首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 273 毫秒
1.
The To Lich and Kim Nguu Rivers, laden with untreated waste from industrial sources, serve as sources of water for irrigating vegetable farms. The purposes of this study were to identify the impact of wastewater irrigation on the level of heavy metals in the soils and vegetables and to predict their potential mobility and bioavailability. Soil samples were collected from different distances from the canal. The average concentrations of the heavy metals in the soil were in the order zinc (Zn; 204 mg kg?1) > copper (Cu; 196 mg kg?1) > chromium (Cr; 175 mg kg?1) > lead (Pb; 131 mg kg?1) > nickel (Ni; 60 mg kg?1) > cadmium (Cd; 4 mg kg?1). The concentrations of all heavy metals in the study site were much greater than the background level in that area and exceeded the permissible levels of the Vietnamese standards for Cd, Cu, and Pb. The concentrations of Zn, Ni, and Pb in the surface soil decreased with distance from the canal. The results of selective sequential extraction indicated that dominant fractions were oxide, organic, and residual for Ni, Pb, and Zn; organic and oxide for Cr; oxide for Cd; and organic for Cu. Leaching tests for water and acid indicated that the ratio of leached metal concentration to total metal concentration in the soil decreased in the order of Cd > Ni > Cr > Pb > Cu > Zn and in the order of Cd > Ni > Cr > Zn > Cu > Pb for the ethylenediaminetetraaceitc acid (EDTA) treatment. The EDTA treatment gave greater leachability than other treatments for most metal types. By leaching with water and acid, all heavy metals were fully released from the exchangeable fraction, and some heavy metals were fully released from carbonate and oxide fractions. The concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the vegetables exceeded the Vietnamese standards. The transfer coefficients for the metals were in the order of Zn > Ni > Cu > Cd = Cr > Pb.  相似文献   

2.

Purpose

The concentration of human activities in urban systems generally leads to urban environmental contamination. Beijing is one of ancient and biggest cities on the world. However, information is limited on Beijing’s soil contamination, especially for roadside and campus soils. Thus, the aims of this study were to investigate the contents and chemical forms of toxic heavy metals Cd, Cr, Cu, Ni, Pb, and Zn in the road-surface dust, roadside soils, and school campus soils of Beijing. In addition, enrichment and spatial variation of these toxic heavy metals in the soils and dust were assessed.

Materials and methods

Topsoil samples were collected from the schools and roadside adjacent to main ring roads, and dust samples were collected from the surface of the main ring roads of Beijing. These samples were analyzed for total contents and chemical forms of Cd, Cr, Cu, Ni, Pb, Sc, Zn, Al, and Fe. Enrichment factors (EFs, relative to the background content) were calculated to evaluate the effect of human activities on the toxic heavy metals in soils.

Results and discussion

Heavy metal contents in the road dust ranged from 0.16 to 0.80, 52.2 to 180.7, 18.4 to 182.8, 11.9 to 47.4, 23.0 to 268.3, and 85.7 to 980.9 mg kg?1 for Cd, Cr, Cu, Ni, Pb, and Zn, respectively. In the roadside soil and school soil, Cd, Cr, Cu, Ni, Pb, and Zn contents ranged from 0.13 to 0.42, 46.1 to 82.4, 22.7 to 71.6, 20.7 to 29.2, 23.2 to 180.7, and 64.5 to 217.3 mg kg?1, respectively. The average EF values of these metals were significantly higher in the dust than in the soils. In addition, the average EF values of Cd, Cu, Pb, and Zn in the soils near second ring road were significantly higher than those near third, fourth, and fifth ring roads. Anthropogenic Cd, Pb, and Zn were mainly bound to the carbonates and soil organic matter, while anthropogenic Cu was mainly bound to oxides. The mobility and bioavailability of these metals in the urban soils of Beijing generally decreased in the following order: Cd?>?Zn?>?Pb?>?Cu?>?Ni?>?Cr; while in the dust, they decreased in the following order: Zn, Cu, and Cd?>?Pb?>?Ni?>?Cr.

