首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to test the impact of compost and biochar, with or without earthworms, on the mobility and availability of metals, and on the growth of grass to re-vegetate contaminated soil from the Parys Mountain mining site, Anglesey. We also determined if the addition of earthworms compromises remediation efforts.In a laboratory experiment, contaminated soil (1343 mg Cu kg?1, 2511 mg Pb kg?1 and 262 mg Zn kg?1) was remediated with compost and/or biochar. After 77 days Lumbricus terrestris L. earthworms were added to the treatment remediated with both compost and biochar, and left for 28 days. L. terrestris was not able to survive in the biochar, compost or unamended treatments. A germination and growth bioassay, using Agrostis capillaris (Common Bent) was then run on all treatments for 28 days.The combination of biochar and compost decreased water soluble Cu (from 5.6 to 0.2 mg kg?1), Pb (from 0.17 to less than 0.007 mg kg?1) and Zn (from 3.3 to 0.05 mg kg?1) in the contaminated soil and increased the pH from 2.7 to 6.6. The addition of L. terrestris to this treatment had no effect on the concentration of the water soluble metals in the remediated soil.The compost was the only treatment that resulted in germination and growth of A. capillaris suitable for re-vegetation purposes. However, the combination of compost and biochar (with or without L. terrestris) produced the lowest concentrations of Cu (8 mg kg?1) and Zn (36 mg kg?1) in the aboveground biomass, lower than the compost treatment (15 mg Cu kg?1 and 126 mg Zn kg?1).The addition of biochar and compost both separately and as co-amendments was effective in reducing the mobility and availability of metals. The addition of L. terrestris did not re-mobilise previously sequestered metals.  相似文献   

2.
This paper reports the results of a study focused on the metal (Cd, Co, Cr, Cu, Ni, Pb, Sb, U and Zn) distribution in soils and uptake and accumulation by earthworms Nicodrilus caliginosus (Savigny) from urban, peri-urban, green-urban and non-urban zones of Siena municipality (central Italy). The main goal was to define the influence of soil properties and metal soil contents on the uptake of these contaminants by earthworms. Data indicated that Cd, Cu, Pb, Sb and Zn soil contents increased in the following order: non-urban < green-urban < peri-urban < urban soils, suggesting that vehicular traffic affects the distribution of these metals. Pb and Sb were the main soil contaminants and their highest enrichments were found in urban sites where stop-and-go traffic occurs. Concentrations of these traffic-related metals in earthworms showed a distribution pattern similar to that in soil, suggesting that soil contamination influenced the uptake of Cd, Cu, Pb, Sb and Zn by N. caliginosus. There were significant positive correlations between Cd, Pb and Sb earthworm concentrations and their soil contents. The lack of correlation for Cu and Zn could be due to the physiological regulation of these elements by earthworms. Statistical analysis pointed out that the uptake and accumulation of Cd, Cu, Pb, Sb and Zn by earthworms were affected by some soil physicochemical properties such as the organic carbon and carbonate contents that are able to rule the bioavailability of metals in soils.  相似文献   

3.
《Applied soil ecology》2010,46(3):144-151
Soil microbial activity plays a crucial role in soil microbiological processes, which can be used as a useful indicator to determine the ecological effects of heavy metal pollution on soils. The objective was to determine the effects of heavy metal pollution on mining soils at the Lawu mine of central Tibet, China on soil enzyme activities (sucrase, urease and acid phosphatase), microbial biomass C, N and P (MBC, MBN, and MBP), basal respiration, metabolic quotients, and N mineralization. Sixteen soil samples around the mine were sampled, and one soil sample, 2 km from the mine center, was taken as the control. Compared to the control, mining soils were polluted by heavy metals, Cu, Zn, Pb and Cd, resulting in decreases of sucrase activities, urease activities, acid phosphatase activities, MBC, MBN, MBP, and N mineralization, and increases of basal respiration and qCO2. Multivariate analysis (cluster analysis [CA], principle component analysis [PCA] and canonical correlation analysis [CCA]) indicated nine microbial variables were only reduced to one principal component explaining 72% of the original variances, and MBC (R2 = 0.93) had the highest positive loadings on the principal component. Mining soils polluted by heavy metals were perfectly clustered into four groups, which were highly distinguished by MBC. There were significant canonical correlations between soil heavy metals and microbial indexes on two canonical variates (R1 = 0.99, p < 0.001; R2 = 0.97, p < 0.01), which further demonstrated significant correlations between soil heavy metal contents and microbial characteristics. Hence, our results suggested that MBC may be used a sensitive indicator for assessing changes in soil environmental quality in metal mine of central Tibet.  相似文献   

