首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recently, large areas of tropical peatland have been converted into agricultural fields. To be used for agricultural activities, peat soils need to be drained, limed and fertilized due to excess water, low nutrient content and high acidity. Water depth and amelioration have significant effects on greenhouse gas (GHG) production. Twenty-seven soil samples were collected from Jabiren, Central Kalimantan, Indonesia, in 2014 to examine the effect of water depth and amelioration on GHG emissions. Soil columns were formed in the peatland using polyvinyl chloride (PVC) pipe with a diameter of 21 cm and a length of 100 cm. The PVC pipe was inserted vertically into the soil to a depth of 100 cm and carefully pulled up with the soil inside after sealing the bottom. The treatments consisting of three static water depths (15, 35 and 55 cm from the soil surface) and three ameliorants (without ameliorant/control, biochar+compost and steel slag+compost) were arranged using a randomized block design with two factors and three replications. Fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from the soil columns were measured weekly. There was a linear relationship between water depth and CO2 emissions. No significant difference was observed in the CH4 emissions in response to water depth and amelioration. The ameliorations influenced the CO2 and N2O emissions from the peat soil. The application of biochar+compost enhanced the CO2 and N2O emissions but reduced the CH4 emission. Moreover, the application of steel slag+compost increased the emissions of all three gases. The highest CO2 and N2O emissions occurred in response to the biochar+compost treatment followed by the steel slag-compost treatment and without ameliorant. Soil pH, redox potential (Eh) and temperature influenced the CO2, CH4 and N2O fluxes. Experiments for monitoring water depth and amelioration should be developed using peat soil as well as peat soil–crop systems.  相似文献   

2.
农业土壤中的氧化亚氮排放: 为减排综述时空变化   总被引:3,自引:0,他引:3  
This short review deals with soils as an important source of the greenhouse gas N2O. The production and consumption of N2O in soils mainly involve biotic processes: the anaerobic process of denitrification and the aerobic process of nitrification. The factors that significantly influence agricultural N2O emissions mainly concern the agricultural practices (N application rate, crop type, fertilizer type) and soil conditions (soil moisture, soil organic C content, soil pH and texture). Large variability of N2O fluxes is known to occur both at different spatial and temporal scales. Currently new techniques could help to improve the capture of the spatial variability. Continuous measurement systems with automatic chambers could also help to capture temporal variability and consequently to improve quantification of N2O emissions by soils. Some attempts for mitigating soil N2O emissions, either by modifying agricultural practices or by managing soil microbial functioning taking into account the origin of the soil N2O emission variability, are reviewed.  相似文献   

3.
The aim of this study was to assess the consequences of feasible land‐use change in Great Britain on GHG emissions mainly through the gain or loss of soil organic carbon. We use estimates of per‐area changes in soil organic carbon (SOC) stocks and in greenhouse gas (GHG) emissions, coupled with Great Britain (GB) county‐level scenarios of land‐use change based on historical land‐use patterns or feasible futures to estimate the impact of potential land‐use change between agricultural land‐uses. We consider transitions between cropland, temporary grassland (<5 yr under grass), permanent grass (>5 yr under grass) and forest. We show that reversion to historical land‐use patterns as present in 1930 could result in GHG emission reductions of up to ca. 11 Mt CO2‐eq./yr (relative to a 2004 baseline), because of an increased permanent grassland area. By contrast, cultivation of 20% of the current (2004) permanent grassland area for crop production could result in GHG emission increases of up to ca. 14 Mt CO2‐eq./yr. We conclude that whilst change between agricultural land‐uses (transitions between permanent and temporary grassland and cropland) in GB is likely to be a limited option for GHG mitigation, external factors such as agricultural product commodity markets could influence future land‐use. Such agricultural land‐use change in GB could have significant impacts on Land‐use, Land‐Use Change and Forestry (LULUCF) emissions, with relatively small changes in land‐use (e.g. 5% plough out of grassland to cropland, or reversion of cropland to the grassland cover in Nitrate Vulnerable Zones of 1998) having an impact on GHG emissions of a similar order of magnitude as the current United Kingdom LULUCF sink. In terms of total UK GHG emissions, however, even the most extreme feasible land‐use change scenarios account for ca. 2% of current national GHG emissions.  相似文献   

