首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Paleosols buried under kurgans of the Bronze (end of the fourth and the third millennia BC), Early Iron (1st–3rd centuries AD), and Medieval (13th century AD) epochs have been studied on the Ilovlya River (a tributary of the Don River) terrace. The evolution of chestnut soils in the south of the Privolzhskaya Upland during the last 5000 years has been traced. It is shown that the mean weighted contents and distribution of soluble salts, gypsum, and carbonates in the soil profiles have been subjected to cyclic changes. The total microbial biomass and its trophic structure in the A1, B1, and B2k horizons of paleosols of different ages have been determined. A comparative analysis of the morphological, chemical, and microbiological data on the paleosols of different ages has been used to reconstruct the climatic dynamics for the last 50 centuries. The aridity of the climate in the studied region increased at the end of the third-the beginning of the second millennia BC and in the second and third centuries AD. The humidization of the climate took place in the 1st and in the 12th–13th centuries AD.  相似文献   

2.
Paleosols buried under kurgans of the Early (2nd-1st centuries BC), Middle (1st-2nd centuries AD) and Late (2nd-IV centuries AD) Sarmatian epochs were studied in dry steppes and desert steppes of the Lower Volga region (the Privolzhskaya and Ergeni Uplands and the Caspian Lowland). It was found that temporal variations in the morphological, chemical, microbiological, and magnetic properties of the paleosols in the interval of 2200–1600 BP were characterized by the cyclic pattern related to secular dynamics of climatic humidity with changes in the mean annual precipitation of ±30–50 mm. These climate changes did not transform chestnut paleosols and paleosolonetzes at the type or subtype taxonomic levels. However, they led to certain changes in the humus, carbonate, and salt profiles of the soils; in the character of solonetzic horizon B1; and in the state of microbial communities. According to these data, the Sarmatian time was characterized by alternation of micropluvial and microarid stages lasting fro about 100–200 years. In particular, the stages of humidization were observed in the 1st century BC-1st century AD and in the 4th century AD; the most arid conditions were observed in the second half of the 2nd and the first half of the 3rd century AD.  相似文献   

3.
Paleosol studies of archaeological monuments of different ages have been conducted on the Transural Plateau. The morphological and physicochemical properties of paleosols under burial mounds (kurgans) of the Early Iron Age (the fifth and fourth centuries BC) were compared with the properties of background surface soils. A paleosol of the Savromat epoch (2500 BP) is characterized by high contents of gypsum and soluble salts. The presence of humus tongues in its profile attests to the aridity and continentality of the climatic conditions during that epoch. Paleosols buried under kurgans of the Late Sarmatian epoch and the Hun epoch (about 1600 BP) are characterized by a higher content of humus and greater depth of the carbonate horizon, which attests to the humidization of climatic conditions. The evolution of soils as related to climate dynamics in the first millennium BC and the first millennium AD is characterized.  相似文献   

4.
Traditional chemical methods and 13C-NMR spectroscopy were used to study the humus in chestnut paleosols buried under kurgans of different ages (the 16th–15th centuries BC; the 1st, 2nd–3rd, and 13th–14th centuries AD) and under the Anna Ioanovna Rampart (1718–1720) and in their recent analogues on virgin plots. It was found that the decrease in the humus content of the paleosols as a result of the diagenetic processes is exponentially related to the age of the soil burial. The loss of humus from the upper 30 cm of the paleosol buried 3500 yrs ago amounted to 76 ± 14%, and this system did not reach a stationary state. The constants of the humus mineralization in the paleosols were determined. A tendency for an increase in the degree of the organic matter humification in the chestnut soils during the past 3500 yrs was found. With an increase in the age of the burial, the portion of aromatic structures in the structure of the humic acids increased and the portion of aliphatic fragments decreased. The cyclic changes in the composition of the humus related to the secular variations in the climatic humidity were identified.  相似文献   

5.
The hydrological and geomorphological dynamics of the lower Rhone river (southern France) are studied during the Roman period (2nd–1st centuries BC, 2nd–3rd centuries AD). The crossing of archaeological and radiocarbon dating methods allow to study events at a pluridecadal to centennial scale. From the Avignon town to the delta, the 15 sites where Roman fluvial dynamics were recorded show higher flooding frequencies, higher energy levels during floods, rises in the marshes or groundwater levels, and/or active morphological dynamics such as channel migrations from 1st century BC to 1st–2nd centuries AD, with respect to the encircling periods. Although this fluvial change does not reach the amplitude of great climatic events such as the Little Ice Age in the Rhone valley, we show that it is also perceived in other parts of the catchment and could have a climatic origin. However, this event is not recorded in the immediate Mediterranean environment of the lower Rhone, so that the Rhone appears to efficiently transmit a foreign climatic change.  相似文献   