4.
In order to study the variations in spore abundance and root colonization parameters of arbuscular mycorrhizal (AM) fungi in a naturally heavy metals polluted site and their relationships with soil properties, 35 plots in the Anguran Zn and Pb mining region were selected along a transect from the mine to 4500 m away. Within each plot, a composite sample of root and rhizospheric soil from a dominant indigenous plant was collected. The soil samples were analyzed for their physico-chemical characteristics. Spores were extracted, counted and identified at genus level. The roots were examined for colonization, arbuscular abundance, mycorrhizal frequency and intensity. Along the transect, the total and available (DTPA-extractable) concentration of Zn decreased from 6472 to 45 mg kg−1 and 75 to 5 mg kg−1, respectively. For Pb the values varied from 5203 to 0 mg kg−1 and 32 to 0 mg kg−1, respectively. In parallel, root colonization rate in the dominant native plants (except Alyssum sp.) varied from 35% to 85% and the spore numbers from 80 to 1306 per 200 g dry soil along the transect. Spores of Glomus were abundantly found in all plots as dominant, while Acaulospora spores were observed only in some moderately polluted and in control plots. AM fungal propagules never disappeared completely even in soils with the highest rates of both heavy metals. Spore numbers were more affected by Zn and Pb concentrations than root colonization. The variations of AM fungi propagules were better related to available than to total concentration of both metals. Spore numbers were positively correlated with mycorrhizal colonization parameters, particularly with arbuscular abundance.  相似文献   

5.
《Applied soil ecology》2006,31(1-2):11-19
A study was conducted to establish whether the diversity of nematode-trapping fungi in Pb-polluted soils increases or decreases with increasing degree of soil contamination, and whether the fungi from polluted soils exhibit higher tolerance to Pb toxicity than those from unpolluted soils. Five genera containing 28 nematode-trapping fungi were recorded in total from five collection sites highly contaminated by Pb, with the concentration ranging from 306 to 4907 mg kg−1. These fungi fell into seven groups according to their trapping mechanisms. In this area, the most frequent group was the net former of which 16 species were recorded and its occurrence frequency (61.15%) was higher than those of the others. Fungal diversity of NTF was slightly positively correlated with the Pb pollution levels (r = 0.29), which suggested the distribution of nematode-trapping fungi was not restricted by the heavy metal at these sites. The mycelial growth of nematode-trapping fungi which derived from either Pb-polluted soils or from unpolluted soils was completely inhibited by 1.8 mmol of Pb. At the Pb concentration of 1.2 mmol, the inhibition growth rates varied between 18.50 and 22.57% and there was no significant difference in the Pb tolerance of nematode-trapping fungi as to whether the strains derived from Pb pollution soils or unpolluted soils.  相似文献   

6.
M. Jalali  Z.V. Khanlari 《Geoderma》2008,143(1-2):26-40
This study was conducted to investigate the effect of time on lead (Pb), zinc (Zn), cadmium (Cd) and copper (Cu) availability in some calcareous soils of Iran. Heavy metals were added to soils at the rate of 500 mg kg? 1 of Pb, Zn, and Cu and 8 mg kg? 1 of Cd as chloride. The samples were incubated for 3 h, 1, 3, 7, 14, 21, and 28 days at 25 °C and constant moisture. After incubation, metals in amended and control soils were fractionated by the sequential extraction procedure. There were changes in the proportional distribution of heavy metals in all five studied soils during 28 days of incubation with spiked heavy metals. In general the proportions of heavy metals associated with the most weakly bound fraction (EXCH) tended to decrease, with corresponding increases in the other five more strongly binding fractions during the incubation. The distribution of added heavy metals into different solid phase fractions appears to be consisted of two phases involving the initial rapid retention followed by a slow continuous retention. Three kinetic equations were used to fit the experimental data. The parabolic equation fits well the data used in this work. The transformation rate of EXCH fraction for soils was estimated by parabolic equation for above incubation periods. There were differences in the rates at which redistribution took place between soils and heavy metals. The constant b in parabolic equation was defined as the transformation rate, which were in the order Cu > Zn  Pb ? Cd. The higher proportions of EXCH fraction of spiked Cd in these calcareous soils indicates its higher potential of downward leaching and runoff transport especially at the early stage of pollution.  相似文献   