4.
As global warming intensifies, the soil environment in middle to high latitudes will undergo more extensive and frequent freeze–thaw cycles (FTCs), which will significantly affect the carbon and nitrogen cycles of soil ecosystems and aggravate greenhouse gas (GHG) emissions. Biochar can increase soil organic carbon storage and mitigate climate change. To effectively control GHG emissions, soil supplemented with biochar at different application rates (0%, 2%, 4% and 6% [w/w]) under different numbers of FTCs (0, 3, 6, 9, and 12) was selected as the research object. The soil GHG emission characteristics in different experimental treatments and their relationships with soil physical and chemical properties were determined. Our results showed that N2O and CO2 emissions were promoted during FTCs, with values of 3.13–50.37 and 16.22–135.50 μg m−2 h−1, respectively. The order of N2O and CO2 emissions with respect to biochar application rate was as follows: 2% > 0% > 4% > 6%. CH4 emissions were negative during FTCs, varying from −1.62 to −10.59 μg m−2 h−1, and negative CH4 emissions were promoted by biochar. Correlation analysis showed that N2O, CO2 and CH4 emissions were significantly correlated with pH, soil moisture and soil organic matter (SOM), total nitrogen (TN) and NH 4 + –N contents (p < .01). The conceptual path model demonstrated that GHG emissions were significantly influenced by FTCs, moisture, SOM and biochar application rate. Our results indicate that the effects of FTCs on GHG emissions were greater than those of biochar application. Biochar application rates of 4% or 6% should be considered in the future to reduce soil GHG emissions in the black soil region of Northeast China. Our results can help provide a theoretical basis and effective strategy to reduce soil GHG emissions during FTCs in seasonally frozen regions.  相似文献   

5.
There is a lack of understanding as to which soil property is the most important at regulating the temporal variability of soil CO2 emissions on China’s Loess Plateau. The objective of this study was to evaluate the CO2 emissions and their relationships to certain soil properties in a winter wheat (Triticum aestivum L.) field subject to no-till (NT) and conventional tillage (CT) practices. The CO2 emissions were signi?cantly higher in the CT (257.6 mg CO2 m?2 h?1), compared with the NT (143.8 mg CO2 m?2 h?1), treatment. Soil organic matter content and carbon stock were 8% and 14% higher, respectively, in the NT, compared with the CT, treatment. Regression analyses between the CO2 emissions and soil properties, including soil temperature and carbon stock, explained up to 88% and 60% of the temporal variability in CO2 emissions in the NT and CT treatments, respectively. Linear correlations between the soil temperature and CO2 emissions were recorded in both the NT and CT treatments. Soil temperature was the most important factor in terms of understanding the temporal variability in CO2 emissions in wheat fields of the study area.  相似文献   

6.
Applying biochar to soil is an easy way to sequester carbon in soil, while it might reduce greenhouse gas (GHG) emissions and stimulate plant growth. The effect of charcoal application (0, 1.5, 3.0 and 4.5%) on GHG emission was studied in a wastewater sludge-amended arable soil (Typic Fragiudepts) cultivated with wheat (Triticum spp. L.) in a greenhouse. The application of charcoal at ≥1.5% reduced the CO2 emission rate significantly ≥37% compared to unamended soil (135.3 g CO2 ha−1 day−1) in the first two weeks, while the N2O emission rate decreased 44% when 4.5% charcoal was added (0.72 g N2O ha−1 day−1). The cumulative GHG emission over 45 days was 2% lower when 1.5% charcoal, 34% lower when 3.0% charcoal and 39% lower when 4.5% charcoal was applied to the sludge-amended soil cultivated with wheat. Wheat growth was inhibited in the charcoal-amended soil compared to the unamended soil, but not yields after 135 days. It was found that charcoal addition reduced the emissions of N2O and CO2, and the cumulative GHG emissions over 45 days, without altering wheat yield.  相似文献   