Conclusions

Both EF and chemical forms documented that Cr and Ni in the soils and dust mainly originated from native sources, while Cd, Cu, Pb, and Zn partially originated from anthropogenic sources. In overall, Beijing’s road dust was significantly contaminated by Cd and Cu and moderately contaminated by Cr, Pb, and Zn, while Beijing’s roadside soil and school soil were moderately contaminated by Cd and Pb. However, the maximal hazard quotients (HQs) for individual Cd, Cr, Cu, Ni, Pb, and Zn and comprehensive hazard index (HI) of these metals in the dust and soil were less than 1, indicating that the heavy metals in the dust and soil generally do not pose potential health effects to children, sensitive population.  相似文献   

3.
Recently, application of sewage sludge or effluents resulted in raising the concentrations of some heavy metals in some agricultural soils of Iran. Experiments were conducted to evaluate the competitive adsorption of lead (Pb), copper (Cu), zinc (Zn), and cadmium (Cd) on six calcareous soils. Adsorption characteristics were evaluated by equilibration of 1 g of each soil sample with 20 ml of 0, 10, 20, 30, 40, 50, 100, or 200 mg L?1 of their nitrate solutions and 0.01 M NaNO3 as background electrolyte. Furthermore, solid/liquid distribution coefficients (Kd) of studied metals, as an index of soil capacity to resist a change of the soil solution concentration, were calculated. Results indicated that amounts of adsorbed Pb, Cu, Zn, and Cd increased with increase in their concentrations in the contact solutions, but this trend was more pronounced for Pb and Cu than the others. For all studied soils and metals, Langmuir equation described the adsorption behavior fairly well. Furthermore, Langmuir and Freundlich equation parameters were positively correlated to cation exchange capacity (CEC) and smectite contents; whereas, they were negatively correlated to sand content. Considering Kd values, the selectivity sequence of the metal adsorption was Pb > Cu > Zn > Cd. Therefore, the risk of leaching and also plant uptake of Zn and Cd will be higher as compared to those of the other elements.  相似文献   

4.
Mine tailing soils created from the copper extraction in Touro Mine (Northwest Spain) are very degraded both physically and chemically. Three plots in this mine tailing were amended with Technosols in different proportions in each one to know if this mixture improved the physico-chemical characteristics of the mine soil and contaminated it with heavy metals. The Technosols were made of organic wastes, including mussel residues, wood fragments, sewage sludges and paper mill ashes. An unamended area was used as a control soil. Pseudototal and diethylenetriaminepentaacetic acid (DTPA)-extractable contents of Al, Cr, Cu, Fe, Mn, Ni, Pb and Zn were determined in soil samples. The untreated soil had significant limitations for vegetation growth. All the Technosols improved the properties of the mine soil by increasing organic carbon and pH value, but they added Ni, Pb or Zn to the soil. It is advisable to check whether the heavy metal concentrations of the wastes are hazardous or not before adding to soils. It is also necessary to study the effect of these wastes over time and in more areas to conclude if they are actually favourable to restore degraded mine soils.  相似文献   

5.
The objective of this study was to test the suitability of a simple approach to identify the direction from where airborne heavy metals reach the study area as indication of their sources. We examined the distribution of heavy metals in soil profiles and along differently exposed transects. Samples were taken from 10 soils derived from the same parent material along N-, S-, and SE-exposed transects at 0—10, 10—20, and 20—40 cm depth and analyzed for total Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn concentrations. The heavy metal concentrations at 0—10 cm were larger than background concentrations in German arable soils except for Cr (Cd: 0.6—1.8 mg kg—1; Cr: 39—67; Cu: 40—77; Ni: 87—156; Pb: 48—94; Zn: 71—129; Fe: 26—34 g kg—1; Mn: 1.1—2.4). Decreasing Cd, Cu, Mn, and Pb concentrations with increasing soil depth pointed at atmospheric inputs. Aluminum and Ni concentrations increased with soil depth. Those of Fe, Cr, and Zn did not change with depth indicating that inputs at most equalled leaching losses. The Pb accumulation in the surface layer (i.e. the ratio between the Pb concentrations at 0—10 to those at 20—40 cm depth) was most pronounced at N-exposed sites; Pb obviously reached Mount Križna mainly by long-range transport from N where several industrial agglomerations are located. Substantial Cd, Cu, and Mn accumulations at the S- and SE-exposed sites indicated local sources such as mining near to the study area which probably are also the reason for slight Cr and Zn accumulations in the SE-exposed soils. Based on a principal component analysis of the total concentrations in the topsoils four metal groups may be distinguished: 1. Cr, Ni, Zn; 2. Mn, Cd; 3. Pb (positive loading), Cu (negative loading); 4. Al, Fe, indicating common sources and distribution patterns. The results demonstrate that the spatial distribution of soil heavy metal concentrations can be used as indication of the location of pollution sources.  相似文献   

