首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We performed a controlled experiment with rice seedlings (Oryza sativa L.) growing in Petri dishes on homogeneous nutrient agar containing a simple rhizosphere food web consisting of a diverse bacterial community and a common soil protozoa, Acanthamoeba castellanii, as bacterial grazer. Presence of amoebae increased bacterial activity and significantly changed the community composition and spatial distribution of bacteria in the rhizosphere. In particular, Betaproteobacteria did benefit from protozoan grazing. We hypothesize that the changes in bacterial community composition affected the root architecture of rice plants. These effects on root architecture affect a fundamental aspect of plant productivity. Root systems in presence of protozoa were characterized by high numbers of elongated (L-type) laterals, those laterals that are a prerequisite for the construction of branched root systems. This was in sharp contrast to root system development in absence of protozoa, where high numbers of lateral root primordia and short (S-type) laterals occurred which did not grow out of the rhizosphere region of the axile root. As a consequence of nutrient release from grazed bacteria and changes in root architecture, the nitrogen content of rice shoots increased by 45% in presence of protozoa. Our study illustrates that interactions over three trophic levels, i.e. between plants, bacteria and protozoa significantly modify root architecture and nutrient uptake by plants.  相似文献   

2.
Summary Five bacterial strains capable of Mn reduction were isolated from the rhizosphere of plants growing in different South Australian soils. They differed in their Mn-reducing capacity. The antagonism of these strains compared to the imported strain 2–79 (from the United States) against Gaeumannomyces graminis var. tritici was tested in agar and in a soil sandwich experiment at different Mn2+ concentrations in the soil. In addition, wheat seeds were coated with the different strains and with MnSO4 or with MnSO4 only in order to investigate their effect on plant growth and Mn uptake. With one exception, all strains inhibited the growth of G. graminis in agar, but to different degrees. In contrast, only two strains significantly inhibited the growth of the fungus in the soil. The hyphal density was decreased more than the hyphal length. The Mn2+ concentration in the soil also had a marked effect on fungal growth; low Mn concentrations slightly increased while high Mn concentrations strongly decreased the fungal growth. Seed treatment with MnSO4 only (+Mn) increased Mn uptake above that of the control (no seed treatment). Only the weakest Mn reducer on agar significantly increased plant growth and Mn uptake from soil in comparison with the Mn treatment. One strain was tested as seed coating without adding MnSO4; it increased the plant growth to an extent similar to the Mn treatment. Increasing the Mn uptake by plants may be one of the growth-promoting effects exerted by rhizosphere bacteria.  相似文献   

3.
Mycorrhizal (Lactarius rufus Fr.) and non-mycorrhizal Norway spruce seedlings (Picea abies Karst.) were grown in a sand culture and inoculated with protozoa (naked amoebae and flagellates) extracted from native forest soil or with protozoa grown on agar cultures. A soil suspension from which the protozoa were eliminated by filtration or chloroform fumigation was used as a control. After 19 weeks of growth in a climate chamber at 20–22°C, the seedlings were harvested. Protozoa reduced the number of bacterial colony-forming units extracted from the rhizoplane of both non-mycorrhizal and mycorrhizal seedlings and significantly increased seedling growth. However, concentrations of mineral nutrients in needles were not increased in seedlings with protozoan treatment. It is concluded that the increased growth of seedling was not caused by nutrients released during amoebal grazing on rhizosphere micro-organisms. The protozoa presumably affected plant physiological processes, either directly, via production of phytohormones, or indirectly, via modification of the structure and performance of the rhizosphere microflora and their impact on plant growth. Mycorrhizal colonization significantly increased the abundance of naked amoebae at the rhizoplane. Our observations indicate that protozoa in the rhizosphere interact significantly with mycorrhizae.  相似文献   