6.
Microbiological studies of paleosols buried under steppe kurgans of different ages of the Middle (I–II centuries AD) and Late Sarmatian (II–IV centuries AD) time in different regions of the Lower Volga steppes were carried out. The regularities of the soil microbial communities’ development were determined in the I–IV centuries AD by the climate dynamics and the replacement of the relatively humid conditions (the I century to the first half of the II century) by dry (the second half of the II century to the first half of the III century) and then again by humid (the end of the III century to the IV century) conditions. In the humid climatic periods, the active biomass of the microorganisms and its portion in the total microbial biomass and the Corg of the soil increased, the portion of microorganisms consuming plant residues increased in the ecological-trophic structure of the microbial community, and the index of oligotrophy decreased. These changes had an opposite direction in the arid climatic periods. The variations of the microbiological parameters relative to the century-long dynamics of the climate over the historical time were synchronous and unidirectional, though the studied soils were found in different soil-geographical zones (dry and desert steppe), natural regions (the Privolzhskaya and Ergeni uplands and the Caspian Lowland), and landforms (watersheds, river terraces, marine plains).  相似文献   

7.
The studies of recent soils and paleosols buried under kurgans created in the periods of long-term aridization (3000–2000 BC) and climatic optimum (13th–14th centuries AD) were performed in steppes of the southeastern part of the East European Plain (Privolzhskaya Upland and Caspian Lowland) in order to determine the rate of carbon dioxide production by the soil samples at the natural moisture and after moistening up to 60% of the total moisture capacity. The CO2 emission from the samples of paleosols corresponding to the period of climatic aridization in the Lower Volga River at their natural moisture status was lower than that from the samples of background surface soils, whereas the CO2 emission from the samples of paleosols buried under optimum climatic conditions was higher than that from the samples of background surface soils. After moistening of the samples, the increase in the CO2 emission from the paleosol samples depended on the actual humidity of the climate in the corresponding period.  相似文献   

8.
The cross-referencing of sedimentological, stratigraphic, geoarchaeological and radiocarbon data enables us to establish the geomorphologic evolution of the Late Holocene coastal flood plain of the Turia River. The Holocene marine transgression formed a coastal barrier lagoon environment in the coastal plain. During the Late Holocene, increased sediments supplied to the low reach of the river promoted: (a): the progradation of deltaic coastal sandy ridges on the coastline and (b): the aggradation of the floodplain on top of the sedimentary sequence. Four phases are clearly recognised in the geoarchaeological record of the flood plain. (1): High magnitude flooding events (2800 BP to 3rd century BC). (2): Slow riverbed aggradation and progressive levee formation (low energy flood regime) in Roman times (2nd century BC to 5th century AD). (3): Swampy environmental processes (6th to 9th centuries). (4): Second high-magnitude flooding phase (11th century). The navigable channel of the Roman and early Islamic periods became a wide and shallow braided channel in Medieval times. These phases are correlated with others detected by researchers in many areas of the Mediterranean region and with global Holocene climate events.  相似文献   

9.
Paleosols buried under steppe kurgans of the Golden Horde period (13th–14th centuries AD) in the Lower Volga basin are characterized by an increased humus content, lower salinity and gypsum content, and higher magnetic susceptibility of the soil material in comparison with the paleosols buried in the preceding period and the background surface soils. A comparative analysis of the morphological, chemical, and magnetic properties of the buried and surface soils allows us to conclude that an increase in climatic humidity within this dry region took place in the period of the high Middle Ages, with a peak in the 13th–14th centuries AD. The climatic change was manifested in the soil evolution at the taxonomic levels of soil genera and soil subtypes (in the ecotone zones). On the basis of measured magnetic susceptibility values, the mean annual precipitation levels in the Golden Horde period have been reconstructed. According to our estimates, the mean annual precipitation in the Lower Volga basin in that time was 30–80 mm higher than at present. The favorable paleoenvironmental and paleosol conditions of the Golden Horde period were important factors that affected the ethnic and political situation in the Lower Volga region.  相似文献   