7.
Metal(loid) accumulation and arbuscular mycorrhizal (AM) status of the dominant plant species, Cynodon dactylon, growing at four multi-metal(loid)s-contaminated sites and an uncontaminated site of China were investigated. Up to 94.7 As mg kg?1, 417 Pb mg kg?1, 498 Zn mg kg?1, 5.8 Cd mg kg?1 and 27.7 Cu mg kg?1 in shoots of C. dactylon were recorded. The plant was colonized consistently by AM fungi (33.0–65.5%) at both uncontaminated site and metal-contaminated sites. Based on morphological characteristics, fourteen species of AM fungi were identified in the rhizosphere of C. dactylon, with one belonging to the genus of Acaulospora and the other thirteen belonging to the genus of Glomus. Glomus etunicatum was the most common species associated with C. dactylon growing at metal-contaminated sites. Spore abundance in the rhizosphere of C. dactylon growing at the metal-contaminated soils (22–82 spores per 25 g soil) was significantly lower than that of the uncontaminated soils (371 spores per 25 g soil). However, AM fungal species diversity in the metal-contaminated soils was significantly higher than that in the uncontaminated soils. This is the first report of AM status in the rhizosphere of C. dactylon, the dominant plant survival in metal-contaminated soils. The investigation also suggests that phytorestoration of metal-contaminated sites might be facilitated using the appropriate plant with the aid of tolerant AM fungi.  相似文献   

8.
《Applied soil ecology》2007,35(1):163-173
Two pot experiments were conducted to investigate the effect of inoculation with the arbuscular mycorrhizal (AM) fungus Glomus intraradices on Pb uptake by two clones of Nicotiana tabacum plants. Non-transgenic tobacco plants, variety Wisconsin 38, were compared in terms of Pb uptake with transgenic plants of the same variety with inserted gene coding for polyhistidine anchor in fusion with yeast metallothionein. Bioavailability of Pb in experimentally contaminated soil was enhanced by the application of a biodegradable chelate ethylenediaminedissuccinate (EDDS).EDDS addition (2.5 and 5.0 mmol kg−1 substrate) increased Pb uptake from the substrate and enhanced Pb translocation from the roots to the shoots, with shoot Pb concentrations reaching up to 800 mg kg−1 at the higher chelate dose. Application of a single dose of 5 mmol kg−1 proved to be more efficient at increasing shoot Pb concentrations than two successive doses of 2.5 mmol kg−1, in spite of a marked negative effect on plant growth and phytotoxicity symptoms. Pb amendment (1.4 g kg−1 substrate) connected with either dose of EDDS decreased significantly plant biomass as well as reduced the development of AM fungi. AM inoculation promoted the growth of tobacco plants and partly alleviated the negative effect of Pb contamination, mainly in the case of root biomass.No consistent difference in Pb uptake was found between transgenic and non-transgenic tobacco plants. The effect of AM inoculation on Pb concentrations in plant biomass varied between experiments, with no effect observed in the first experiment and significantly higher root Pb concentrations and increased root–shoot ratio of Pb concentrations in the biomass of inoculated plants in the second experiment. Due to probable retention of Pb in fungal mycelium, the potential of AM for phytoremediation resides rather in Pb stabilisation than in phytoextraction.  相似文献   