4.
Protozoa stimulate plant growth, but we do not completely understand the underlying mechanisms, and different hypotheses seek to explain this phenomenon. To test these hypotheses, we grew the grass Yorkshire fog (Holcus lanatus) in pots with soil, which contained either (1) no organisms but bacteria – or (2) bacteria and protozoa. Half of the pots received a glucose treatment so as to mimic an additional root exudation. We measured plant growth and plant nitrogen uptake, along with various microbial pools and processes that support plant growth. Protozoan presence significantly enhanced soil nitrogen mineralization, plant nitrogen uptake from organic nitrogen sources, plant nitrogen content, and plant growth. By contrast, we found no evidence that glucose addition, mimicking root exudation, increased soil nitrogen availability and plant nitrogen uptake. Moreover, although protozoan presence affected bacterial community structure, it did not affect the proportion of IAA-producing bacteria in the community or plant root morphology. These results refute the “soil microbial loop” hypotheses, which suggest that protozoan stimulation of plant growth results from complex interactions between plant roots, bacteria and protozoa. Our experiment thus favours the simple explanation that increased nitrogen availability is the key factor behind the positive protozoan effect on plant growth. To exploit natural resources in an efficient and environmentally friendly way, we need to understand in detail the functioning of ecosystems. This study stresses that to achieve this, it is still urgent, besides investigating intricate food-web and signal compound interactions, also to focus on the basic stoichiometric and energetic aspects of organisms.  相似文献   

5.
Rice plants (Oryza sativa L.) were grown in microcosms containing soil with a diverse bacterial community (control) and inoculated either with an axenic arbuscular mycorrhizal fungus (Glomus intraradices) or an axenic inoculum of protozoan grazers of bacteria (Acanthamoeba castellanii), or both, in a factorial design.Amoebae and mycorrhiza affected the root architecture of rice in opposite directions, with mycorrhiza reducing and protozoa increasing early root growth. Rice biomass did not increase in presence of mycorrhiza (×1.08), but strongly increased in presence of Acanthamoebae (×1.29). The positive effects of amoebae were always reduced when plants were also infected with mycorrhiza. Microbial biomass increased (×1.4) and microbial growth was less limited by phosphorus in presence of mycorrhiza. However, plant phosphorus uptake did not increase, rather, plant concentrations of carbon and nutrients decreased in presence of mycorrhiza, suggesting a sequestration of resources during the establishment of a mycorrhizal network. Amoebae strongly interacted with, and partly compensated for, the effects of mycorrhiza, demonstrating that interactions between AM fungi and the microbial food web in the rhizosphere significantly feed back on early plant performance.  相似文献   

6.
The impact of protozoa on the availability of bacterial nitrogen to plants   总被引:9,自引:0,他引:9  
Summary Microbial N from 15N-labelled bacterial biomass was investigated in a microcosm experiment, in order to determine its availability to wheat plants. Sterilized soil was inoculated with either bacteria (Pseudomonas aeruginosa alone or with a suspension of a natural bacterial population from the soil) or bacteria and protozoa to examine the impact of protozoa. Plant biomass, plant N, soil inorganic N and bacterial and protozoan numbers were determined after 14 and 35 days of incubation. The protozoa reduced bacterial numbers in soil by a factor of 8, and higher contents of soil inorganic N were found in their presence. Plant uptake of N increased by 20010 in the presence of protozoa. Even though the total plant biomass production was not affected, the shoot: root ratios increased in the presence of protozoa, which is considered to indicate an improved plant nutrient supply. The presence of protozoa resulted in a 65010 increase in mineralization and uptake of bacterial 15N by plants. This effect was more pronounced than the protozoan effect on N derived from soil organic matter. It is concluded that grazing by protozoa strongly stimulates the mineralization and turnover of bacterial N. The mineralization of soil organic N was also shown to be promoted by protozoa.Communication No. 9 of the Dutch Programme on Soil Ecology of Arable Farming Systems  相似文献   

7.
The inoculation of red beets with the nitrogen-fixing bacteria Pseudomonas putida 23 increased the activity of the nitrogen fixation in the rhizosphere of the plants grown on meadow soil in the central part of the Oka River floodplain. The yield of the red beets and the uptake by plants of nitrogen from the soil and from the 15N-labeled nitrogen fertilizer applied on the trial microplot increased significantly. A statistically significant additional fixation of nitrogen from the atmosphere and a positive balance of nitrogen in the soil-plant system without significant changes in the bulk content of the soil nitrogen after the plant growing were found in a greenhouse experiment with the application of P. putida. It can be supposed that the excessive nitrogen determined in this system is related to the incorporation into plants of atmospheric nitrogen fixed in the rhizosphere of the inoculated plants. The application of P. putida 23 makes it possible to decrease the rates of NPK fertilizer by two times without losses in the yield of red beets.  相似文献   

