in this study are caused by other environmental factors that relate to low temperatures. The variety Berserk showed higher stability in Rmax as it obtained higher values in the environments in Norway that gave very weak gluten for other varieties.  相似文献   

17.
Glucose oxidase (Gox), transglutaminase (TG), and pentosanase (Pn) were investigated for their effect on bread quality. The changes introduced in wheat protein by the action of these enzymes were analysed to explain dough behaviour. Gox treatment decreased free sulphydryl groups (SHf), increased glutenin macropolymer contents, and modified the electrophoretic pattern of protein fractions. Gox modified mainly albumin, globulin, and glutenin, forming large protein aggregates. These modifications explained the high strength of the dough and the low bread specific volume of samples with Gox. TG treatment modified solubility in SDS of protein and decreased glutenin macropolymer content. However, it formed large protein aggregates. The new cross-linking bonds introduced by this enzyme were different to S–S bonds and, consequently, the dough was less extensible and showed high resistance. Pn treatment increased water soluble pentosan content. Moreover, in these samples a tendency to increase SHf content was observed. In addition, Pn increased protein solubility in isopropanol, which indicates that the reduction of pentosans size decreases steric impediment of insoluble pentosans, thus increasing interaction among protein and making their extraction easier. These changes at the microscopic level allowed explaining the formation of softer dough and the production of higher specific volume in breads with Pn.  相似文献   

18.
本文选用仙都笋峰茶新型加工生产线、长板式炒制机和传统全手工炒制三种不同加工方式,研究其对仙都笋峰茶品质与效益的影响。结果表明:仙都笋峰茶新型加工生产线所制的笋峰茶综合质量因子要优于长板式炒制机,特别是在省工、节能、增效等三方面明显优于长板式炒制机和全手工炒制。  相似文献   

19.
The effect of heating and fortification with lysine on the protein quality of five minor millets namely Italian millet (S. Italica), French millet (Panicum miliaceum), Barnyard millet (Echinochloa colona), Kodo millet (Paspalum scrobiculatum) and Little millet (Panicum miliare) was carried out. The N content of the millets ranged from 1.69 to 2.76 per cent. Proximate composition and dietary fibre was estimated. A reduction of 19–25 in TD and increase of 4–18 in BV was observed on auto-claving and both the differences were significant (P<0.05) in all millets. However, heat processing did not have a pronounced effect on DE. Fortification with lysine at 0.6 g/100 DM increased both the BV and NPU. Although both heat processing and lysine fortification improved protein utilisation, the effect of fortification was comparatively more than heating.  相似文献   

20.
The effect of different levels of nitrogen N0(0kg/ha), N1(30 kg/ha), N2 (60 kg/ha), and N3 (90 kg/ha) and farmyard manure F0 (0 tonnes/ha), F1 (10 tonnes/ha), and F2 (20 tonnes/ha) on the yield and nutrient composition of spinach and its uptake was investigated on a sandy loam soil. Yield; phosphorus, iron, manganese, zinc, and copper uptakes; and ascorbic acid content increased with the application of both the inorganic nitrogen fertilizer and the farmyard manure, with a maximum at the N3F2 level, i.e. at 90 kg N/ha with 20 tonnes FYM/ha. However, the contents of protein, -carotene, and reducing sugars were maximum at the highest dose of nitrogen without the application of farmyard manure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号