7.
Rebecca Phillips  Ofer Beeri   《CATENA》2008,72(3):386-394
Net greenhouse gas (GHG) source strength for agricultural wetland ecosystems in the Prairie Pothole Region (PPR) is currently unknown. In particular, information is lacking to constrain spatial variability associated with GHG emissions (CH4, CO2, and N2O). GHG fluxes typically vary with edaphic, hydrologic, biologic, and climatic factors. In the PPR, characteristic wetland plant communities integrate hydropedologic factors and may explain some variability associated with trace gas fluxes at ecosystem and landscape scales. We addressed this question for replicate wetland basins located in central North Dakota stratified by hydropedologic vegetation zone on Jul 12 and Aug 3, 2003. Data were collected at the soil-atmosphere interface for six plant zones: deep marsh, shallow marsh, wet meadow, low prairie, pasture, and cropland. Controlling for soil moisture and temperature, CH4 fluxes varied significantly with zone (p < 0.05). Highest CH4 emissions were found near the water in the deep marsh (277,800 μg m− 2 d− 1 CH4), which declined with distance from water to − 730 μg m− 2 d− 1 CH4 in the pasture. Carbon dioxide fluxes also varied significantly with zone. Nitrous oxide variability was greater within zones than between zones, with no significant effects of zone, moisture, or temperature. Data were extrapolated for a 205.6 km2 landscape using a previously developed synoptic classification for PPR plant communities. For this landscape, we found croplands contributed the greatest proportion to the net GHG source strength on Jul 12 (45,700 kg d− 1 GHG-C equivalents) while deep marsh zones contributed the greatest proportion on Aug 3 (26,145 kg d− 1 GHG-C equivalents). This was driven by a 30-fold reduction in cropland N2O–N emissions between dates. The overall landscape average for each date, weighted by zone, was 462.4 kg km− 2 d− 1 GHG-C equivalents on Jul 12 and 314.3 kg km− 2 d− 1 GHG-C equivalents on Aug 3. Results suggest GHG fluxes vary with hydropedologic soil zone, particularly for CH4, and provide initial estimates of net GHG emissions for heterogeneous agricultural wetland landscapes.  相似文献   

8.

Purpose  

Land use type is an important factor influencing greenhouse gas emissions from soils, but the mechanisms involved in affecting potential greenhouse gas (GHG) emissions in different land use systems are poorly understood. Since the northern regions of Canada and China are characterized by cool growing seasons, GHG emissions under low temperatures are important for our understanding of how soil temperature affects soil C and N turnover processes and associated greenhouse gas emissions in cool temperate regions. Therefore, we investigated the effects of temperature on the emission of N2O, CO2, and CH4 from typical forest and grassland soils from China and Canada.  相似文献   

9.
The application of nitrogen (N) fertilizers and liming (CaCO3) to improve soil quality and crop productivity are regarded as effective and important agricultural practices. However, they may increase greenhouse gas (GHG) emissions. There is limited information on the GHG emissions of tropical soils, specifically when liming is combined with N fertilization. We therefore conducted a full factorial laboratory incubation experiment to investigate how N fertilizer (0 kg N ha−1, 12.5 kg N ha−1 and 50 kg N ha−1) and liming (target pH = 6.5) affect GHG emissions and soil N availability. We focussed on three common acidic soils (two ferralsols and one vertisol) from Lake Victoria (Kenya). After 8 weeks, the most significant increase in cumulative carbon dioxide (CO2) and nitrous oxide (N2O) fluxes compared with the unfertilized control was found for the two ferralsols in the N + lime treatment, with five to six times higher CO2 fluxes than the control. The δ13C signature of soil-emitted CO2 revealed that for the ferralsols, liming (i.e. the addition of CaCO3) was the dominant source of CO2, followed by urea (N fertilization), whereas no significant effect of liming or of N fertilization on CO2 flux was found for the vertisol. In addition, the N2O fluxes were most significantly increased by the high N + lime treatment in the two ferralsols, with four times and 13 times greater N2O flux than that of the control. No treatment effects on N2O fluxes were observed for the vertisol. Liming in combination with N fertilization significantly increased the final nitrate content by 14.5%–39% compared with N fertilization alone in all treatment combinations and soils. We conclude that consideration should be given to the GHG budgets of agricultural ferralsols since liming is associated with high liming-induced CO2 and N2O emissions. Therefore, nature-based and sustainable sources should be explored as an alternative to liming in order to manage the pH and the associated fertility of acidic tropical soils.  相似文献   