6.
Use of biosolids in agriculture to improve crop production and soil quality have created concerns due to content of heavy metals that may affect surface or ground water quality. A column leaching study was conducted to evaluate the leaching potential of copper (Cu), lead (Pb), zinc (Zn), cdmium (Cd), cobalt (Co), chromium (Cr), and nickel (Ni) from two typical agricultural sandy soils in South Florida (Spodosol and Alfisol) with increasing application of pelletized biosolids (called PB) at the rates of 0, 1.25, 5.0, 10.0 g kg?1, respectively together with chemical fertilizer (CF). Elevated PB rate resulted in reduced leaching loss of Cu, Pb, Zn, Cd, Co, Ni from Spodosol, but resulted in increased loss of Pb, Zn, Cd, and Co from Alfisol. Significant reduction in Cu loss occurred in both soils, which can be attributed to the strong binding of Cu with organic matter from the applied PB. Percentage of Cd loss as of total Cd was 13% – 41%, the highest in all the heavy metals, whereas loss of Pb as of total Pb was less than 6.6%, though the concentrations of Pb, Cd, Co, and Ni in leachate were mostly above the limits of U.S. EPA drinking water standards or the national secondary drinking water standards. These results indicate that soil properties, PB application rates, and chemical behavior of elements jointly influence the leachate total loads of heavy metals in sandy soils applied with biosolids. Application of CF together with BP at a rate higher than 10.0 g kg?1 for sandy soils may pose potential threats to water quality due to enhanced leachate loads of Cr and Ni in Spodosol and Pb, Zn, Cd, Co and Ni in Alfisol.  相似文献   

7.
Abstract: The fraction distributions of heavy metals have attracted more attention because of the relationship between the toxicity and their speciation. Heavy‐metal fraction distributions in soil contaminated with mine tailings (soil A) and in soil irrigated with mine wastewater (soil B), before and after treatment with disodium ethylenediaminetetraacetic acid (EDTA), were analyzed with Tessier's sequential extraction procedures. The total contents of lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) exceeded the maximum permissible levels by 5.1, 33.3, 3.1, and 8.0 times in soil A and by 2.6, 12.0, 0.2, and 1.9 times in soil B, respectively. The results showed that both soils had high levels of heavy‐metal pollution. Although the fractions were found in different distribution before extraction, the residual fraction was found to be the predominant fraction of the four heavy metals. There was a small amount of exchangeable fraction of heavy metals in both contaminated soils. Furthermore, in this study, the extraction efficiencies of Pb, Cd, and Cu were higher than those of Zn. After extraction, the concentrations of exchangeable Pb, Cd, Cu, and Zn increased 84.7 mg·kg?1, 0.3 mg·kg?1, 4.1 mg·kg?1, and 39.9 mg·kg?1 in soil A and 48.7 mg·kg?1, 0.6 mg·kg?1, 2.7 mg·kg?1, and 44.1 mg·kg?1 in soil B, respectively. The concentrations of carbonate, iron and manganese oxides, organic matter, and residue of heavy metals decreased. This implies that EDTA increased metal mobility and bioavailability and may lead to groundwater contamination.  相似文献   

8.
典型城市城郊土壤重金属含量对比研究   总被引:4,自引:0,他引:4  
选取成都经济区内成都、德阳、蒲江彭山3类典型城市作为研究对象,对其城郊土壤中Cd,Hg,As,Zn,Cr,Cu,Pb 7种重金属元素含量作了对比研究.与国家土壤二级质量标准比较,成都、德阳、彭山蒲江Cd含量均超标,超标率分别为11.67%,70.67%,39.00%,彭山蒲江Cr含量超标,超标率为20.25%,其它元素含量均未超标.比较3类不同城市城郊土壤重金属含量.成都城郊Hg,As,Zn,Pb含量最高,Cd,Cr含量相对最低;德阳Cd,Cu最高;蒲江和彭山Cr相对最高,Hg,As,Zn,Cu,Pb含量则相对最低.与国内其他城市比较,成都、德阳城郊土壤Hg含量,彭山蒲江、德阳Cr含量在全国处于较高水平;成都的As,Cd含量,德阳的Cd,Zn含量,蒲江彭山的Hg,As,Zn,Pb含量处于全国较低水平.  相似文献   

9.