8.
Pea plants were grown in γ-irradiated soil in pots with and without addition of the AM fungus Glomus intraradices at sufficient N and limiting P. Depending on the growth phase of the plant presence of AM had negative or positive effect on rhizosphere activity. Before flowering during nutrient acquisition AM decreased rhizosphere respiration and number of protozoa but did not affect bacterial number suggesting top-down regulation of bacterial number by protozoan grazing. In contrast, during flowering and pod formation AM stimulated rhizosphere respiration and the negative effect on protozoa decreased. AM also affected the composition of the rhizosphere bacterial community as revealed from DNA analysis (DGGE). With or without mycorrhiza, rhizosphere respiration was P-limited on very young roots, not nutrient limited at more mature roots and C-limited at withering. This suggests changes in the rhizosphere community during plant growth also supported by changes in the bacteria (DGGE).  相似文献   

9.
ABSTRACT

Co-inoculation of nitrogen-fixing bacteria with plant growth-promoting bacteria has become more popular than single inoculation of rhizobia or plant-growth-promoting bacteria because of the synergy of these bacteria in increasing soybean yield and nitrogen fixation. This study was conducted to investigate the effects of Bradyrhizobium japonicum SAY3-7 and Streptomyces griseoflavus P4 co-inoculation on plant growth, nodulation, nitrogen fixation, nutrient uptake, and seed yield of the ‘Yezin-6’ soybean cultivar. Nitrogen fixation was measured using the acetylene reduction assay and ureide methods. Uptake of major nutrients [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg)] was also measured. This study showed that single inoculation of SAY3-7 significantly increased shoot biomass; nodulation; Relative Ureide Index (RUI %), percent nitrogen derived from N fixation (% Ndfa); N, P, K, Ca, and Mg uptakes; during the later growth stages (R3.5 and R5.5), compared with control. These observations indicate that SAY3-7 is an effective N-fixing bacterium for the plant growth, nodulation, and nitrogen fixation with an ability to compete with native bradyrhizobia. Co-inoculation of SAY3-7 and P4 significantly improved nodule number; nodule dry weight; shoot and root biomass; N fixation; N, P, K, Ca, and Mg uptake; at various growth stages and seed yield in ‘Yezin-6’ soybean cultivar compared with the control, but not the single inoculation treatments. Significant differences in plant growth, nodulation, N fixation, nutrient uptake, and yield between co-inoculation and control, not between single inoculation and control, suggest that there is a synergetic effect due to co-inoculation of SAY3-7 and P4. Therefore, we conclude that Myanmar Bradyrhizobium strain SAY3-7 and P4 will be useful as effective inoculants in biofertilizer production in the future.  相似文献   

10.
Inoculants are of great importance in sustainable and/or organic agriculture. In the present study, plant growth of barley (Hordeum vulgare) has been studied in sterile soil inoculated with four plant growth-promoting bacteria and mineral fertilizers at three different soil bulk densities and in three harvests of plants. Three bacterial species were isolated from the rhizosphere of barley and wheat. These bacteria fixed N2, dissolved P and significantly increased growth of barley seedlings. Available phosphate in soil was significantly increased by seed inoculation of Bacillus M-13 and Bacillus RC01. Total culturable bacteria, fungi and P-solubilizing bacteria count increased with time. Data suggest that seed inoculation of barley with Bacillus RC01, Bacillus RC02, Bacillus RC03 and Bacillus M-13 increased root weight by 16.7, 12.5, 8.9 and 12.5% as compared to the control (without bacteria inoculation and mineral fertilizers) and shoot weight by 34.7, 34.7, 28.6 and 32.7%, respectively. Bacterial inoculation gave increases of 20.3–25.7% over the control as compared with 18.9 and 35.1% total biomass weight increases by P and NP application. The concentration of N and P in soil was decreased by increasing soil compaction. In contrast to macronutrients, the concentration of Fe, Cu and Mn was lower in plants grown in the loosest soil. Soil compaction induced a limitation in root and shoot growth that was reflected by a decrease in the microbial population and activity. Our results show that bacterial population was stimulated by the decrease in soil bulk density. The results suggest that the N2-fixing and P-solubilizing bacterial strains tested have a potential on plant growth activity of barley.  相似文献   