9.
Soil samples taken from a sewage irrigation area, a partial sewage irrigation area and a ground water irrigation area (control area) were studied with the methods of Biolog and FAME. It was found that the microbial utilization of carbon sources in sewage irrigation areas was much higher than that of control area (P < 0.05). With the increasing of the amount of sewage irrigation, microbial functional diversity slightly increased by the Biolog analysis; however, the amount of epiphyte decreased by the FAME analysis. The results also showed that the Cr, Zn contents were positively correlated with the values of AWCD and the microbial diversity, while Hg content showed negative correlation with the microbial parameters (AWCD of 72 h and Shannon index). Our studies suggested that sewage irrigation resulted in an obvious increase of heavy metals content in soil (P < 0.05), although the maximum heavy metals concentrations were much lower than the current standard of China. Other soil basic characteristics such as cation exchange capacity (CEC), total nitrogen (Nt) and organic matter in sewage irrigation areas obviously increased (P < 0.05). Therefore, it is demonstrated that long-term sewage irrigation had influenced soil microorganisms and soil quality in the studied soils. As a result, it is important to monitor the changes in agricultural soils. Furthermore, our results also confirmed that the methods of Biolog and FAME are effective tools for the assessment of soil microbial structure/function and soil health.  相似文献   

10.
Building soil structure in agroecosystems is important because it governs soil functions such as air and water movement, soil C stabilization, nutrient availability, and root system development. This study examined, under laboratory conditions, effects of organic amendments comprised of differing proportions of labile and semi-labile C on microbial community structure and macroaggregate formation in three variously textured soils where native structure was destroyed. Three amendment treatments were imposed (in order of increasing C lability): vegetable compost, dairy manure, hairy vetch (Vicia villosa Roth). Formation of water stable macroaggregates and changes in microbial community structure were evaluated over 82 days. Regardless of soil type, formation of large macroaggregates (LMA, >2000 μm diameter) was highest in soils amended with vetch, followed by manure, non-amended control, and compost. Vetch and manure had greater microbially available C and caused an increase in fungal biomarkers in all soils. Regression analysis indicated that LMA formation was most strongly related to the relative abundance of the fungal fatty acid methyl ester (FAME) 18:2ω6c (r = 0.55, p < 0.001), fungal ergosterol (r = 0.58, p < 0.001), and microbial biomass (r = 0.57, p < 0.001). Non-metric multidimensional scaling (NMS) ordination of FAME profiles revealed that vetch and manure drove shifts toward fungal-dominated soil microbial communities and greater LMA formation in these soils. This study demonstrated that, due to their greater amounts of microbially available C, vetch or manure inputs can be used to promote fungal proliferation in order to maintain or improve soil structure.  相似文献   

11.
The ultimate goal of soil remediation is to restore soil health. Soil microbial parameters are considered to be effective indicators of soil health. The aim of this study was to determine the effects of phytoextraction on microbial properties through the measurement of soil microbial biomass carbon, soil basal respiration and enzyme activities. For this purpose, a pre-stratified rhizobox experiment was conducted with the Cd hyperaccumulator Sedum alfredii H. for phytoextraction Cd from an artificial contaminated soil (15.81 mg kg−1) under greenhouse conditions. The plant and soil samples were collected after growing the plant for three and six months with three replications. The results indicated that the ecotype of S. alfredii H. originating from an ancient silver mining site was a Cd-hyperaccumulator as it showed high tolerance to Cd stress, the shoot Cd concentration were as high as 922.6 mg kg−1 and 581.9 mg kg−1 at the two samplings, and it also showed high BF (58.4 and 36.8 after 3 and 6 months growth), and TF (5.8 and 5.1 after 3 and 6 months growth). The amounts of Cd accumulated in the shoots of S. alfredii reached to an average of 1206 μg plant−1 after 6 months growth. Basal respiration, invertase and acid phosphatase activities of the rhizosphere soil separated by the shaking method were significantly higher (P < 0.01) than that of the near-rhizosphere soil and the unplanted soil after 3 months growth, so were microbial biomass carbon, urease, invertase and acid phosphatase activities of the rhizosphere soil after 6 months growth. Acid phosphatase activity of the 0–2 mm sub-layer rhizosphere soil collected by the pre-stratified method after 3 months growth was significantly higher (P < 0.05) than that of other sub-layer rhizosphere soils and bulk soil, and so were microbial biomass carbon, basal respiration, urease, invertase and acid phosphatase activities of the 0–2 mm sub-layer rhizosphere soil after 6 months growth. It was concluded that phytoextraction by S. alfredii could improve soil microbial properties, especially in rhizosphere, and this plant poses a great potential for the remediation of Cd contaminated soil.  相似文献   