Purpose

Heavy metal distribution in soils is affected by soil aggregate fractionation. This study aimed to demons trate the aggregate-associated heavy metal concentrations and fractionations in “sandy,” “normal,” and “mud” soils from the restored brackish tidal marsh, oil exploitation zone, and tidal mudflat of the Yellow River Delta (YRD), China.

Materials and methods

Soil samples were sieved into the aggregates of >2, 0.25–2, 0.053–0.25, and <0.053 mm to determine the concentrations of exchangeable (F1), carbonate-bound (F2), reducible (F3), organic-bound (F4), and residual fraction (F5) of Cd, Cr, Cu, Ni, Pb, and Zn.

Results and discussion

The 0.25–2 mm aggregates presented the highest concentrations but the lowest mass loadings (4.23–12.18 %) for most metal fractions due to low percentages of 0.25–2 mm aggregates (1.85–3.12 %) in soils. Aggregates <0.053 mm took majority mass loadings of metals in sandy and normal soils (62.04–86.95 %). Most soil aggregates had residual Cr, Cu, Ni, Zn, and reducible Cd, Pb dominated in the total Cd, Cr, Cu, Ni, Pb, and Zn concentrations. Sandy soil contained relatively high F4, especially of Cu (F4) in 0.25–2 mm aggregates (10.22 mg kg?1), which may relate to significantly high organic carbon contents (23.92 g kg?1, P?<?0.05). Normal soil had the highest total concentrations of metals, especially of Cu, Ni, and Pb, which was attributed to the high F3 and F5 in the <0.053 mm aggregates. Although mud soil showed low total concentrations of heavy metals, the relatively high concentrations of bioavailable Cd and Cu resulted from the relatively high Cd (F2) and Cu (F2) in the >2 mm aggregates indicated contribution of carbonates to soil aggregation and metal adsorption in tidal mud flat.

Conclusions

Soil type and aggregate distribution were important factors controlling heavy metal concentration and fractionation in YRD wetland soil. Compared with mud soil, normal soil contained increased concentrations of F5 and F3 of metals in the 0.053–0.25 mm aggregate, and sandy soil contained increased concentrations of bioavailable and total Cr, Ni, and Zn with great contribution of mass loadings in the <0.053 mm aggregate. The results of this study suggested that oil exploitation and wetland restoration activities may influence the retention characteristics of heavy metals in tidal soils through variation of soil type and aggregate fractions.
  相似文献   

10.
The effect of added heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) on the rate of decomposition of glutamic acid was studied in four Dutch soil types in order to determine if such measurements would serve as sensitive indicators of heavy metal pollution in soil. The time required to reach the maximum respiration rate (referred to as the decomposition time) with glutamic acid was linearly related to increasing concentrations of Ni in a sandy loam soil.Changes in decomposition time were measured 18 months after addition of 55, 400 or 1000 mg kg? of Cd, Cr, Cu, Ni, Pb or Zn respectively to sand, silty loam, clay and sandy peat soils. A significant increase in the decomposition time occurred with a concentration of 55 mg kg?1 of Cd, Cu or Zn in the sand soil. At 400mgkg?1 adverse effects in the various soils are distinct. The sensitivity of the decomposition time of glutamic acid as a method to measure soil pollution is discussed.  相似文献   

11.
Controlled-release N fertilizers can affect the availability of heavy metals in the contaminated paddy soil.A soil incubation experiment was conducted to investigate the effects of prilled urea(PU),S-coated urea(SCU),and polymer-coated urea(PCU)on the solubility and availability of heavy metals Cd,Pb,Cu,and Zn in a multimetal-contaminated soil.The results showed that the application of different coated urea significantly affected the solubility and availability of heavy metals.At 5 d of incubation,the application of PU,SCU,and PCU had significantly decreased the concentrations of water-soluble and available Cd,Pb,Cu,and Zn,when compared with the control.At 60 d of incubation,the depletory effects of PU on water-soluble and available heavy metals had reduced,and the initial decrease in the concentrations of water-soluble Cd,Pb,Cu,and Zn caused by SCU had changed to an increase.The concentrations of water-soluble Pb,Cu,and Zn in the SCU-treated soil were higher than those in the control.Application with PCU led to a higher water-soluble Cu than that in the control,while the available Cd,Pb,and Zn were lower than those in the control.The effect of different coated urea was much stronger on the water solubility of the heavy metals than on their availability.The effects of controlled-release urea on the transformation of heavy metals resulted in changes in the concentrations of NH4^+,water-soluble SO4^2-,and soil p H.The results further suggested that PCU could be used in dry farming operations in multimetal-contaminated acid soils.  相似文献   