11.
生物黑炭被作为土壤改良剂应用逐渐被认可,但其应用机制特别是生物黑炭对氮素形态和根际微生物的影响机理尚不明确,影响其推广。本文采用盆栽试验,研究了玉米和水稻秸秆烧制的生物黑炭按不同量施入土壤后,对玉米苗期株高、生物量和根际土壤氮素形态及相关微生物的影响。结果表明,施入60 g·kg-1玉米黑炭和40~60 g·kg-1水稻黑炭均对玉米苗期株高有显著(P0.05)降低作用,其中水稻黑炭的降低效果更为明显;分别施入60 g·kg-1玉米黑炭和20~60 g·kg-1水稻黑炭后,玉米植株地上部生物量均显著降低。施入60 g·kg-1玉米黑炭后根际土壤含水量和微生物量氮显著提高。随两种生物黑炭施入量的不断增加,玉米苗期根际土壤全氮、硝态氮含量以及固氮作用强度也显著增加,且均在60 g·kg-1施用量下达最大值。施用40 g·kg-1玉米黑炭可显著提高玉米苗期根际土壤氨态氮含量。同时,施用两种生物黑炭后,均不同程度地抑制了玉米根际土壤中细菌总体数量,促进了固氮菌和纤维素降解菌的生长,其中施入60 g·kg-1玉米黑炭的效果最为明显。综上,玉米和水稻秸秆生物黑炭的适量施用,可以促进玉米根际土壤氮素的循环转化,影响相关微生物的群落结构,且与水稻秸秆相比,玉米秸秆生物黑炭的施用效果更加明显。本文针对作物生长、土壤氮素形态及相关微生物数量3个方面研究生物黑炭施入土壤对氮有效性的影响,能够更全面、更准确地将生物黑炭如何影响土壤氮素转化展现出来,促进生物黑炭的深入开发利用,对黑土肥力保护具有一定意义。  相似文献   

12.
The capacity of bacteria and protozoa to mineralize soil nitrogen was studied in microcosms with sterilized soil with or without wheat plants. The effect of small additions of glucose or ammonium nitrate or both, twice a week was also tested. Plant dry weight and N-content, number of microorganisms and biomass plus inorganic N were determined after 6 weeks.The introduction of plants profoundly influenced the N transformations. In the presence of root-derived carbon, much more N was mineralized from the organic matter and immobilized mainly in plant biomass. “Total observable change in biomass N plus inorganic N” was negative in the unvegetated soils without additions, while a mineralization of 1.7 mg N microcosm?1 was observed in microcosms with wheat plants grown with bacteria only. When protozoa were included, the N taken up by plants increased by 75%. Sugar additions resulted in an 18% increase of total N in the shoots when protozoa were present, but had no significant effect in the absence of grazers. Plants with the same root weight were more efficient in their uptake of inorganic N when protozoa were present. Plants grown with protozoa also had a lower R/S ratio, indicating a less stressed N availability situation. The lowest ratio was found with N additions in the presence of protozoa.The results indicate that, with energy supplied by plant roots or with external glucose additions, soil bacteria can mineralize N from the soil organic matter to support their own growth. Grazing of the bacteria is necessary to make bacterial biomass N available for plant uptake.  相似文献   

13.
Summary A spontaneous mutant ofAzospirillum lipoferum, resistant to streptomycin and rifampicin, was inoculated into the soil immediately before and 10 days after transplanting of rice (Oryza sativa L.). Two rice varieties with high and low nitrogen-fixing supporting traits, Hua-chou-chi-mo-mor (Hua) and OS4, were used for the plant bacterial interaction study. The effect of inoculation on growth and grain and dry matter yields was evaluated in relation to nitrogen fixation, by in situ acetylene reduction assay,15N2 feeding and15N dilution techniques. A survey of the population of marker bacteria at maximum tillering, booting and heading revealed poor effectivety. The population of nativeAzospirillum followed no definite pattern. Acetylene-reducing activity (ARA) did not differ due to inoculation at two early stages but decreased in the inoculated plants at heading. In contrast, inoculation increased tiller number, plant height of Hua and early reproductive growth of both varieties. Grain yield of both varieties significantly increased along with the dry matter. Total N also increased in inoculated plants, which was less compared with dry matter increase.15N2 feeding of OS4 at heading showed more15N2 incorporation in the control than in the inoculated plants. The ARA,15N and N balance studies did not provide clear evidence that the promotion of growth and nitrogen uptake was due to higher N2 fixation.  相似文献   