12.
《Applied soil ecology》2006,31(1-2):159-168
Survival of conidia of eight species of Bipolaris, Curvularia, and Exserohilum in soil was compared to identify the species most suitable for use in experiments to assay fungitoxicity of soils amended with animal wastes and agricultural byproducts. Conidia produced on cellulose-containing substrates were added to soil between porous nylon mesh membranes, incubated for 0–12 weeks, retrieved, and plated on cornmeal agar to induce germination as an indicator of viability. In three experiments, significant variation in spore germination was attributed to fungal species, incubation time in soil, and species × time interactions. Few or no differences in viability of conidia of the eight species were evident prior to incubation in soil, but numerous significant differences (P = 0.05) were observed between species after incubation for 2–12 weeks in soil. Survival of conidia usually was greatest for C. lunata, B. sorokiniana, and B. stenospila; least for B. cynodontis, B. hawaiiensis, and E. rostratum; and intermediate or inconsistent for B. spicifera and C. geniculata. C. lunata, B. sorokiniana, and B. stenospila appear most capable of survival in soil as conidia and most suitable for use as test organisms to evaluate fungitoxicity of amended soils. When conidia of these species were incubated for 4–8 weeks in three soils with and without previous commercial swine waste applications, survival was often significantly (P = 0.05) reduced across soils or in individual soils that had received swine waste. The most frequent and strong reductions in survival of conidia in waste-amended soils were observed with B. stenospila. Results indicate that the eight species of fungi studied differ significantly in ability of conidia to survive in soil, that three species exhibit the greatest potential for survival, that these species may be used to bioassay soils for fungitoxicity, and that conidia of these species exhibit slight to strong reductions in survival in soils that previously received commercial applications of liquid swine waste.  相似文献   

13.
《Applied soil ecology》2007,35(2):404-411
The invertebrate springtail species Paronychiurus kimi (Lee) was selected for use in toxicity testing because it is more ecologically relevant to Korean soils than Folsomia candida Willem, which is the standard animal for toxicity tests. Responses of P. kimi to cadmium, mercury and lead were evaluated in artificial soils following the standardized ISO protocol. Although, reproduction of P. kimi was not as high as that of F. candida, 30 adults produced at least 200 juveniles over 28 days. For each of the three heavy metals, LC50 and EC50 for reproduction and NOEC and LOEC for the effect on reproduction and instantaneous rate of population increase (ri) were also estimated. The 7 days LC50 was 532, 3.9 and 1322 mg/kg dry soil for cadmium, mercury and lead, respectively. As exposure time increased from 7 to 28 days, the LC50 values decreased for cadmium but not or only slightly for mercury and lead. The 28 days EC50 was 60.0 for cadmium, 0.23 for mercury and 428 mg/kg for lead. Significant changes in ri of P. kimi were closely followed by the changes in the sublethal endpoint measured (reproduction) and populations were heading toward extinction (ri = 0) at concentration of 129, 2.0 and 1312 mg/kg dry soil for cadmium, mercury and lead, respectively. P. kimi was found to be more sensitive to all heavy metals tested than F. candida, confirming its suitability as a bioindicator species for soil toxicological testing in Korea.  相似文献   