12.
为了解包头市铜厂周边地区土壤剖面中重金属污染状况,采用火焰原子吸收分光光度法和Tessier连续提取法,对土壤中6种重金属(Cu,Zn,Mn,Ni,Pb和Cd)的垂直分布特征、形态及潜在生物可利用性进行了分析。结果表明:研究区土壤剖面各层土壤中6种重金属含量均超过内蒙古土壤背景值,Cu,Pb和Cd为主要污染物。随采样深度的增加,Cu,Zn,Pb和Mn的含量呈现下降趋势,且由相关性系数可知重金属Cu,Zn和Pb可能有相同人为或自然污染源;土壤剖面中6种重金属均主要以残渣态存在,含量均在50%以上,对生物危害较小;潜在生物可利用性分析结果为:Cu(32.61%) > Mn(31.85%) > Ni(24.90%) > Zn(16.60%) > Cd(15.23%) > Pb(14.87%),Cu和Mn的潜在生物可利用性较大,其次为Ni,Zn,Cd和Pb潜在生物可利用性较小。  相似文献   

13.
Environmental damages like forest decline in Northern Slovakia could be a result of long-distance transport of pollutants with the dominating north-west winds. On 10 sites, primarily in the northbound upper slopes of west-east oriented mountain ranges in Northern Slovakia, the extent of the heavy metal contamination in soils along a north-south transect was examined. Oi, Oe, Oa, A, and B horizons were sampled and the total concentrations of Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were determined. The ranges of heavy metal concentrations in the forest floor were higher than reported for comparable samples from Bavarian soils except for Zn (Cd: 0.65–1.77; Cr: 12–40; Cu: 19–41; Ni: 8–24; Pb: 70–187; Zn: 31–92 mg kg?1), in the mineral soil the concentrations were lower. The depth distribution of the metal concentrations indicated a contamination with Cd, Cr, Cu, Ni, Pb, and Zn. The concentration differences between forest floor and mineral soil tended to be higher at the northern than at the southern sites for Cu, Ni, Pb, and Zn, indicating a long-distance transport from the north. Correlation and principal component analyses of the total metal concentrations revealed three groups: Cu, Pb, and Zn inputs mainly seemed to result from long-distance transport from the north, Cr and Ni inputs additionally from local sources. Cd probably had its origin mainly in local sources. This result was further confirmed by the grouping of the sites when clustered.  相似文献   

14.

Purpose

Our main aim objective was to evaluate the transfer of Cd, Cr, Cu, Ni, Pb and Zn to barley (Hordeum vulgare) grown in various soils previously amended with two sewage sludges containing different concentrations of heavy metals. This allowed us to examine the transfer of heavv metals to barley roots and shoots and the occurrence of restriction mechanisms as function of soil type and for different heavy metal concentration scenarios.

Material and methods

A greenhouse experiment was performed to evaluate the transfer of heavy metals to barley grown in 36 agricultural soils from different parts of Spain previously amended with a single dose (equivalent to 50 t dry weight ha?1) of two sewage sludges with contrasting levels of heavy metals (common and spiked sludge: CS and SS).

Results and discussion

In soils amended with CS, heavy metals were transferred to roots in the order (mean values of the bio-concentration ratio in roots, BCFRoots, in brackets): Cu (2.4)?~?Ni (2.3)?>?Cd (2.1)?>?Zn (1.8)?>?Cr (0.7)?~?Pb (0.6); similar values were found for the soils amended with SS. The mean values of the soil-to-shoot ratio were: Cd (0.44)?~?Zn (0.39)?~?Cu (0.39)?>?Cr (0.20)?>?Ni (0.09)?>?Pb (0.01) for CS-amended soils; Zn (0.24)?>?Cu (0.15)?~?Cd (0.14)?>?Ni (0.05)?~?Cr (0.03)?>?Pb (0.006) for SS-amended soils. Heavy metals were transferred from roots to shoots in the following order (mean values of the ratio concentration of heavy metals in shoots to roots in brackets): Cr (0.33)?>?Zn (0.24)?~?Cd (0.22)?>?Cu (0.19)?>?Ni (0.04)?>?Pb (0.02) for CS-amended soils; Zn (0.14)?>?Cd (0.09)?~?Cu (0.08)?>?Cr (0.05)?>?Ni (0.02)?~?Pb (0.010) for SS-amended soils.