14.
Arbuscular mycorrhizal fungi (AMF) provide essential nutrients to crops and are affected by fertilizers. Phosphate-solubilizing bacteria (PSB), nitrogen-fixing bacteria (NFB), and AMF have mutually beneficial relationships with plants, but the effects of their interactions on plant growth by regulating rhizosphere fungal community have not been sufficiently studied. In this study, a greenhouse pot experiment was conducted to investigate the interactions between AMF and bacteria (PSB and NFB) on the growth of Lotus corniculatus L. Specifically, the role of rhizosphere fungal community in the growth of Lotus corniculatus L. was explored using Illumina MiSeq high-throughput sequencing. The results showed that combined inoculation of AMF with PSB and NFB increased plant biomass, plant height, and fungal colonization rate. The richness, complexity, and stability of rhizosphere fungal community also increased after combined inoculation of AMF with PSB and/or NFB, particularly with PSB. In addition, combined inoculation of AMF with PSB and NFB enriched the abundance of beneficial microorganisms, with Chaetomium and Humicola showing the greatest alterations. The structural equation model showed that the interactions of AMF with PSB and NFB promoted plant growth by affecting fungal network structure and soil enzyme activities involved in carbon, nitrogen, and phosphorus cycling. These findings provide evidence for the effects of interactions of AMF with PSB and NFB on rhizosphere fungal community and plant growth.  相似文献   

15.
Survival of inoculated rhizosphere bacteria and their influence on native bacterial populations in the rhizosphere of alfalfa The survival of inoculated bacteria and their influence on native bacterial populations in the rhizosphere of alfalfa were investigated in a greenhouse experiment. The plant growth promoting strains Rhizobium meliloti me18 and Pseudomonas fluorescens PsIA12 were reisolated from the rhizosphere about 7 weeks after single and mixed strain inoculation. They did not induce lasting changes in the diversity of the native bacterial communities of the rhizosphere. Only within the first week after inoculation was an increase in total bacterial abundance observed. In general, the diversity of bacterial communities increased with plant age and with proximity to the root tip.  相似文献   

16.
Root-induced changes in the rhizosphere may affect mineral nutrition of plants in various ways. Examples for this are changes in rhizosphere pH in response to the source of nitrogen (NH4-N versus NO3-N), and iron and phosphorus deficiency. These pH changes can readily be demonstrated by infiltration of the soil with agar containing a pH indicator. The rhizosphere pH may be as much as 2 units higher or lower than the pH of the bulk soil. Also along the roots distinct differences in rhizosphere pH exist. In response to iron deficiency most plant species in their apical root zones increase the rate of H+ net excretion (acidification), the reducing capacity, the rate of FeIII reduction and iron uptake. Also manganese reduction and uptake is increased several-fold, leading to high manganese concentrations in iron deficient plants. Low-molecular-weight root exudates may enhance mobilization of mineral nutrients in the rhizosphere. In response to iron deficiency, roots of grass species release non-proteinogenic amino acids (?phytosiderophores”?) which dissolve inorganic iron compounds by chelation of FeIII and also mediate the plasma membrane transport of this chelated iron into the roots. A particular mechanism of mobilization of phosphorus in the rhizosphere exists in white lupin (Lupinus albus L.). In this species, phosphorus deficiency induces the formation of so-called proteoid roots. In these root zones sparingly soluble iron and aluminium phosphates are mobilized by the exudation of chelating substances (probably citrate), net excretion of H+ and increase in the reducing capacity. In mixed culture with white lupin, phosphorus uptake per unit root length of wheat (Triticum aestivum L.) plants from a soil low in available P is increased, indicating that wheat can take up phosphorus mobilized in the proteoid root zones of lupin. At the rhizoplane and in the root (root homogenates) of several plant species grown in different soils, of the total number of bacteria less than 1 % are N2-fixing (diazotrophe) bacteria, mainly Enterobacter and Klebsiella. The proportion of the diazotroph bacteria is higher in the rhizosphere soil. This discrimination of diazotroph bacteria in the rhizosphere is increased with foliar application of combined nitrogen. Inoculation with the diazotroph bacteria Azospirillum increases root length and enhances formation of lateral roots and root hairs similarly as does application of auxin (IAA). Thus rhizosphere bacteria such as Azospirillum may affect mineral nutrition and plant growth indirectly rather than by supply of nitrogen.  相似文献   

