首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The concentration of medically used radionuclides has been studied in sludge from the sewage treatment plant serving the borough of Malmo. In this area all nuclear medicine procedures are carried out in one hospital and almost all patients live in the borough. Therefore, the input of medically used radionuclides into the sewage system can be estimated with good accuracy. Samples of digested sludge have been taken once or twice a week during half a year. Iodine-131 (physical half life (T) = R.05 d) was detected in all samples. The 131I-activity concentration due to medical use varied between (0.03±0.01) and (0.12±0.02) nCi kg?1. The ratio between the total output of 131I via the sludge and an adherent input of the radionuclide into the sewage system was determined to (2.6 ± 0.6) × 10?3, which is equivalent to a ratio of (2 ± 1) × 10?2 for stable I. Occasionally measurable activities of 198Au (T=2.7 d) and 201T1(T=3.l d) have been found. The radioactivity concentration of medically used radionuclides in the sludge is low and constitutes no health problems for the persons involved. The sludge however has proved to be a very sensitive and suitable integrator of radioactive material released from a large urban area.  相似文献   

2.
粪大肠菌群(FecalColiform,FC)是判定污泥土地安全利用的重要指标之一。通过实地调查取样,收集了长江三角洲地区的南京、苏州、上海、杭州等15个城市的污水处理厂的48份污泥样品,测定了其粪大肠菌群数,旨在了解污泥中FC的数量与潜在污染风险;并在污泥自然风干过程的第7、14、21、28天分别取样测定了FC的数量和水分含量,以观察风干过程中FC和水分的动态变化及其与风干时间的关系。研究结果表明,污泥中FC的最大可能数(MPN)的范围在0~3.41×106(MPNg-1,DW),平均为3.79×105(MPNg-1,DW),检出率达89.6%。不同类型污泥中FC的数量差别较大,“河流”污水处理厂污泥和污泥制品的FC数量最低,以生活污水为主的污泥和混流污水污泥中FC数量较高。污泥风干过程中FC数量和水分含量均随风干时间的延长而减少,但FC数量有回升现象。总之,污泥样品的FC数量差异较大,部分污泥样品的数量超过了污泥农用的病原物标准,为了保护生态环境和人类健康,防止二次污染,污泥土地利用时需考虑FC数量,采取相应控制措施。  相似文献   

3.
几种植物去除污染水体中养分效果研究   总被引:6,自引:0,他引:6  
对城市尾水和人工模拟富营养化水体进行了静态培养试验.通过比较不同植物对城市尾水中氮、磷去除效果,以及它们在不同磷浓度条件下对不同形态氮素去除效果研究,目的在于筛选出适合治理富养分污染水体的植物品种.研究结果表明,空心菜(Ipomiea aquatica)、酸模(Rumex acetosa)、莎草(Cyperus glomeratus)3种植物都能很好地吸收尾水中的营养物质,且生长状况良好.经3种植物处理的城市尾水,其氮、磷浓度随水培时间的增加而降低.莎草、酸模对污水中TN的去除率达90%以上,其中莎草最高,达93.4%;空心菜对全磷的去除率最高达76.9%.NH_4~+-N在处理前期变化显著,且莎草的净化效果最好达94.4%;污水中NO_3~--N含量随着水培时间的增加而逐渐下降,但在试验后期NO_3~--N又有所增加.酸模去除NO_3~--N效果最好,达65.4%.另外3种植物对NH4+-N和NO_3~--N都具有一定的吸收作用,并且优先吸收NH_4~+-N.且从对于NH_4~+-N和NO_3~--N净化效果看,莎草>酸模>空心菜.  相似文献   

4.
The concentrations of various radionuclides have been measured in the incoming water, the outgoing water and the sludge from the sewage treatment plant serving the town of Lund in southern Sweden. The mean residence time for the water in the plant is 1 to 2 days, whereas for the sludge it is 3 to 4 weeks. Variations in the residence time, which may influence the efficiency of the plant, are related to the season of the year and the load on the plant. Measurements show that for 7Be, 51Cr, 134Cs, and 137Cs between 37 and 56% of the incoming activity leaves the plant with the sludge. For 106Ru and 131I these figures lie between 6 and 14%. The deposition of 7Be has been measured at Lund and the relation between the deposition on the ground (Bq m?2) and the activity concentration in the sludge (Bq kg?1 dry weight) has been studied and found to by relatively constant at ?(0.8 ±0.2) kg m?2. In measurements on sewage sludge, the detection limit for deposition of 7Be on the ground is around 16 Bq m?2.  相似文献   