Conclusions

Soils weakly restricted the mobility of heavy metals to roots, plant physiology restricted the transfer of heavy metals from roots to shoots, observing further restriction at high heavy metal loadings, and the transfer of Cd, Cu and Zn from soils to shoots was greater than for Cr, Ni and Pb. Stepwise multiple linear regressions revealed that soils with high sand content allowed greater soil-plant transfer of Cr, Cu, Pb and Zn. For Cd and Ni, soils with low pH and soil organic C, respectively, posed the highest risk.  相似文献   

15.
Abstract

The simultaneous incorporation of heavy metals into the soil is still a matter of great concern. Interaction (competitive sorption) between these metals and the soil solid phase may result in a deterioration of soil quality which relies basically on amounts of alkaline cations saturating soils sorptive complex. Results of this study indicate that Pb, Cu, C d, and Zn have induced solution pH decreases which were more intensive at highest metal loading rates. Partition parameters (Kd)-based sequences showed that Pb and Cu were more competitive than Cd and Zn and the overall selectivity sequence followed: Pb > Cu > Cd > Zn. Metal loadings and their competitive sorption have led to a strengthened displacement of alkaline cations (i.e. Ca2+, Mg2+, K+, Na+), especially of Ca2+ as a factor “stabilizing” soil sorptive complex. Such metals impact jointly with soils acidification are of great environmental concern since tremendous amounts of alkaline cations (especially Ca2+) may be potentially leached out, irrespective of the degree of soil contamination, as evidenced in the current study. High and positive ΔG values implied that the studied soils were characterized by generally low concentrations of exchangeable potassium which required high energy to get displaced (desorbed). Further studies on heavy metal uncontaminated or contaminated areas should be undertaken to provide with data which should be used for predictions on changes related to soil buffering capacity as impacted by heavy metal inputs.  相似文献   

16.
Abstract

The accumulation of heavy metals in plants is related to concentrations andchemical fractions of the metals in soils. Understanding chemical fractions and availabilities of the metals in soils is necessary for management of the soils. In this study, the concentrations of copper (Cu), cadmium (Cd), lead (Pb), and zinc (Zn) in tea leaves were compared with the total and extractable contents of these heavy metals in 32 surface soil samples collected from different tea plantations in Zhejiang province, China. The five chemical fractions (exchangeable, carbonate‐bound, organic matter‐bound, oxides‐bound, and residual forms) of the metals in the soils were characterized. Five different extraction methods were also used to extract soil labile metals. Total heavy metal contents of the soils ranged from 17.0 to 84.0 mgCukg?1, 0.03 to 1.09 mg Cd kg?1, 3.43 to 31.2 mg Pb kg?1, and 31.0 to 132.0 mg Zn kg?1. The concentrations of exchangeable and carbonate‐bound fractions of the metals depended mainly on the pH, and those of organic matter‐bound, oxides‐bound, and residual forms of the metals were clearly controlled by their total concentrations in the soils. Extractable fractions may be preferable to total metal content as a predictor of bioconcentrations of the metals in both old and mature tea leaves. The metals in the tea leaves appeared to be mostly from the exchangeable fractions. The amount of available metals extracted by 0.01 mol L?1 CaCl2, NH4OAc, and DTPA‐TEA is appropriate extractants for the prediction of metals uptake into tea plants. The results indicate that long‐term plantation of tea can cause sol acidification and elevated concentrations of bioavailable heavy metals in the soil and, hence, aggravate the risk of heavy metals to tea plants.  相似文献   