10.
Buried soil chronosequences under a series of Early Alan kurgans (burial mounds) in the Vladikavkazkaya depression of the Northern Caucasus, Russia, were studied to derive a high-resolution paleoclimatic record from the variations of the selected paleosol properties. Haplic Chernozems occur under kurgans and on the actual land surface. Three kurgan cemeteries, Brut 1, Brut 2 and Beslan, dated from the end of the second to the beginning of the seventh centuries AD have been studied. The cemeteries are situated close to each other under similar lithological and geomorphological conditions but differed in the paleosols' preservation. The Brut 2 site has been recently altered due to annual ploughing and intensive irrigation for more than 30 years. The background soils and paleosols of the Brut 2 site have been compared with synchronous soils of non-irrigated Brut 1 and Beslan sites to detect pedogenic properties that are less changed by irrigation and thus comprise the “soil memory”. Stronger black color of humus horizon, increase of humus content and decrease of humus δ13C values; clear signs of biological activity, absence of morphological and analytical signs of solonetz properties; diffused carbonate white soft spots in the Bca horizon and decreasing carbonate content are thought to be related to the comparatively humid climatic conditions in the region. On the contrary, relatively low humus content, tongue-like lower boundary of humus horizon, increase of humus δ13C values, morphological signs of solonetz properties together with high content of exchangeable Na, relatively large and clearly shaped carbonate white soft spots in the paleosols of the Brut 2 site, as well as increase of density, thickness of the carbonate pseudomicellium and high carbonate content in the upper part of profiles in the paleosols of the non-irrigated Brut 1 site are assumed to be xeromorphic features, indicating comparatively drier climatic conditions. The paleosols of the earliest chronointerval of burial (the end of the second to the beginning of the third centuries AD) demonstrate clear xeromorphic properties which indicate a relatively dry climate with a mean annual precipitation 50–100 mm less than today. The estimated duration of the period with such climatic conditions is thought to be not less than 100 years. In addition, those paleosols have some weak signs of humid conditions indicating that between the end of the first and the middle of the second centuries AD the climate was getting more moist, mean annual precipitation became equal or slightly higher than today. The paleosols buried in the first half of the fifth century AD again demonstrate the gradual enhancement of xeromorphic properties reflecting the next stage of droughts. Thus, the period with favourable humid climate when the Early Alan culture flourished in the Northern Caucasus was relatively short (about 400 years). Studying the detailed chronosequence in the non-irrigated Brut 1 site the records of intercentennial time scale soil properties variability produced by comparatively “fast” pedogenic processes typical for the steppe zone i.e., humus formation and accumulation, bioturbation, carbonate accumulation and transformation and solonetzization, have been provided.  相似文献   

11.
The construction of the Volga–Kama cascade of water reservoirs and hydroelectric power stations in the middle of the 20th century resulted in the inundation of vast areas and the development of abrasion along the shores that threatens many monuments of the archaeological and cultural heritage. The soils buried under northernmost kurgans of the Lugovskaya culture dating back to the 15th–14th centuries BC (kurgan Komintern I) were studied on the surface of the second terrace of the Kama River near its confluence with the Volga River. Burial sites of kurgan Komintern III were subjected to destruction in 1981, and archaeological excavations of kurgan Komintern II were performed in 2008. The danger of complete disappearance of these archaeological sites necessitated their thorough study with the use of multiple methods, including special paleosol studies. The soils buried under the kurgans ceased to be active components of the soil cover about 3500 years ago. They preserve information on the paleoenvironmental conditions before their burying. The analysis of morphological features and physical, physicochemical, and chemical properties of the buried soils attests to their chernozemic nature. Background surface soils that have passed through the entire cycle of the Holocene pedogenesis have evolved since that time into gray forest soils (Luvic Greyzemic Phaeozems) under forest vegetation. These soils are characterized by the increased acidity of the surface horizons (pHКСl 4.3) and the development of lessivage. Data on the coefficients of mineral weathering in the buried paleosols and background surface soils attest to the identical precipitation both for the surface and buried soils in the Middle and Late Holocene.  相似文献   