5.
Liming or vermicomposting eliminates pathogens from wastewater sludge, but might affect CO2 and N2O emissions when added to soil. Soil incubated at 40%, 60%, 80% and 100% of its water holding capacity (WHC) was amended with limed or unlimed wastewater sludge, vermicompost or inorganic fertilizer, while emissions of N2O and CO2 and mineral N concentrations were monitored in aerobic incubation experiment for 7 days. Application of unlimed wastewater sludge significantly increased the emission of CO2 compared to the unamended soil, but not the other treatments except when unlimed wastewater sludge was added to soil incubated at 60% WHC. The emission of CO2, was generally largest in soil incubated at 60% WHC and lowest in soil incubated at 100% WHC. The emission of N2O after 1 day was significantly larger in soil amended with unlimed wastewater sludge compared to the other treatments, but not when soil was incubated at 100% WHC. The emission of N2O increased with increased soil water content. The concentration of NH4+ was largest in soil amended with limed or unlimed wastewater sludge and lowest in the unamended soil and soil water content had no clear effect on it. In soil incubated at 40%, 60% and 80% WHC, the largest amount of NO3 was found in soil amended with inorganic fertilizer and vermicompost and the lowest in the soil amended with unlimed wastewater sludge. The concentration of NO3 in soil decreased when the soil water content increased in all treatments, except in the soil amended with unlimed wastewater sludge. It was found that water content affected the emission of CO2 of N2O and the concentration of NO3, but not the amount of NH4+ and NO2 in soil. Application of unlimed wastewater sludge increased the emissions of CO2 and N2O and the concentrations of NH4+, but decreased the amount of NO3 in soil.  相似文献   

6.
Solvents, greases, and rinse waters from routine vehicle maintenance contain heavy metals and volatile organic chemicals (VOCs). In Wisconsin, these fluids enter catch basins along with rinsing waters and are discharged to soil infiltration systems drainfields after mixing with domestic wastewaters in a septic tank. The purpose of this study was to monitor heavy metal and VOC removal and treatment in catch basins and septic tanks at four publicly-owned motor vehicle service stations (MVSS). Cadmium, chromium, and lead were found in catch basin wastewater, septic tank effluent, and septic tank sludge at concentrations ranging from 0.002–7.7 mg L?1. Lead was found in the highest concentration. The highest concentrations of metals were in septic tank sludge. Of the >50 VOCs scanned for in catch basin wastewater, septic tank effluent, and septic tank sludge samples, 29 were found in concentrations that exceeded analytical detection limits. Concentrations of detected VOCs ranged from 1.0–15,800 µg L?1 and the highest concentrations of VOCs were found in catch basin wastewater and septic tank sludge. Acetone, ethylbenzene, toluene, and xylenes were the most commonly found VOCs at all sampling locations. Thus, heavy metals and VOCs were not completely removed in catch basins and were discharged to septic tanks where removal occured possibly as these contaminants settled with solids in the sludge. The level of treatment was, however, inadequate and heavy metals and VOCs were discharged to drainfields.  相似文献   

7.
To investigate the distribution and dynamics of phosphorus (P) in soils for environmental protection and agronomical usage, 31P nuclear magnetic resonance spectroscopy (31P NMR) was used to characterize the contents and chemical properties of P in sewage sludge from 13 wastewater treatment plants in Shanghai. The samples were extracted with 0.25 M sodium hydroxide (NaOH) / 0.05 M sodium ethylenediamietetraacetic acid (Na2EDTA) in ratio of 1:20 (w/v). Total P recovery in the extract ranged from 91 to 116% when compared to traditional chemical methods. The dominant forms of P in all samples were inorganic orthophosphates and orthophosphates monoesters. Orthophosphate diesters and pyrophosphates were present in only two and four samples, respectively. This study provides detailed information on the distribution, contents, and chemical properties of P in sewage sludge that may be of value in the utilization of sewage sludge for agronomic purposes.  相似文献   

