首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.

Purpose  

We investigated the chemical fractions of Zn, Cd and Cu in soils collected from positions at different distances from a copper smelter and studied the relationships between distribution patterns of Zn, Cd and Cu, fractions and soil organic carbon (SOC), especially “black carbon” (BC), in contaminated soils. The relationships between soil particle size and concentrations of Zn and Cd in contaminated soil were also examined.  相似文献   

2.

Purpose  

A contaminated soil was amended to reduce bioavailability of metals (As, Cd, Cu, Pb, and Zn) and to modify its potential environmental impacts. Reproduction toxicity tests using two different soil invertebrates, Enchytraeus crypticus and Folsomia candida, were used to evaluate efficiency of soil amendments to reduce metal availability.  相似文献   

3.

Purpose  

Heavy metal lability, probably, is the most important isolated factor to cause toxicity in plants and organisms in soils. Sorption of heavy metals, in turn, affects directly the amount of their labile forms in soils. Therefore, to assess sorption and quantify labile forms of Cd, Cu, Ni, Pb, and Zn, adsorption and incubation studies were carried out.  相似文献   

4.

Purpose  

The transfer of soil sediments and phosphorus from terrestrial to aquatic systems is a common process in agricultural lands. The aims of this paper are to quantify the soil phosphorus availability and to characterize phosphorus forms in soil sediments as contaminant agents of waters as a function of anthropic pressures.  相似文献   

5.

Purpose

The concentration of human activities in urban systems generally leads to urban environmental contamination. Beijing is one of ancient and biggest cities on the world. However, information is limited on Beijing’s soil contamination, especially for roadside and campus soils. Thus, the aims of this study were to investigate the contents and chemical forms of toxic heavy metals Cd, Cr, Cu, Ni, Pb, and Zn in the road-surface dust, roadside soils, and school campus soils of Beijing. In addition, enrichment and spatial variation of these toxic heavy metals in the soils and dust were assessed.

Materials and methods

Topsoil samples were collected from the schools and roadside adjacent to main ring roads, and dust samples were collected from the surface of the main ring roads of Beijing. These samples were analyzed for total contents and chemical forms of Cd, Cr, Cu, Ni, Pb, Sc, Zn, Al, and Fe. Enrichment factors (EFs, relative to the background content) were calculated to evaluate the effect of human activities on the toxic heavy metals in soils.

Results and discussion

Heavy metal contents in the road dust ranged from 0.16 to 0.80, 52.2 to 180.7, 18.4 to 182.8, 11.9 to 47.4, 23.0 to 268.3, and 85.7 to 980.9 mg kg?1 for Cd, Cr, Cu, Ni, Pb, and Zn, respectively. In the roadside soil and school soil, Cd, Cr, Cu, Ni, Pb, and Zn contents ranged from 0.13 to 0.42, 46.1 to 82.4, 22.7 to 71.6, 20.7 to 29.2, 23.2 to 180.7, and 64.5 to 217.3 mg kg?1, respectively. The average EF values of these metals were significantly higher in the dust than in the soils. In addition, the average EF values of Cd, Cu, Pb, and Zn in the soils near second ring road were significantly higher than those near third, fourth, and fifth ring roads. Anthropogenic Cd, Pb, and Zn were mainly bound to the carbonates and soil organic matter, while anthropogenic Cu was mainly bound to oxides. The mobility and bioavailability of these metals in the urban soils of Beijing generally decreased in the following order: Cd?>?Zn?>?Pb?>?Cu?>?Ni?>?Cr; while in the dust, they decreased in the following order: Zn, Cu, and Cd?>?Pb?>?Ni?>?Cr.

Conclusions

Both EF and chemical forms documented that Cr and Ni in the soils and dust mainly originated from native sources, while Cd, Cu, Pb, and Zn partially originated from anthropogenic sources. In overall, Beijing’s road dust was significantly contaminated by Cd and Cu and moderately contaminated by Cr, Pb, and Zn, while Beijing’s roadside soil and school soil were moderately contaminated by Cd and Pb. However, the maximal hazard quotients (HQs) for individual Cd, Cr, Cu, Ni, Pb, and Zn and comprehensive hazard index (HI) of these metals in the dust and soil were less than 1, indicating that the heavy metals in the dust and soil generally do not pose potential health effects to children, sensitive population.  相似文献   

6.