10.
The Argentine Pampa is one of the major global regions for the production of maize (Zea mays L.) and soybean (Glycine max L. [Merr.]), but intense management practices have led to soil degradation and amplified greenhouse‐gas (GHG) emissions. This paper presents preliminary data on the effect of maize‐soybean intercrops compared with maize and soybean sole crops on the short‐term emission rates of CO2 and N2O and its relationship to soil moisture or temperature over two field seasons. Soil organic carbon (SOC) concentrations were significantly greater (p < 0.05) in the maize sole crop and intercrops, whereas soil bulk density was significantly lower in the intercrops. Soil CO2 emission rates were significantly greater in the maize sole crop but did not differ significantly for N2O emissions. Over two field seasons, both trace gases showed a general trend of greater emission rates in the maize sole crop followed by the soybean sole crop and were lowest in the intercrops. Linear regression between soil GHG (CO2 and N2O) emission rates and soil temperature or volumetric soil moisture were not significant except in the 1:2 intercrop where a significant relationship was observed between N2O emissions and soil temperature in the first field season and between N2O and volumetric soil moisture in the second field season. Our results demonstrated that intercropping in the Argentine Pampa may be a more sustainable agroecosystem land‐management practice with respect to GHG emissions.  相似文献   

11.
Abstract

The scenarios for conventional puddling and no-tilling rice (Oryza sativa L.) cultivation were compared in terms of greenhouse gas (GHG) emissions from paddy fields, fuel consumption and manufacturing of invested materials using a life cycle inventory (LCI) based analysis. Only the differences between the scenarios were examined. The no-tilling scenario omitted both tilling and puddling, but included spraying of a non-selective herbicide and used a transplanter equipped with a rotor. Fertilization was a basal single application of controlled release fertilizer in nursery boxes for all scenarios. After transplanting, there were no differences in machine work, invested materials or rice yields between the scenarios. The no-tilling scenario saved on fuel consumption, totaling carbon dioxide (CO2) output of 42 kg ha?1, which was equal to the 6% reported GHG emissions from fuel consumption by operating machines during rice production in Japan. Methane (CH4) and nitrous oxide (N2O) emissions from the paddy fields were also monitored and compared for the scenarios. Methane has a major effect on global warming as part of the GHG emitted from paddy fields. The cumulative CH4 emissions from the no-tilling cultivation were 43% lower than those from conventional puddling cultivation because the plow layer was more oxidative in no-tilling cultivation. The N2O emissions were not significantly different between the cultivation scenarios. There were no significant differences in soil respiration, soil carbon contents or straw yields between the cultivation scenarios. The effect of tillage on CO2 flux in the paddy fields did not seem to be significant in this study. Consequently, the GHG emissions from the no-tilling field counted as CO2 using global warming potentials were 1,741 kg CO2 ha?1 lower than those from the conventional puddling field. In conclusion, no-tilling rice cultivation has the potential to save 1,783 kg CO2 ha?1 calculated using the sum of fuel consumption and GHG emissions from paddy fields. No-tilling rice cultivation is considered to be environmentally friendly agriculture with respect to reducing GHG emissions.  相似文献   