8.
To treat household wastewater, a sequence of ‘primary decantation–trickling filter percolation’ was applied in a lab-scale designed treatment system. Poly-electrolyte was used as coagulant to enhance the primary treatment and charcoal was used as carrier material in the trickling filters. Oxygen was supplied to the trickling filters by means of natural ventilation. In the lab-scale system, the enhanced primary stage removed more than 91% of the suspended solids (SS), and 79% of the total chemical oxygen demand (CODt). The subsequent trickling filtration brought a complete nitrification to the wastewaters at a volumetric loading rate (Bv) of 0.7–1.0 g CODt L-1 d-1. On average, the concentrations of the CODt and SS in the final effluents were about 55 and 15 mg L-1 respectively. With respect to phosphate, physico-chemical removal was the dominant process. About 46–62% of total P was removed from the tested wastewaters. The integrated treatment system also achieved a fair degree of hygienisation. The numbers of total coliforms, fecal coliforms and fecal streptococci were decreased by 2–4 log units. The sludge production of the entire treatment system was about 1.7% (v/v) of the treated wastewater. Only primary sludge was produced; secondary sludge produced in the trickling filters was negligible. The cost savings in terms of minimization of sludge production and aeration energy are estimated to be substantial (i.e. some 50%) relative to a conventional activated sludge system.  相似文献   

9.
Polycyclic Aromatic Hydrocarbons (PAHs) are typical pollutants arising from incineration. They are produced in any incomplete combustion principally due to inhomogeneities in a combustion chamber. The effects of the afterburning temperature on PAHs formation during sewage sludge incineration are discussed in this paper. Tests were performed inside the area of the wastewater treatment plant of `Bari Ovest' on a demonstrative plant (maximum throughput 250 kg hr-1 of dewatered sludge at 20% solids concentration) equipped with a fluidised bed furnace (FBF) and a rotary kiln furnace (RKF) where sewage sludge was fed, either as it was taken from the dewatering section of the wastewater treatment plant, or previously spiked by different dosages of chlorinated hydrocarbons. Exhaust gases were sampled before the bag filter, where the pollutants can be considered representative of those arising from the process. Parallel sampling of flue gas at the stack was also carried out. In the FBF tests with sludge spiked with high dosages of chlorinated hydrocarbons highest values of PAHs concentrations (>3.9 μg Nm-3) were detected before filtration, when the afterburning chamber was not in use. The operation of the afterburning chamber, at a temperature higher than 900 °C, allows to partially suppress PAHs formation up to values of 0.9—3.2 μg Nm-3. PAHs removal efficiency of the exhaust gas treatment was calculated with a mean value for all the test of 72%.In RKF tests PAHs displayed much lower values before filtration (range 0.04—2.98 μg Nm-3, mean value 0.51 μg Nm-3) probably due to the longer gas residence time in the furnace (>6 s in comparison with values <2 s in fluidised bed furnace). Surprisingly, for RKF tests PAHs removal efficiency of gas treatment appeared quite unstable: some tests evidenced PAHs stripping in the scrubber, where the effluent of the wastewater treatment plant was used. No correlation was observed in RKF tests between PAHs concentration before the bag filter and the temperature of the afterburning chamber.  相似文献   

10.
Anarwia工艺处理猪场废水节能效果的研究   总被引:4,自引:1,他引:4  
分析比较了厌氧-加原水-间隙曝气(Anarwia)工艺、SBR(序批式反应器)以及厌氧-SBR工艺处理猪场废水的效果。比较三种工艺处理效果表明:厌氧-SBR工艺处理猪场废水,污染物去除效率低,出水污染物浓度高,不适于猪场废水的处理。Anarwia工艺处理效果与SBR工艺相当,污染物去除率高,出水COD和NH3-N浓度低。在此基础上,以一个日处理1200 t猪场废水处理工程为例,分析比较了Anarwia与SBR工艺的能耗。就能量消耗有关的工艺参数——污泥量和需氧量而言,Anarwia工艺分别比SBR工艺减少16.4%和95.9%,此外Anarwia工艺每天可产生2784 m3沼气。Anarwia工艺增加了废水提升能耗,但减少了曝气、污泥处理、滗水和搅拌的能耗,结果Anarwia工艺总电耗比SBR工艺低81.0%。Anarwia工艺产生的沼气用于发电能完全补偿消耗的能量,并有剩余。  相似文献   