Purpose  

Acidic soils exhibit high trace element availability compared to neutral pH soils, and thus, when trace metals are added (e.g. due to sewage sludge application), measures should be taken to reduce their mobility. In this experiment, we tested two such methods, liming and zeolite addition. The aim was to measure the availability, in ryegrass (Lolium perenne L.), of heavy metals (Cu and Zn) added to soil with sewage sludge in both acidic and limed soil.  相似文献   

7.

Purpose  

Successful phytoremediation depends mainly on the bioavailability of heavy metals in the soil. Recently, soil microbes possess several mechanisms that are able to change metal bioavailability in the soil, which provides a new strategy for investigating biogeochemical cycling of metals in contaminated soils. Three metal mines soils with elevated concentrations of Cd, Pb, and Zn from China were applied in this column study to (1) evaluate the effects of metal tolerant bacterial inoculation (Burkholderia cepacia, accession number: AB051408) on metal release, (2) monitor the migration of metals in the rhizospheric horizon (0–20 cm), and (3) investigate metal speciation and sequential fractions in soil.  相似文献   

8.

Purpose  

Fertilisation may cause an accumulation of phosphorus in soil, which may increase risk of P transfer to waters both in colloidal and dissolved forms. This study evaluated the effect of agronomic management on the potential risk of P losses from soil to water bodies in a long-term experimental platform (NW Italy) subjected for 15 years to different maize-based crops and mineral or organic fertilisation based on nitrogen crop requirements.  相似文献   

9.

Purpose

This study assessed the effect of biosolid application on the bioavailable fraction of some trace elements (Cu, Cr, Ni, and Zn) using a bioassay with sunflower (Helianthus annuus) and a chemical assay, diffusion gradient in thin films (DGT).

Materials and methods

Five surface soil samples (0–20 cm) were collected from an agricultural zone in Central Chile where biosolids are likely to be applied. Municipal biosolids were mixed with the soil at concentrations of 0, 30, 90, and 200 Mg ha?1. The experiment to determine the bioavailability of metals in the soil using the bioassay was performed using sunflower. The DGT technique and Community Bureau of Reference (BCR) sequential extraction were used to determine the bioavailable fractions of the metals.

Results and discussion

The application of biosolids increased the phytoavailability of Zn, Ni, and Cr in most of the soils, as indicated by the increasing concentrations in sunflower plants as the biosolid application rate increased. In two of the soils, Codigua and Pelvín, this increase peaked at an application rate of 90 Mg ha?1. Decreases in the bioavailable fractions of Zn, Ni, and Cr were observed with higher biosolid application rates. The bioavailability of metals was estimated through multiple linear regression models between the metals in the sunflower plants and the different chemical fractions of metals in the soils treated with different biosolid rates, which displayed a positive contribution of the labile (water soluble, carbonate, and exchangeable), oxide, and organic metal forms in the soil, particularly with respect to Ni and Zn at application rates of 30 and 90 Mg ha?1. The bioavailable fraction of metals was determined in soils using the DGT technique. The effective concentration (C E) results were compared with those in sunflower plants. The DGT technique could effectively predict the bioavailable fractions of Cr, Ni, and Zn in the Taqueral soil but only that of Zn in the Polpaico soil.

Conclusions

The application of biosolids significantly increased the labile fraction of most of the metals in the studied soils, particularly at the highest biosolid application rate. C E increased as the concentration of biosolids increased for most of the metals. The effectiveness of the DGT technique for predicting the bioavailability of metals was dependent on the soil type and the metal. However, the C E for soil Cu was not related to plant Cu for all soils studied.  相似文献   

10.

Purpose

The present research aimed to assess the influence of two phosphorous (P) amendments on metal speciation in rhizosphere soil and the soil–plant transfer of metals.