12.
This paper shows how the wavelet transform can be used to analyse the complex spatial covariation of the rate of nitrous oxide (N2O) emissions from the soil with soil properties that are expected to control the evolution of N2O. We use data on N2O emission rates from soil cores collected at 4‐m intervals on a 1024‐m transect across arable land at Silsoe in England. Various soil properties, particularly those expected to influence N2O production in the soil, were also determined on these cores. We used the adapted maximal overlap discrete wavelet transform (AMODWT) coefficients for the N2O emissions and soil variables to compute their wavelet covariances and correlations. These showed that, over the transect as a whole, some soil properties were significantly correlated with N2O emissions at fine spatial scales (soil carbon content), others at intermediate scales (soil water content) and others at coarse spatial scales (soil pH). Ammonium did not appear to be correlated with N2O emissions at any scale, suggesting that nitrification was not a significant source of N2O from these soils in the conditions that pertained at sampling. We used a procedure to detect changes in the wavelet correlations at several spatial scales. This showed that certain soil properties were correlated with N2O emissions only under certain conditions of topography or parent material. This is not unexpected given that N2O is generated by biological processes in the soil, so the rate of emission may be subject to one limiting factor in one environment and a different factor elsewhere. Such changes in the relationship between variables from one part of the landscape to another is not consistent with the geostatistical assumption that our data are realizations of coregionalized random variables.  相似文献   

13.
We investigated the effect of increasing soil temperature and nitrogen on greenhouse gas (GHG) emissions [carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O)] from a desert steppe soil in Inner Mongolia, China. Two temperature levels (heating versus no heating) and two nitrogen (N) fertilizer application levels (0 and 100?kg?N?ha?1?year?1) were examined in a complete randomized design with six replications. The GHG surface fluxes and their concentrations in soil (0 to 50?cm) were collected bi-weekly from June 2006 to November 2007. Carbon dioxide and N2O emissions were not affected by heating or N treatment, but compared with other seasons, CO2 was higher in summer [average of 29.6 versus 8.6?mg carbon (C) m?2?h?1 over all other seasons] and N2O was lower in winter (average of 2.6 versus 4.0?mg?N?m?2?h?1 over all other seasons). Desert steppe soil is a CH4 sink with the highest rate of consumption occurring in summer. Heating decreased CH4 consumption only in the summer. Increasing surface soil temperature by 1.3°C or applying 100?kg?ha?1?year?1 N fertilizer had no effect on the overall GHG emissions. Seasonal variability in GHG emission reflected changes in temperature and soil moisture content. At an average CH4 consumption rate of 31.65?µg?C?m?2?h?1, the 30.73 million ha of desert steppe soil in Inner Mongolia can consume (sequestrate) about 85?×?106?kg CH4-C, an offset equivalent to 711?×?106?kg CO2-C emissions annually. Thus, desert steppe soil should be considered an important CH4 sink and its potential in reducing GHG emission and mitigating climate change warrants further investigation.  相似文献   

14.
Hydromorphic soils should exhibit higher climate change feedback potentials than well aerated soils since soil organic matter (SOM) losses in them are predicted to be much larger than those of well aerated soils. To evaluate a combined feedback relationship between groundwater level (GWL) and total greenhouse gas (GHG) emission, a greenhouse microcosm experiment was performed by exposing three hydromorphic forest soil types that differed in carbon content to three water levels (?40, ?20 and ?5 cm) while plants were excluded. Net GHG fluxes were measured continuously. GHG concentrations plus oxygen were measured in soil air and soil water at different depths. In this study, soil type hardly affected GHG emissions but GWL did. CO2 emissions peaked at GWL of ?40 cm and declined on average to 65 and 33% during GWL at ?20 and ?5 cm, respectively. CH4 emissions showed the opposite pattern having the highest emission rates at GWL of ?5 cm and compared to that on average only ?3 and ?8% during GWL at ?20 and ?40 cm, respectively. The highest mean N2O emissions were detected at the intermediate GWL of ?20 cm, whereas it is reduced on average to 18% for GWL at ?40 cm and at ?5 cm. The highest greenhouse gas emissions (in CO2 equivalents) were calculated for GWL at ?20 cm. During GWL at ?40 cm, CO2 equivalent fluxes were only insignificantly lower. CO2 equivalent fluxes reduced explicitly in mean to 35% with GWL at ?5 cm. The outcome emphasizes that anaerobic SOM decomposition apparently produces a lower warming potential than aerobic SOM decomposition. Undoubtedly, hydromorphic soils have to be considered for climate–carbon feedback scenarios.  相似文献   