17.
Beneficial soil bacteria are able to colonize plant root systems promoting plant growth and increasing crop yield and nutrient uptake through a variety of mechanisms. These bacteria can be an alternative to chemical fertilizers without productivity loss. The objectives of this study were to test bacterial inoculants for their ability to promote nutrient uptake and/or plant growth of rice plants subjected to different rates of chemical fertilizer, and to determine whether inoculants could be an alternative to nitrogen fertilizers. To test the interaction between putatively beneficial bacteria and rice plants, field experiments were conducted with two isolates: AC32 (Herbaspirillum sp.) and UR51 (Rhizobium sp.), and different nitrogen fertilization conditions (0%, 50%, and 100% of urea). Satisfactory results were obtained in relation to the nutrient uptake by plants inoculated with both isolates, principally when the recommended amount of nitrogen fertilizer was 50% reduced. These bacterial strains were unable to increase plant growth and grain yield when plants were subjected to the high level of fertilization. This study indicated that the tested inoculant formulations can provide essential nutrients to plants, especially when the levels of nitrogen fertilizers are reduced.  相似文献   

18.
Potassium-mobilizing bacterial strain Frateuria aurantia was examined for plant-growth-promoting effects and nutrient uptake on tobacco (Nicotiana tabacum L.) grown in vertisols as a field experiment for two crop seasons, 2009–2010 and 2010–2011. Inoculation with bacterial strain Frateuria aurantia was found to increase biomass, nutrient content, and leaf quality of flue-cured Virginia (FCV) tobacco. Bacterial strain F. aurantia was able to enhance potassium uptake efficiently in tobacco plants when sulfate of potash was added to the soil. In tobacco, the ultimate product is the leaf that is consumed and has commercial value. In tobacco-growing soils treated with soluble potassium and inoculated with strain F. aurantia, the potassium content of the leaf was increased by 39%. Bacterial inoculation also resulted in greater nitrogen and phosphorus contents of aboveground plant components. The bacterial isolate was also able to colonize and develop in the rhizosphere soil of tobacco after root inoculation. Solubilization of potassium containing minerals by potassium-mobilizing bacteria in vertisols and their effect on tobacco plant growth, yield, and quality are reported in this study.  相似文献   

19.
Summary The association of rice seedlings (cv. Delta) with different strains of Azospirillum was studied under monoxenic conditions in the dark. Axenic 3-day-old seedlings were obtained on a C- and N-free medium and inoculated with 6 · 107 bacteria per plant in a closed vial. Seven days later, different components of a carbon budget were evaluated on them and on sterile controls: respired CO2, carbon of shoot and roots, bacterial and soluble carbon in the medium. Two strains (A. lipoferum 4B and A. brasilense A95) isolated from the rhizosphere of rice caused an increase in exudation, + 36% and + 17% respectively compared with sterile control. Shoot carbon incorporation and respiration were reduced by inoculation. A third strain (A. brasilense R07) caused no significant change in exudation. A. lipoferum B7C isolated from maize did not stimulate rice exudation either. We further investigated a possible effect of nitrogen fixation on this phenomenon: inhibition of nitrogen fixation by 10% C2H2 did not modify the extent of C exudation by rice associated with A. lipoferum 4B or with the non-motile A. lipoferum 4T.  相似文献   

20.
任改弟  张苗  张文越  郭德杰  马艳 《土壤》2022,54(4):740-749
通过盆栽试验,分析了不同来源有机物料(鸡粪、牛粪、菇渣)对菜用蚕豆生长和品质、根际土化学和生物学性状的影响。结果表明:(1)3种有机物料对蚕豆分枝数、荚干重、籽粒干重、大粒重、大粒蚕豆占比、籽粒淀粉含量均有积极作用,其中牛粪和菇渣能显著(P<0.05)提高大粒蚕豆占比,鸡粪能显著(P<0.05)提高二粒荚和三粒荚的占比,并且对籽粒淀粉含量的提升效果最为明显(比对照增加69.1%);(2)3种有机物料增加了根际土中细菌、真菌数量,显著(P<0.05)提高了根际土中性转化酶、脲酶、酸性磷酸酶、多酚氧化酶活性(除牛粪使中性转化酶活性提高不显著外),其中鸡粪对细菌数量、中性转化酶活性、脲酶活性的提高程度均最大;(3)鸡粪能显著(P<0.05)增加根际土有机碳、全氮、NH4+-N含量,牛粪、鸡粪能显著(P<0.05)提高土壤p H。大粒蚕豆占比与土壤酸性磷酸酶活性、有效磷含量呈显著正相关。蚕豆淀粉含量与细菌数量、中性转化酶活性、有机碳、全氮、NH4+-N含量呈显著正相关,这说明有...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号