14.
Arbuscular mycorrhizal fungus (AMF) can enhance plant growth and resistance to toxicity produced by heavy metals (HMs), affect the bioavailability of HMs in soil and the uptake of HMs by plants, and thus has been emerged as the most prominent symbiotic fungus for contribution to phytoremediation. A greenhouse pot experiment was conducted to assess the effect of Glomus versiforme BGC GD01C (Gv) on the growth and Cd accumulation of Cd-hyperaccumulator Solanum nigrum in different Cd-added soils (0, 25, 50, 100 mg Cd kg−1 soil). Mycorrhizal colonization rates were generally high (from 71% to 82%) in Gv-inoculated treatments at all Cd levels. Gv colonization enhanced soil acid phosphatase activity, and hence elevated P acquisition and growth of S. nigrum at all Cd levels. Moreover, the presence of Gv significantly increased DTPA-extractable (phytoavailable) Cd concentrations in 25 and 50 mg Cd kg−1 soils, but did not affect phytoavailable Cd in 100 mg Cd kg−1 soil. Similarly, inoculation with Gv significantly increased Cd concentrations of S. nigrum in 25 and 50 mg Cd kg−1 soils, but decreased Cd concentrations of the plants in 100 mg Cd kg−1 soil. Overall, inoculation with Gv greatly improved the total Cd uptakes in all plant tissues at all Cd levels. The present results indicated that S. nigrum associated with Gv effectively improved the Cd uptake by plant and would be a new strategy in microbe-assisted phytoremediation for Cd-contaminated soils.  相似文献   

15.
《Soil biology & biochemistry》2012,44(12):2359-2367
As, Cd, Cu, Pb, Sb and Zn concentrations were determined in two earthworm species (Allolobophora rosea and Nicodrilus caliginosus) from a mining and industrial area in northern Kosovo and compared with their contents in the bulk soil and the main soil fractions. Earthworm specimens were collected at fifteen sites located at different distances from a Pb–Zn smelter along a gradient of decreasing contamination. Individuals of A. rosea and N. caliginosus showed similar tissue levels of As, Cd, Cu, Pb, Sb and Zn, suggesting that earthworm species belonging to the same eco-physiological group have a similar propensity to uptake and bioaccumulate heavy elements. Cd, Pb, Sb and Zn concentrations in both earthworm species were positively correlated with the respective total soil contents and generally decreased with distance from the smelter. The bioaccumulation factor (BAF) revealed that Cd and Zn were the only elements bioaccumulated by earthworms. The rank order of BAF values for both species was as follows: Cd > > Zn > > Cu > As = Pb = Sb. The absorption of Cd, Pb, Sb and Zn by earthworms mostly depended on the extractable, reducible and oxidable soil fractions, suggesting that the intestine is likely the most important uptake route. The extractable soil fraction constantly influenced the uptake of these heavy elements, whereas the reducible fraction was important mainly for Pb and Zn. The water soluble fraction had an important role especially for the most mobile heavy elements such as Cd and Zn, suggesting that dermal uptake is not negligible. As a whole, the analytical data indicate that soil fractionation patterns influence the uptake of heavy elements by earthworms, and the extractable fraction is a good predictor of heavy element bioavailability to these invertebrates in soil.  相似文献   

16.
The bioremediation effects of three biostimulants (BS): WCDS, wheat condensed distillers soluble; PAHE, hydrolyzed poultry feathers; and RB, rice bran extract in a soil polluted with two rates of benzo(a)pyrene (BaP) (50 or 100 mg kg−1 soil, respectively) over 90 days were studied. Their effects on the soil biochemical properties (ATP and urease and phosphatase activities) and ergosterol were determined. Also, extractable BaP in soils was determined during the incubation period. An non-polluted and non-organic-amended soil was used as control. The results indicated that at the end of the incubation period and compared with the control soil, the ATP, ergosterol, urease and phosphatase activities decreased 29.4%, 24.8%, 44.7% and 42.9%, respectively in the non-organic amended soil polluted with polluted 100 mg BaP kg−1 soil. The application of biostimulants to unpolluted soil increased the biochemical parameters. However, this stimulation was higher in the soil amended with PAHE, followed by RB and WCDS. The application of BaP in organic-amended soils decreased the biochemical properties. However, this decrease was lower than for the non-amended BaP polluted soil. Possibly the low molecular weight protein content easily assimilated by soil microorganisms is responsible for less inhibition of these soil biochemical parameters.  相似文献   