12.
Diagnostic features of a catastrophic aridization of climate, desertification, and paleoecological crisis in steppes of the Lower Volga region have been identified on the basis of data on the morphological, chemical, and microbiological properties of paleosols under archeological monuments (burial mounds) of the Middle Bronze Age. These processes resulted in a certain convergence of the soil cover with transformation of zonal chestnut (Kastanozems) paleosols and paleosolonetzes (Solonetz Humic) into specific chestnut-like eroded saline calcareous paleosols analogous to the modern brown desert-steppe soils (Calcisols Haplic) that predominated in this region 4300–3800 years ago.1 In the second millennium BC, humidization of the climate led to the divergence of the soil cover with secondary formation of the complexes of chestnut soils and solonetzes. This paleoecological crisis had a significant effect on the economy of the tribes in the Late Catacomb and Post-Catacomb time stipulating their higher mobility and transition to the nomadic cattle breeding.  相似文献   

13.
A multilayered archaeological site Turganik Settlement in the valley of the Tok River in the Cis- Ural steppe (Orenburg oblast) was examined with the use of paleopedological and microbiomorph methods. Ancient people inhabited this area in the Latest Neolithic (Eneolithic) (5th millennium BC) and Early Bronze (4th millennium BC) ages. It was found that cultural layers dating back to the Atlantic period of the Holocene had been formed under conditions of a predominance of grassy–forb vegetation with a small portion of tree species and dry climate; the ancient settlement was not affected by floods and was suitable for permanent living. It is probable that soils of the chestnut type with salinization and solonetzic features were developed in that time. The final stages of the accumulation of cultural layers were marked by strong shortterm floods, whose sediments partly masked the features of the previous long arid epoch. The highest degree of aridity was at the end of the Atlantic period. In the Subboreal and Subatlantic periods, soils of the meadowchernozemic type were formed; the spore–pollen spectra of these periods are characterized by a higher portion of tree species and by the presence of phytoliths of meadow grasses. The climatic conditions were generally colder and more humid, though some short-term aridization stages could take place. Some of these stages are recorded in the thickness of the studied sediments.  相似文献   

14.
On the basis of studies of subkurgan pedochronoseries, the main mechanisms of the development of soils of arid and desert steppes in drained landscapes of the southeastern Russian plain in the Late Eneolithic and Bronze ages (6000−3000 years ago) were established. During the fourth to third millennia BC, evolution of soils took place at the level of subtypes with a shift of boundaries of soil subzones toward the north. In each of the studied natural regions (Central Russian Upland, Volga Upland, Ergeni Hills, and Caspian Depression), an increase in the aridization of the climate in the second half of the third millennium BC can be distinctly traced, owing to which a convergence of the topsoil with the transformation of dark-chestnut, chestnut, and light-chestnut soils in chestnut-like semiarid soils, which dominated the region 4200–3900 years ago, occurred. In the first half of the second millennium BC, another change in the conditions of soil formation occurred that was caused by an increase in the degree of atmospheric humidity. It induced the divergence of the topsoil with a secondary formation of areas of zonal chestnut soils and solonetzes in place of chestnut-like soils by the middle of the second millennium BC. The obtained data gives reason to suggest that the age of modern chestnut solonetz complexes of the region does not exceed 3500 years.  相似文献   

15.
16.
The regularities of the formation of the humus profiles in chernozems of the Azov province (“priazovskii chernozems”) were revealed from studying the paleosols of burial mounds (archeological monuments) of the Bronze Age, Early Iron Age, and Middle Ages. The principal differences in the geneses of different parts of the humus profiles were revealed. From 40 to 70% of the current humus reserves in the 1-m-thick layer were shown to be accumulated by the late 3rd and early 2nd millennia BC. In the following 4000 thousand years, the development of the upper soil layers was cyclic. In favorable climatic periods, the humus content increased and accumulation processes predominated. Under aridization, the humus mineralization was intensified, the humus content decreased to 3%, and its reserves did not exceed 18 kg/m2. The fluctuations in the humus reserves in the past were not higher than 30% as compared to the recent reference soils. They were most actively replenished from the 1st to the 8th centuries A.D., and the rate of this process reached 0.5 kg/m2 for 100 years. In the same period, the thickness of the layer with the humus content above 1% drastically increased. The illuviation of peptized organic matter and its further bioturbation upon the development of the solonetzic process had the greatest importance in the formation of the lower part of the humus profiles.  相似文献   