11.
The purpose of this work was to investigate the effect of stabilized-dewatered sludge on the performances of a solid-phase biological treatment applied to a soil contaminated with phenolic compounds.To this aim, a soil sample was artificially contaminated with either phenol or 3-chlorophenol, with concentrations of 1 and 0.5 g kg-1 of soil, respectively. Each contaminated soil sample was treated with a solid phase process, performed in three different operating conditions: without any addition; with addition of nutrients; with addition of nutrients and stabilized-dewatered sludge, obtained from a domestic wastewater treatment plant. The results obtained clearly indicated that the use of stabilized-dewatered sludge greatly reduced the time for complete removal of both phenol and 3-chlorophenol. Besides, the microorganisms concentration was higher in the sludge-amended soil with respect to other samples. This behavior could be a consequence of the carbon and energy sources contained in the sludge, even if the sludge could also offer a source of phenols-degrading microorganisms. On the contrary, the simple addition of nutrient did not notably affect the solid phase treatment under the studied conditions. Based on these results, it was shown that the use of stabilized-dewatered sludge may represent an efficient and economical way for accelerating solid-phase treatments, since it is produced worldwide and in large quantities as residue of domestic wastewater plants.  相似文献   

12.
This study addresses the research of the removal of a textile dye from aqueous solutions by using aluminum ions as coagulant-flocculant. A simulated textile wastewater was prepared from Remazol Red RB textile dye. The purpose of this study was to investigate the effects of temperature, pH, and concentrations of the cationic surfactant and electrolyte concentration on the settling velocity ofthe simulated textile wastewater. While investigating these factors, levels of variables were determined by considering the characteristicsof traditional textile wastewater like pH, temperature, and dye concentration. Although traditional coagulation-flocculation processesmake use of different aluminium salts as coagulant-flocculent, in this study, Al ions dissolved in pH and temperature of traditional textilewastewater were used. Furthermore, sludge volume index values (SVI) were determined and conductivity measurements carried out. The resultsshowed that, in the working range of these variables, the spectroscopic color measurement revealed 100% decolorization yieldof wastewater. In conclusion, researchers found that the optimum settling velocity conditions were as follows: low temperature (273K),surfactant concentration of 0.10 g L-1, electrolyte concentration of 0.10 g L-1, dye concentration of 0.025 g L-1 and a pH of 10.05. Finally, by conducting experiments twice under the obtained optimum values, mean settling velocity was 0.014 m min-1 and the mean sludge volume index 140 mL g-1.  相似文献   

13.
The application of low-level direct electric current (0.15 mA cm?2) as an electrokinetic technique to treat copper-contaminated mesophilic anaerobic granular sludge was investigated. The sludge was obtained from a full scale UASB reactor treating paper-mill wastewater and was artificially contaminated by Cu(NO3)2 or CuEDTA2? with initial copper concentrations of 1000 mg . kg?1 wet sludge. The effect of different electrokinetic cell layouts, pH and EDTA concentrations on the migration of copper and iron during electrokinetic treatment were evaluated. Both, the pH of the sludge cake or the copper complexation with EDTA significantly affected the migration direction of copper. In an ‘open’ cell (sludge cake in direct contact with air), the highest copper mobility was observed at pH 2.5 in both Cu(NO3)2 or CuEDTA2? amended sludge. The highest copper accumulation was at the cathode (22 ± 2)% with CuEDTA2? as contaminant. In a ‘closed’ cell (sludge cake not in contact with air), the highest accumulation was obtained for CuEDTA2? at the anode and amounted to 4(± 0.5)% and 2(± 0.05)%, respectively, at a final pH of 4.2 and 7.7 in the sludge cake.  相似文献   

14.
《Applied soil ecology》2010,46(3):225-231
There are plans to vegetate soil of the former lake Texcoco and use wastewater sludge to provide nutrients. However, the Texcoco soil is N depleted, so the amount of N available to the vegetation might be limited and the dynamics of C and N affected. We investigated how emissions of CO2, N2O and N2, and dynamics of mineral N were affected when different types of N fertilizer, i.e. NH4+, NO3, or unsterilized or sterilized wastewater sludge, were added to the Texcoco soil. An agricultural soil served as control. Sewage sludge added to an alkaline saline soil (Texcoco soil) induced a decrease in concentrations of NH4+ and NO3. Addition of sewage sludge increased the CO2 emission rate > two times compared to soil amended with sterilized sludge. The NH4+ concentration was lower when sludge was added to an agricultural soil for the first 28 days and in the Texcoco soil for 56 days compared to soil amended with sterilized sludge. Production of N2O in the agricultural soil was mainly due to nitrification, even when sludge was added, but denitrification was the main source of N2O in the Texcoco soil. Microorganisms in the sludge reduced N2O to N2, but not the soil microorganisms. It was found that microorganisms added with the sludge accelerated organic material decomposition, increased NH4+ immobilization, and induced immobilization of NO3 (in Texcoco soil). These results suggest that wastewater sludge improves soil fertility at Otumba (an agricultural soil) and would favour the vegetation of the Texcoco soil (alkaline saline).  相似文献   