17.
Impacts of management and land use on soil bacterial diversity have not been well documented. Here we present the application of the bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP) diversity method, which will promote studies in soil microbiomes. Using this modified FLX pyrosequencing approach we evaluated bacterial diversity of a soil (Pullman soil; fine, mixed, thermic Torrertic Paleustolls) with 38% clay and 34% sand (0–5 cm) under four systems. Two non-disturbed grass systems were evaluated including a pasture monoculture (Bothriochloa bladhii (Retz) S.T. Blake) [P] and a diverse mixture of grasses in the Conservation Reserve Program (CRP). Two agricultural systems were evaluated including a cotton (Gossypium hirsutum L.) -winter wheat (Triticum aestivum L.)-corn (Zea mays L.) rotation [Ct–W–Cr] and the typical practice of the region, which is continuous monoculture cotton (Ct–Ct). Differences due to land use and management were observed in soil microbial biomass C (CRP > P = Ct–W–Cr > Ct–Ct). Using three estimators of diversity, the maximum number of unique sequences operational taxonomic units (OTU; roughly corresponding to the species level) never exceeded 4500 in these soils at the 3% dissimilarity level. The following trend was found using the most common estimators of bacterial diversity: Ct–W–Cr > P = CRP > Ct–Ct. Predominant phyla in this soil were Actinobacteria, Bacteriodetes and Fermicutes. Bacteriodetes were more predominant in soil under agricultural systems (Ct–W–Cr and Ct–Ct) compared to the same soil under non-disturbed grass systems (P and CRP). The opposite trend was found for the Actinobacteria, which were more predominant under non-disturbed grass systems (P and CRP). Higher G? bacteria and lower G+ bacteria were found under Ct–W–Cr rotation and highest abundance of actinomycetes under CRP. The bTEFAP technique proved to be a powerful method to characterize the bacterial diversity of the soil studied under different management and land use in terms not only on the presence or absence, but also in terms of distribution.  相似文献   

18.
《Geoderma》2007,137(3-4):432-443
The extractability and solid-phase fractionation of manganese (Mn) and zinc (Zn) in acid-to-neutral agricultural soils from Central Spain was evaluated by sampling and analysing twenty-nine representative soils and by greenhouse cropping eleven of them with spring barley (Hordeum vulgare, L.). All soil samples were extracted with three chemical extractants commonly used for soil fertility evaluation (0.43 M HOAc, DTPA and Mehlich-3). The soil samples were also operationally determined in six steps with the following extractants: 1 M Mg(NO3)2 extractable (WSEX, water soluble plus exchangeable), 0.7 M NaOCl extractable (OC, organically complexed), 0.1 M NH2OH·HCl extractable (MnOX, Mn-oxide), 0.2 M (NH4)2C2O4 + 0.2 M H2C2O4 extractable (AFeOX, amorphous Fe-oxide), 0.2 M (NH4)2C2O4 + 0.2 M H2C2O4 + 0.1 M ascorbic acid extractable (CFeOX, crystalline Fe-oxide), and HCl, HNO3, and HF in mixture (RES, residual). Soil-extractable amounts for the three single extractants were highly correlated with each other for both metals. Distributions among metal fractions showed that Mn was mainly found in the MnOX fraction (30.9%, ranging from 13.0 to 51.2%), whereas Zn was predominantly found in the RES fraction (44.3%, ranging from 26.4 to 56.8%). The proportion of Mn fractions extracted from the soils was in the order as follows: CFeOX  WSEX = OC  AFeOX = RES < MnOX, whereas Zn was in the order: WSEX  OC  AFeOX < MnOX < CFeOX < RES. The soil properties that correlated best with the distribution of Mn and Zn forms in these soils were soil organic matter and pH. The “availability factor” values [AF = (WSEX + OC) 100 / total metal], were higher for Mn than for Zn in these soils. Plant metal concentrations (Y) and soil-extractable and sequential extracted fractions showed few significant correlations. However, it was possible to significantly predict the phytoavailability of Mn and Zn for barley using a series of empirical equations involving extractable metals, solid-phase fractions and soil properties as components. The R2 values of the best-fit regression models ranging from 0.50 [Y-Zn = 19.3 + 6.32 (WSEX + OC)-Zn] to 0.92 [Y-Zn = 57.3 + 0.23 P  8.56 pH + 20.6 DTPA-Zn].  相似文献   