Materials and methods

Complementary experiments were performed: field experiments on a contaminated cultivated soil and laboratory experiments on an uncultivated contaminated soil to highlight the mechanisms involved in metal-phosphorous interactions. In laboratory experiment, P amendments were added at 120 mg P/kg of soluble KH2PO4 amendment and 9,000 mg P/kg of solid Ca5(PO4)3OH amendment.

Results and discussion

Field-culture results showed the possible food-chain contamination due to Pb, Cd, Cu, and Zn phytoaccumulation by pea and mustard plants from a cultivated agricultural soil. Moreover, P-metal complexes were observed by microscopy in the rhizosphere soil. In laboratory experiments, the application of P amendments significantly increased Pb and Zn level in rhizosphere soil compared to control. Phosphate amendments significantly increased metal-P fraction and decreased “oxides” and “organic matter” fractions of Pb and Zn. Soluble-P amendment was more effective than solid P amendment in changing Pb and Zn speciation. The changes in metal speciation are higher in the rhizosphere soil of pea than tomato. Application of P amendments increased Pb and Zn TF root/soil but decreased TF shoot/root.

Conclusions

The effectiveness of in situ metal immobilization technique varies with the type and quantity of applied P amendment as well as plant and metal type.  相似文献   

11.

Background  

Even though extensive work has been done on P interactions with free Al- and Fe-hydroxide minerals, limited or no information exists on sorption/desorption processes of organic and inorganic phosphate forms with soil hydroxy-interlayered minerals.  相似文献   

12.

Background  

Aims. Pollution of sediment and soil by heavy metals is still an environmental problem. In order to assess the actual environmental risk, the mobile and biologically available content of heavy metals needs to be determined rather than the total content. This requires an analytical strategy preserving the actual binding forms of the heavy metals. Sampling and sample preparation are usually carried out in the presence of oxygen. As a consequence, oxidation of the metal and/or its binding partners is possible under these conditions, changing the original binding character. Therefore, sampling and sample preparation must be performed under inert conditions. The influence of atmospheric oxygen on the heavy metal mobility in sediment and soil for Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn is shown for samples of different origin. By means of a case study, an alternative for the extensive inert sampling and sample preparation is given; also, a mobility correction factor for the heavy metals mentioned is determined.  相似文献   

13.

Background, aim, and scope  

Various metals such as cationic metals (Cu, Pb, Zn) and anionic metals (As, Cr) often coexist in real soils, and normal soil washing techniques for the removal of cationic metals with a single-washing reagent make it rather difficult to simultaneously remove all of them. Oxalate could effectively remove anionic As and EDTA could effectively remove the cationic metals, so it was possible to remove all coexisting cationic and anionic metals by washing with the combination of Na2EDTA and oxalate. The objective of this study was to (1) discuss the possibility of removing five metals, As, Cd, Cu, Pb, and Zn, effectively from the soil by washing with Na2EDTA-combined oxalate; (2) optimized through the consecutive washing.  相似文献   

14.

Purpose  

Gardening (especially food growing) in urban areas is becoming popular, but urban soils are often very contaminated for historical reasons. There is lack of sufficient information as to the bioavailability of soil heavy metals to plants and human in urban environments. This study examines the relative leachability of Cr, Ni, As, Cd, Zn, and Pb for soils with varying characteristics. The speciation and mobility of these metals can be qualitatively inferred from the leaching experiments. The goal is to use the data to shed some light on their bioavailability to plant and human, as well as the basis for soil remediation.  相似文献   

15.

Purpose

At the global scale, soil contamination with persistent metals such as lead (Pb), zinc (Zn), and copper (Cu) induces a serious threat of entering the human food chain. In the recent past, different natural and synthetic compounds have been used to immobilize metals in soil environments. However, the mechanisms involved in amendment-induced immobilization of metals in soil remained unclear. The objective of the present work was therefore to determine the mechanisms involved in metal-phosphates formation in the rhizospheric soils of pea and tomato currently cultivated in kitchen gardens.

Materials and methods

Pea and tomato were cultivated on a soil polluted by past industrial activities with Pb and Zn under two kinds of phosphate (P) amendments: (1) solid hydroxyapatite and (2) KH2PO4. The nature and quantities of metal-P formed in the rhizospheric soils were studied by using the selective chemical extractions and employing the combination of X-ray fluorescence micro-spectroscopy, scanning electron microscopy, and electron microprobe methods. Moreover, the influence of soil pH and organic acids excreted by plant roots on metal-P complexes formation was studied.