15.
The aim of this work is optimising operating conditions for a possibleimplementation of a Biological Nutrient Removal (BNR) process in the Wastewater Treatment Plant (WWTP) of Ciudad Real (Spain). Several factors (hydraulic retention times, anaerobic nitrate concentration, sludge age and wastewater biodegradability) were tested using a pilot scale VIP (Virginia Initiative Plant) activated sludge process and domestic wastewater from the full scale plant. Hydraulic retention times used did not cause changes in N and P removal. P removal was adversely affected by anaerobic NO3 - and improved with higher BOD5/COD ratios in wastewater. Influence of sludge age was very low in P removal, but N removal was mainly affected by this factor. Final operating conditions were selected taking into account their effects over one of both nutrients. COD and SS removal were always successful. N removal was also easily reached and the main difficulty was P removal. P sludge content was very low (2.5–4%) approximately and was also affected by the same factors tested. The main factor to improve P removal was supposed to be the organic wastewater composition. Wastewater characteristics were modified by using different sources from the WWTP. Volatile fatty acids (VFA) addition to the wastewater by using supernatant of the anaerobic sludge digesters seemed to be the best practical solution for a future BNR implementation in the WWTP.  相似文献   

16.
In conjunction with the start-up of a secondary wastewater treatment facility, population levels ofPrototheca sp. were measured. Wastewater influent levels ofPrototheca sp. were < 1 × 102 mL?1 whilePrototheca sp. trapped in the biological film reached levels > 1 × 105 mL?1. Effluent levels were only slightly less than influent levels because effluent contained the breaking off film. The film along with the primary sediment retained the high levels ofPrototheca sp. throughout the 20 day anaerobic digestion, however growth was not thought to occur. Depending on the method of flocculation, dewatering and disposal, various levels ofPrototheca sp. were returned to the environment in the sludge and effluent. The dynamic change in thePrototheca sp. population levels in the maturing film was thought to reflect the preference for the higher BOD influent. This change was manifest during the fourth month after start-up, as well as when comparing the film at the start with that at the end of the secondary treatment train. Prototheca sp. are ubiquitous inhabitants of all stages of domestic and municipal wastewater from the primary plumbing through all stages of primary and secondary treatment plant processes.Prototheca sp. were isolated from surface water and potable water, but were thought to represent wastewater contamination. SincePrototheca sp. are pathogenic for human beings and animals, wastewater presents a potential threat, but reported infections are rare and risk is minimal.  相似文献   

17.
保定市污灌区土壤的Pb、Cd污染与土壤酶活性关系研究   总被引:58,自引:0,他引:58  
刘树庆 《土壤学报》1996,33(2):175-182
本文应用一元线性与非线性回归事寻优模型,着重研究了保定市污灌区土壤重金Pb、Cd污染与土壤酶活性之间的关系。结果表明,污灌区土壤Pb、Cd含量比清灌区有明显的增加,且均高于国内外重点城市的土壤背景值,已接近或达到轻度污染程度。  相似文献   

18.
以气候变暖为主要特征的全球变化已经对人类的生产和生活产生重要影响。作物物候及产量对气候变化的响应和适应是研究气候变化对农业生产影响的重要内容。本文选择位于华北平原的4个典型农业气象试验站(唐山、惠民、商丘和驻马店),利用详细的物候和产量观测资料,在站点尺度上研究了冬小麦物候及产量对过去30年(1980—2009)气候变化的响应及其敏感性。结果表明:过去30年冬小麦出苗期推迟,而抽穗期和成熟期呈提前趋势。物候期的提前或推迟导致冬小麦不同生长发育阶段历时发生变化,出苗—抽穗阶段(营养生长阶段)呈缩短趋势,而抽穗—成熟生长阶段(生殖生长阶段)呈延长趋势。相关性研究表明:在4个研究站点,温度和辐射是制约冬小麦产量的主要气候因子;但不同生长阶段,冬小麦产量对气象因子的响应不同。利用多元回归统计方法研究冬小麦产量对不同生长阶段气候因子(温度、辐射和降雨)的敏感性发现:在出苗—抽穗生长阶段,除驻马店站点外,温度升高对冬小麦产量有正效应;而在抽穗—成熟阶段,温度升高会给产量带来负面影响。冬小麦产量与辐射呈正相关,辐射降低给冬小麦产量产生负效应。  相似文献   