15.
Even if it is less polluting than other farm sectors, grape growing management has to adopt measures to mitigate greenhouse gas (GHG) emissions and to preserve the quality of grapevine by-products. In viticulture, by land and crop management, GHG emissions can be reduced through adjusting methods of tillage, fertilizing, harvesting, irrigation, vineyard maintenance, electricity, natural gas, and transport until wine marketing, etc. Besides CO2, nitrous oxide (N2O) and methane (CH4), released from fertilizers and waste/wastewater management are produced in vineyards. As the main GHG in vineyards, N2O can have the same harmful action like large quantities of CO2. Carbon can be found in grape leaves, shoots, and even in fruit pulp, roots, canes, trunk, or soil organic matter. C sequestration in soil by using less tillage and tractor passing is one of the efficient methods to reduce GHG in vineyards, with the inconvenience that many years are needed for detectable changes. In the last decades, among other methods, cover crops have been used as one of the most efficient way to reduce GHG emissions and increase fertility in vineyards. Even if we analyze many references, there are still limited information on practical methods in reducing emissions of greenhouse gases in viticulture. The aim of the paper is to review the main GHG emissions produced in vineyards and the approached methods for their reduction, in order to maintain the quality of grapes and other by-products.  相似文献   

16.
Forests are considered key biomes that could contribute to minimising global warming as they sequester carbon (C) and contribute to mitigate emissions of the potent greenhouse gases (GHG) including nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2). Management practices are prevalent in forestry, particularly in dryland ecosystems, known to be water and nitrogen (N) limited. Irrigation and fertilisation are thus routinely applied to increase the yield of forest products. However, the contribution of forest management practices to current GHG budgets and consequently to soil net global warming potential (GWP) is still largely unaccounted for, particularly in dryland ecosystems. We quantified the long-term effect (six years) of irrigation and fertilisation and the impact of land-use change, from grassland to a Eucalyptus plantation on N2O, CH4 and CO2 emissions and soil net GWP, within a dryland ecosystem. To identify biotic and abiotic drivers of GHG emissions, we explored the relationship of N2O, CH4 and CO2 fluxes with soil abiotic characteristics and abundance of ammonia-oxidizers, N2O-reducing bacteria, methanotrophs and total soil bacteria. Our results show that GHG emissions, particularly N2O and CO2 are constrained by water availability and both N2O and CH4 are constrained by N availability in the soil. We also provide evidence of functional microbial groups being key players in driving GHG emissions. Our findings illustrate that GHG emission budgets can be affected by forest management practices and provide a better mechanistic understanding for future mitigation options.  相似文献   

17.
Carbon dioxide (CO2) concentrations in arable soil profiles are influenced by autotrophic and heterotrophic respiration as well as soil physical properties that regulate gas transport. Although different methods have been used to assess dynamics of soil CO2 concentrations, our understanding of the comparability of results obtained using different methods is limited. We therefore aimed to compare the dynamics in soil CO2 concentrations obtained from an automated system (GMP343 sensors) to those from a manually operated measurement system (i.e., soil gas sampled using stainless steel needles and rods). In a winter wheat field in Denmark, soil CO2 concentrations were measured from 29 November 2011 to 14 June 2012 at upslope and footslope positions of a short catena (25 m). Carbon dioxide was measured at 20- and 40-cm soil depths (i.e., within and below the nominal plow layer) using the two measurement systems. Within the measurement range for the GMP343 sensors (0–20,000 ppm), mean results from the two systems were similar within the plow layer at the upslope (P = 0.060) and footslope (P = 0.139) position, and also below the plow layer at the upslope position (P = 0.795). However, results from the two systems deviated for the soil from the footslope position below the plow layer (P = 0.001). These results were partly attributed to larger variation in soil parameters below than within the nominal plow layer. The data suggested that generally the application of either system may be adequate; however, differences may occur in response to soil spatial variability. A better coverage of spatial variability is more easily addressed using manually operated systems, whereas temporal variability can be covered using the automated system. Depending on the aim of the study, the two systems may be used in combination to enhance both spatial and temporal data coverage.  相似文献   