19.
South-eastern Spain, and in particular the coastal areas of Granada and Malaga, feature a large area under subtropical crops, with orchards established on terraces built along the slopes of the mountainous areas. The climate, characterized by periodically heavy rainfall, variable in space and time, and with the common agricultural practice of leaving the taluses with bare soil, are the main factors encouraging soil erosion, runoff, and subsequent transport of pollutants. Over a two-year period, six plant covers were applied [(Thymus mastichina (Th), Lavandula dentata (La), native spontaneous vegetation (Sv), Anthyllis cytisoides (An), Satureja obovata (Sa), Rosmarinus officinalis (Ro)] in comparison to a control of bare soil (Bs) to determine the effectiveness of the covers in reducing soil erosion, runoff, and potential pollution risk by agricultural nutrients (N, P, and K) and heavy metals. Also, carbon losses were monitored in the transported sediments by runoff and in eroded soils. For this purpose, 16 m2 erosion plots (4 m × 4 m) were laid out in the taluses of the terraces. When the yearly data were compared, the control plot (Bs) showed significantly higher soil erosion and runoff rates (26.4 t ha? 1 yr? 1 and 55.7 mm yr? 1, respectively) than the treatments with plant covers. The plant covers studied registered the following results in runoff: Ro > Sa > An > Th  La > Sv (41.7, 38.2, 35.5, 16.9, 16.1, and 12.4 mm yr? 1, respectively) while annual soil erosion gave the following results: Sa > An > Ro > Th > Sv > La (18.0, 13.5, 13.4, 5.5, 4.4, and 3.2 Mg ha? 1 yr? 1, respectively). This means that Sv reduced runoff and soil-erosion rates compared to Bs by not less than 78 and 83%, respectively. Nevertheless, La and Th plots were also very effective plant covers in reducing runoff and soil erosion (71.2 and 87.8; 69.5 and 79.2%, respectively) in comparison with the Bs plot. The heaviest nutrient losses in runoff and eroded soils were found in Bs and the lowest in the La, Th, and Sv plots. Bs and Ro plots registered the highest carbon losses (829.9 and 652.1 kg ha? 1, respectively), the lowest carbon-loss rates being measured in La, Sv, and Th plots (145.2, 140.3, and 109.3 kg ha? 1, respectively). The results indicate that heavy metals (Mn, Cr, Co, Ni, Cu, Zn, Mo, Cd, and Pb) in these types of agroecosystems may also be a potential pollutant due to transport by agricultural runoff. There was a major reduction of heavy-metal transport by plant covers in relation to the control of bare soil. The results of this research support the recommendation of using plant covers with multiple purposes (aromatic–medicinal–culinary) on the taluses of subtropical-crop terraces in order to reduce erosion and pollution risk.  相似文献   

20.
《Soil & Tillage Research》2007,92(1-2):186-198
The influence of two organic wastes, cotton gin crushed compost (CC) and beet vinasse (BV) applied for 5 years on a Typic Xerofluvent under dryland conditions near to Sevilla city (Guadalquivir River Valley, Andalusia, Spain) on soil erodibility (K factor of the USLE and RUSLE) and soil loss was studied. CC and BV were applied at rates of 1780, 5340, and 10,680 kg ha−1 (expressed as organic matter content). When CC was applied to the soil, erodibility factor (K) is correlated with soil loss, highlighting a decrease in K and soil loss when increased the dose of CC applied to the soil. In this respect, K decreased 17% in CC-amended soils respect to control soil at the end of the experiment, and soil loss decreased 36% in CC-amended soils respect to control soil at the end of the experiment and for 45 min and 60 mm h−1. However, when BV was applied, soil physical and biological properties decreased. K decreased 6.4% in BV-amended soils respect to control soil at the end of the experiment, and soil loss increased 59.7% in BV-amended soils respect to control soil at the end of the experimental period and for 45 min and 60 mm h−1. We think that this is because the higher level of Na+ (and possibly of fulvic acids) in BV increased the exchangeable sodium percentage (ESP) and reduced structural stability of BV-amended soil, leading to higher soil loss. This explains the relatively higher soil loss in BV-amended soils. These results contradict many previous reports in which soil organic matter prevented soil loss. For this reason, the equation of soil erodibility (K factor of USLE and RUSLE) must have in consideration other aspects such as the chemical composition of the soil organic matter as well as the soil structural stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号