Results and discussion

Our results demonstrated that P amendments have no effect on metal-P complex formation in the absence of plants. But, in the presence of plants, P amendments cause Pb and Zn immobilization by forming metal-P complexes. Higher amounts of metal-P were formed in the pea rhizosphere compared to the tomato rhizosphere and in the case of soluble P compared to the solid amendment. The increase in soil-metal contact time enhanced metal-P formation.

Conclusions

The different forms of metal-P formed for the different plants under two kinds of P amendments indicate that several mechanisms are involved in metal immobilization. Metal-P complex formation in the contaminated soil depends on the type of P amendment added, duration of soil-plant contact, type of plant species, and excretion of organic acids by the plant roots in the rhizosphere.  相似文献   

16.

Purpose

We aimed to examine the effects of spatial heterogeneity on Zn/Cd removal efficiency by the Zn/Cd hyperaccumulator Sedum alfredii grown on agricultural soil contaminated with mine waste.

Materials and methods

Field-collected metal-contaminated agricultural soils were arranged in pots either homogeneously or heterogeneously in “half” or “quarter” patterns. Young shoots of S. alfredii were grown on these substrates in a greenhouse.

Results and discussion

The efficiency of Zn and Cd removal from soil by S. alfredii was highest in the “quarter” pattern heterogeneous treatment, in which the percentages of total soil Zn and Cd extracted were 8.02 and 7.27, respectively. Comparing the two heterogeneous treatments, the amounts of Zn and Cd accumulated in S. alfredii shoots were significantly greater in the “quarter” pattern heterogeneous treatment than in the “half” pattern treatment.

Conclusions

We concluded that the efficiency of Zn/Cd removal increased as the scale of spatial heterogeneity decreased from “half” to “quarter”. These results may have important implications for the efficiency of phytoremediation by hyperaccumulators in the field.  相似文献   

17.

Purpose

Phytostabilization with native plant species might represent an economically more realistic and cost-effective option than excavation, soil washing, and sludge disposal for rehabilitation of degraded and polluted industrial areas. This work was done to assess the changes induced by native plant revegetation in the chemical properties and mobility-bioavailability of Pb and Zn pollutants of soil and post-washing sludges from an Italian brownfield site of national interest.

Materials and methods

A 5-year native plant revegetation of polluted soil and relative post-washing sludges from a steel plant was achieved in situ and ex situ in pot and in the presence and absence of peat as organic amendment. During the experiment, the vegetation growth was monitored (Adamo et al. In Int J Environ Sci Technol 12(6):1811–1824, 2015). Before and after plant growth, the substrates were studied for pH, organic carbon, and carbonate contents. Lead, Zn, and other metal mobility and leachability were investigated by water extraction. The metal bioavailability was estimated by diethylenetriaminepentaacetic acid (DTPA) extraction at pH 7.3. Sequential extractions (BCR procedure) were used to fractionate Pb and Zn in soil main geochemical forms. Plant ability to uptake metals was evaluated on the three most representative species: Bituminaria bituminosa, Daucus carota, and Dactylis glomerata.

Results and discussion

After 5 years of revegetation with native plants, the substrate pH and organic carbon content were respectively decreased and increased by plant growth, with changes masked by peat treatments. Although metal pollutants in both substrates were characterized by low water solubility and DTPA availability, after plant growth, an increase of rhizospheric Zn, Cu, Fe, and Mn solubility in H2O was detected. According to metal speciation, Pb and Zn were largely occluded in easily reducible manganese/iron oxides and trapped in the mineral structure of silicates, with no visible changes of distribution after plants. Water extraction always underestimated plant uptake, whereas DTPA and sequential extractions better predicted Pb and Zn uptake.