18.
Soil organic matter (SOM) improves soil physicochemical and biological properties, and the sequestration of carbon in SOM may mitigate climate change. Soil organic carbon (SOC) often decreases in intensive cropping systems. Incorporation of crop residues (CR) may be a sustainable management practice to maintain the SOC levels and to increase soil fertility. This study quantifies the effects of CR incorporation on SOC and greenhouse gas (GHG) emissions (CO2 and N2O) in Europe using data from long‐term experiments. Response ratios (RRs) for SOC and GHG emissions were calculated between CR incorporation and removal. The influence of environmental zones (ENZs), clay content and experiment duration on the RRs was investigated. We also studied how RRs of SOC and crop yields were correlated. A total of 475 RRs were derived from 39 publications. The SOC increased by 7% following CR incorporation. In contrast, in a subsample of cases, CO2 emissions were six times and N2O emissions 12 times higher following CR incorporation. The ENZ had no significant influence on RRs. For SOC concentration, soils with a clay content >35% showed 8% higher RRs compared with soils with clay contents between 18 and 35%. As the experiment progressed, RR for SOC concentration increased. For N2O emissions, RR was significantly greater in experiments with a duration <5 yr compared with 11–20 yr. No significant correlations were found between RR for SOC concentration and yields, but differences between sites and study durations were detected. We suggest that a long duration of crop residue incorporation is a win‐win scenario under a continental climate. We conclude that CR incorporation is important for maintaining SOC, but its influence on GHG emissions should be taken into account as well.  相似文献   

19.
Agricultural soils are important sources of greenhouse gases (GHGs). Soil properties and environmental factors have complex interactions which influence the dynamics of these GHG fluxes. Four arable and five grassland soils which represent the range of soil textures and climatic conditions of the main agricultural areas in the UK were incubated at two different moisture contents (50 or 80% water holding capacity) and with or without inorganic fertiliser application (70 kg N ha−1 ammonium nitrate) over 22 days. Emissions of N2O, CO2 and CH4 were measured twice per week by headspace gas sampling, and cumulative fluxes were calculated. Multiple regression modelling was carried out to determine which factors (soil mineral N, organic carbon and total nitrogen contents, C:N ratios, clay contents and pH) that best explained the variation in GHG fluxes. Clay, mineral N and soil C contents were found to be the most important explanatory variables controlling GHG fluxes in this study. However, none of the measured variables explained a significant amount of variation in CO2 fluxes from the arable soils. The results were generally consistent with previously published work. However, N2O emissions from the two Scottish soils were substantially more sensitive to inorganic N fertiliser application at 80% water holding capacity than the other soils, with the N2O emissions being up to 107 times higher than the other studied soils.  相似文献   

20.
Agriculture significantly contributes to global greenhouse gas (GHG) emissions and there is a need to develop effective mitigation strategies. The efficacy of methods to reduce GHG fluxes from agricultural soils can be affected by a range of interacting management and environmental factors. Uniquely, we used the Taguchi experimental design methodology to rank the relative importance of six factors known to affect the emission of GHG from soil: nitrate (NO3?) addition, carbon quality (labile and non‐labile C), soil temperature, water‐filled pore space (WFPS) and extent of soil compaction. Grassland soil was incubated in jars where selected factors, considered at two or three amounts within the experimental range, were combined in an orthogonal array to determine the importance and interactions between factors with a L16 design, comprising 16 experimental units. Within this L16 design, 216 combinations of the full factorial experimental design were represented. Headspace nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) concentrations were measured and used to calculate fluxes. Results found for the relative influence of factors (WFPS and NO3? addition were the main factors affecting N2O fluxes, whilst glucose, NO3? and soil temperature were the main factors affecting CO2 and CH4 fluxes) were consistent with those already well documented. Interactions between factors were also studied and results showed that factors with little individual influence became more influential in combination. The proposed methodology offers new possibilities for GHG researchers to study interactions between influential factors and address the optimized sets of conditions to reduce GHG emissions in agro‐ecosystems, while reducing the number of experimental units required compared with conventional experimental procedures that adjust one variable at a time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号