17.
The results of the investigation into the history of soilscapes in the Kislovodsk Depression are discussed. It is shown that up to 60?C70% of the area of slopes and interfluvial plateaus at the heights of 900?C1500 m a.s.l. was terraced in the Late Bronze-Early Iron ages, during the Kobansk cultural stage (1200?C600 BC). Under these conditions, a sharp change in the climate with a considerable increase in the annual precipitation in the middle of the first millennium BC resulted in the activation of erosion and the formation of a layer of colluvial sediments overlying the buried soil on the terraces. Thus, the middle of the first millennium BC can be considered the zero moment for the modern stage of soil formation in the region. Problems of the current state of the terrace complexes and the development of erosion on them are also discussed.  相似文献   

18.
Paleosols of three burial sites—Brut 1, Brut 2, and Beslan—in the Northern Osetia Republic (Alania) of the North Caucasus region were studied. A part of the Brut 2 burial site was subjected to intensive agricultural use (more than 30-year-long irrigation and regular tillage). This led to the leveling of the burial mounds and changes in some properties of the buried paleosols. A comparative analysis of paleosols of the same age under the burial mounds involved not included in the intensive agricultural use made it possible to determine the degree of preservation of the initial properties in the irrigated paleosols and to use them for reconstruction of the paleoclimates. Some specific features of the soil evolution were revealed, and paleoclimate reconstructions were performed for the period of the Early Alan civilization in the North Caucasus region (from the second half of the 2nd century AD to the middle of the 5th century AD).  相似文献   

19.
A comparative analysis of climatic and soil salinity characteristics of the deserts of Central Asia, including deserts of the Turan Depression, the Gobi Desert, and deserts of the Dzungar and Tarim depressions was performed. The climatic characteristics—the degree of aridity, the degree of continentality, and the amount and regime of precipitation—are different in these deserts. No direct relationships between the areas occupied by the automorphic salt-affected soils and the aridity of the climate are observed in the studied regions. In the automorphic landscapes of Asian deserts, the degree and chemistry of the soil salinization and the distribution of salt-affected soils are controlled by the history of the particular territories rather than by their modern climatic conditions. The presence and properties of the salt-bearing rocks and the eolian migration of salts play the most significant role. The deficit of moisture in the modern climate favors the preservation of salt accumulations in places of their origin. The specific features of the climate, including the regime of precipitation, affect the redistribution of salts in the profiles of automorphic salt-affected soils. An increase in the degree of climatic continentality is accompanied by the decrease in the intensity of weathering and initial accumulation of salts. A different situation is observed in the soils of hydromorphic desert landscapes, in which the degree of salinity of the surface horizons and the area occupied by salt-affected soils are directly influenced by the modern climatic conditions.  相似文献   

20.
Key catchments of the Roztocze loess area in south-east Poland have a great potential of revealing the history of long-term soil erosion and changes in land use. The knowledge of how and when soil erosion took place in the past helps one understand the impact of land use changes on the landscapes [Bork, H.-R., 1989. Soil erosion during the past Millennium in Central Europe and its significance within the geomorphodynamics of the Holocene. Catena 15, 121–131]. The Jedliczny Dol gully system near the town Zwierzyniec in south-east Poland was investigated by using detailed field stratigraphy and radiocarbon dating of charcoal and wood.In connection with new settlements which were established between the 14th and 16th centuries, arable land was cultivated and forests were used much more intensively. As a consequence, the loess soils were strongly eroded during heavy rainfalls. Up to 4 m of colluvial sediments were deposited in the gully system during the 15th and/or 16th centuries. The thickness of the colluvial sediments indicate severe erosion which might be related to excessive timber exploitation for the local glass and iron production. With the foundation of the so-called Ordinariat Zamoyski at the end of the 16th century, some parts of the area were presumably reforested. High pressure on the land at the beginning of the 19th century enabled a second main phase of gulling before 1900.Since 1890 at the latest, almost the whole catchment is used as a forest, however, concentrated runoff on compacted forest roads can still be high after heavy rainfalls.In loess areas soil erosion caused by intensive land use, triggered by heavy rainfalls, can change the landscape drastically. These changes will continue to influence how catchments react, even if land use gets less intensive again. This knowledge should be considered regarding future, sustainable land use and recent changes in land use in the south-eastern Polish loess regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号