19.
废水灌溉下有机物料对重度盐渍土养分及芦苇生长的影响   总被引:2,自引:0,他引:2  
在山东滨州含盐量为16.7 g.kg 1的重度退化滨海盐碱湿地,研究了造纸废水灌溉条件下添加有机物料对盐渍土养分和芦苇生长的影响,以期为重度退化滨海盐碱湿地的生物修复提供依据。试验从春季开始进行,共设4种处理:翻耕对照(CK)、翻耕+废水灌溉(FF)、翻耕+废水灌溉+秸秆(FFJ)以及翻耕+废水灌溉+污泥(FFW),测定了不同处理下土壤养分、呼吸强度、含盐量及芦苇株高和生物量的变化。结果表明,与对照相比,各处理土壤有机质显著提高,10月末时FFJ、FFW和FF处理土壤有机质含量分别是对照的1.34倍、1.29倍和1.22倍;碱解氮和有效磷含量也高于对照,依次为FFW>FFJ>FF>CK;各处理土壤呼吸强度高于对照,其中FFJ处理显著高于对照,比试验初期提高96%;各处理表层土壤含盐量均出现不同程度降低,以FFJ和FFW降低幅度最大,分别比对照降低22.6%和16.3%;FFW、FFJ和FF处理的芦苇株高显著高于对照,8月末分别是对照的3.1倍、2.7倍和2.2倍;FFJ和FFW处理的芦苇生物量、根冠比和平均叶面积都显著高于对照,而FF处理与对照没有显著差异;FF处理芦苇株高、生物量与土壤有效氮含量相关最为显著,FFJ和FFW处理与土壤有机质含量相关性最为显著。结果表明,废水灌溉为重度盐渍化土壤提供了充足的水分,有机物料能有效提高土壤养分含量,解决了重度盐碱化土壤水分胁迫和养分胁迫的问题,促进芦苇生长,但秸秆和污泥两种有机物料之间没有显著差异。  相似文献   

20.
Sewage sludges from six wastewater treatment plants in Hawaii were periodically sampled to determine the seasonal variation of their elemental composition. The Sand Island and Honouliuli treatment plants produced primary sludges averaging 1.6% and 2.0% total N, respectively. The Kailua, Kaneohe, Waimanalo, and Waianae treatment plants produced secondary sludges averaging 5.4, 5.1, 6.1, and 3.5% N, respectively. All the sludges tested were virtually devoid of K with concentration ranging from 0.01 to 0.15%, which was less than half of the 0.30% K considered typical for a US sewage sludge. Mean concentrations of Cd, Cu, Fe, Ni, and Zn in the Hawaii sludges were 5.9, 373, 12343, 218, 36.7, and 817 mg kg?1, respectively, which were within the norms for sludge heavy metals as reported by the US Environmental Protection Agency. Seasonal variations in elemental concentration were small and only statistically significant for Ca and Zn. Sludges from the three treatment plants with highest annual production (Sand Island, Honouliuli, and Kailua) were then mixed at 5, 50, and 250 g kg?1 with three representative tropical soils (a Mollisol, and Oxisol, and an Ultisol) to study sludge-soil reactions and plant responses. Soil-solution data indicated that chemical properties of a sludge-soil mixture depended not only on the soil, sludge, and its application rate, but also on sludge-soil interactions. At an agricultural rate of 5 g kg?1 (10 Mg ha?1), the anaerobically digested Kailua sludge increased corn (Zea mays L.) biomass, whereas the two undigested sludges reduced it. At higher rates, Mn phytotoxicity resulted from sludge applications to the Mollisol and Oxisol, both of which contained reducible Mn nodules. Significant growth reductions would be expected when corn seedlings contained ≥200 mg Mn kg?1 or ≤0.30 % Ca; and, adequate supplies of Ca and Zn seemed to lessen Mn phytotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号