Conclusions

Despite the original extremely low mobility and bioavailability of metal pollutants in both soil and post-washing sludges, the acidification and increase of organic carbon content induced by peat amendments and plant growth enhance the solubility in water of metal-containing compounds. Therefore, attention must be paid to these effects in the long period. A continuous monitoring of the changes of pollutant mobility-bioavailability induced by native plant revegetation of brownfields is crucial to prevent risks to the surrounding environment and human health.
  相似文献   

18.
Background and aimsSince few studies have existed in the literature about the effect of zinc (Zn) on cadmium (Cd) chemical forms in soils. Therefore, this study has been performed to determine the impact of Zn on cadmium Cd chemical forms in two soil textural classes in Fars province-Iran at two soil water content (SWC) (flooded soil water content (FSWC) and field capacity soil water content (FCSWC)) and study the kinetic modeling of Cd.Methods and materialsVariables were three levels of Cd (0, 30 and 60 mg kg-1 of soil as CdSO4·8H2O), three levels of Zn (0, 5 and 10 mg kg-1 of soil as Zn-EDTA) three level Incubation times (2, 4 and eight weeks), two soil textural classes (clay and sandy clay loam) and two SWC. The randomized completed block design (RCBD) was used for this experiment. The Tessier sequential extraction method was used to determine the Cd concentration in (WsEx), (Fe-MnOx), (Car), (Om) and (Res) chemical forms.ResultsIn the FSWC, Zn reduced the Cd concentration in Fe-MnOx, Car and Om forms and increased the WsEx but had no significant effect on the Res form. Changes in the Cd chemical forms under the influence of Zn in both soils followed a similar trend. In the FCSWC, Zn reduced the Cd concentration Car and Om forms and increased the Cd concentration in the Fe-MnOx and WsEx forms while had no significant effect on Res form in the sandy clay loam soil. In the clay soil adding Zn reduced the Cd concentration in Car and Om fractions and increased the Fe-MnOx and Res forms while has no significant effect on WsEx form. The competitive transport and adsorption Interactions between these two ions caused the changing in the Cd concentration in its chemical forms. Zn reduces the Cd concentration in the forms which are easily released into the soil solution from where they can be absorbed by plants. The power function kinetic mode is the best fitted model which can describe the Cd adsorption in our soil samples. The clay and organic compounds control the Cd adsorption in soils. The higher rate of Cd adsorption in almost all shaking times shows that Cd has more ability to occupy the adsorption sites in soils.  相似文献   

19.

Purpose  

Using two fractions of dissolved organic matter (DOM) with different polarity, we carried out the experiments with standard batch equilibration, soil column leaching, and soil thin layer chromatography to investigate the behavior of the herbicide prometryne in soils. The purpose of the study was to: (1) separate DOM into hydrophilic matter and hydrophobic acid forms and characterize their chemical properties; (2) analyze interaction between the DOM fractions and prometryne in soils.  相似文献   

20.

Purpose

The transfer of heavy metals from soil to crops comprises several steps, including soil-to-root and subsequent root-to-shoot tranfer. The purpose of this study was to investigate the different steps of soil-to-crop transfer of Cd, Pb, and Zn.

Materials and methods

This study was carried out with a greenhouse pot experiment using a soil polluted with Cd, Pb, and Zn which was amended with rice straw, pig manure, sheep dung, or peat, with and without lime. Water spinach (Ipomoea aquatica) was used as the test crop and was grown after a season of rice cultivation.

Results and discussion

The results showed that all the amendments promoted the root-to-shoot transfer of Cd, Pb, and Zn. The soil-to-root transfer factors (TFs) of Pb and Zn tended to increase with increasing available Pb and Zn in the soils, while no clear relationship between the TF of Cd and available soil Cd was observed. The root-to-shoot TF of Cd, Pb, and Zn tended to decrease with increasing available amounts in the soils and were negatively correlated with the concentrations of the metals in the roots (r Cd?=?0.820, r Pb?=?0.789, r Zn?=?0.769).

Conclusions

The soil-to-root transfer of Cd, Pb, and Zn was significantly different from the root-to-shoot transfer. The soil-to-root transfer was mainly influenced by the amount of available metal in soil, whereas the root-to-shoot transfer was mainly controlled by the concentrations of the metals in the root.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号