17.
Along a heavy metal deposition gradient, caused by a Cu smelter, heavy metal concentrations, partitioning, and storage in forest and arable soils were examined. We sampled organic and mineral soil horizons (0—50 cm) at ten pairs of forest and arable sites derived from the same parent material. A-horizons were extracted with a seven-step sequence; O- and subsoil horizons were digested with strong acids (HNO3/HClO4). We found high concentrations of Cd (up to 17.38 mg kg—1 in the O horizons/up to 2.44 mg kg—1 in the A horizons), Cu (8437/415), Pb (3343/126), and Zn (1482/637) which decreased exponentially with distance from the smelter and with soil depth. The metal concentrations in the organic layers indicate that the average transport distance decreases in the order Cd > Zn > Pb > Cu. With regard to metal partitioning, NH4NO3- + NH4OAc-extractable forms in the A horizons were most affected by the deposition being more pronounced under forest. In the uppermost 50 cm of the four soils nearest to the smelter two to four times higher Cd, Cu, Pb, and Zn storages were found in forest than in arable soils. At greater distance, the higher deposition onto forest soils due to the scavenging effect of the canopy obviously was compensated by stronger leaching.  相似文献   

18.
低分子有机酸对土壤中重金属的解吸及影响因素   总被引:9,自引:1,他引:9  
研究了柠檬酸、草酸、酒石酸和苹果酸对矿区土壤中重金属Pb、Cd、Cu和Zn的解吸行为,并探讨了介质pH值对其解吸土中重金属的影响。振荡解吸试验结果表明四种低分子有机酸对供试污染土壤中Pb、Cd、Cu和Zn都具有一定的解吸能力。由于土壤中重金属有效态含量较低,各重金属的解吸率都不高。在对Pb和Cd的解吸中,各低分子有机酸能力大小顺序为柠檬酸>酒石酸≈苹果酸>草酸;Cu的解吸顺序为柠檬酸>草酸>酒石酸≈苹果酸;Zn的解吸顺序为酒石酸>柠檬酸≈苹果酸>草酸。低分子有机酸随浓度的增加,其解吸能力提高。低分子有机酸对重金属的解吸量随pH值的降低而增加。  相似文献   

19.
Abstract

Athyrium yokoscense, a type of fern that grows vigorously in mining areas in Japan, is well known as a Cd hyperaccumulator as well as a Cu, Pb and Zn tolerant plant. However, no information is available on As accumulation of A. yokoscense, although it often grows on soils containing high levels of both heavy metals and As. In this study, young ferns collected from a mine area were grown in media containing As-spiked soils or mine soil in a greenhouse for 21 weeks. Athyrium yokosense was highly tolerant to arsenate and survived in soils containing up to 500 mg As (V) kg?1. The addition of 100 mg As (V) kg?1 resulted in the highest fern biomass (1.95 g plant?1) among As-spiked soils. Although the As concentration of the fern was lower than other As hyperaccumulators, such as Pteris vittata, A. yokoscense could hyperaccumulate As in mature and old fronds. Arsenic was accumulated most efficiently in old fronds (922 mg kg?1) in the media containing 5 mg As (III) kg?1. Moreover, higher As accumulation was found in the roots of the ferns, with a range from 506 to 2,192 mg kg?1. In addition, in the mine soil with elevated concentrations of As and heavy metals, A. yokoscense not only hyperaccumulated As (242 mg As kg?1 in old fronds), but also accumulated Cd, Pb, Cu and Zn at concentrations much higher than those reported for other terrestrial plants. Athyrium yokoscense accumulated Cd mostly in fronds in high concentrations, up to 1095 mg kg?1, while it accumulated Cu, Zn and Pb mainly in the roots and the concentrations were 375, 2040 and 1165 mg kg?1, respectively.  相似文献   

20.
以大冶典型铜矿区为中心,辐射周边农田,探索农田土壤重金属污染特征及重金属在油菜中的积累变化规律。结果表明,以湖北省土壤背景值进行评价,土壤受到重金属不同程度的污染,其中Cd严重超标,Cu次之;采用国家二级标准进行评价,Zn、Cr和Pb未对土壤造成污染。进行内梅罗综合污染指数法评价发现,以土壤背景值为评价标准,各采样点均达到重金属严重污染水平;以国家二级标准评价时,只有2号采样点土壤属于中度污染水平,其他样点土壤都受到了较为严重的重金属污染。矿区农田油菜各部位重金属含量变化幅度较大,包括Cu、Pb、Zn、Cd和Co在内的5种重金属含量分布规律都是茎叶〉籽粒≈根,Mn则是籽粒〉茎叶〉根。油菜地上部植株中Cu、Pb、Zn、Cd含量均超出食品卫生标准最高限值,且Cd、Pb超标倍数远大于Cu、Zn。富集系数变化规律为Mn〉Zn〉Cd〉Ni〉Cu〉Pb垌Co。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号