首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 341 毫秒
1.
Boron (B) adsorption increased with increasing concentration. Langmuir adsorption isotherm was curvilinear. The maximum value of adsorption maxima (b1) was observed Sagipora soil and maximum bonding energy (k) constant was in Anantnag soil. The Langmuir isotherm best explains the adsorption trend at low adsorbent concentrations. A significant correlation among b1, clay, and cation exchange capacity was observed. Linear affiliation was observed in all the soils at all concentration, indicating that B adsorption data conform to the Freundlich equation. Soils with greater affinity for B adsorption, like Sagipora, tended to desorb less B. Boron desorption was positively and significantly correlated with sand content and negatively with clay content and cation exchange capacity. The maximum value of 50.76 mg g?1 for desorption maxima (Dm) was observed in Sagipora soil, and mobility constant (Kd) was maximum in Khag soil (0.412 ml kg?1).  相似文献   

2.
以平衡吸附法研究了塿土对阴离子表面活性剂(SDS)、非离子表面活性剂(TritonX-100、Tween80和Brij35)的吸附特征,考察了pH、阴-非离子表面活性剂混合对塿土吸附表面活性剂的影响。结果表明,非离子表面活性剂在塿土上吸附等温线均呈L型,且均符合Freundlich和Langmuir方程;塿土对SDS的吸附等温线呈LS型,可用Freundlich方程来描述;塿土对4种表面活性剂吸附量的大小顺序为Tween80〉SDS〉Brij35〉TritonX-100。当阴-非离子表面活性剂一起进入土壤中,SDS-Brij35之间的相互影响不大;TritonX-100与SDS相互作用较大,无论二者以何种方式混合都会使TritonX-100在塿土上的吸附量增加,SDS的吸附量下降;SDS与Tween80之间的相互作用最大,混合后吸附量均下降,但Tween80吸附量降低的幅度最大。pH对非离子表面活性剂的吸附影响不大,而随着pH的增加,塿土对SDS的吸附百分率明显下降;在pH为8.0时,塿土对非离子表面活性剂的吸附百分率达到80以上。因此在选择合适的表面活性剂进行有机污染土壤修复和治理时,考虑土壤的特性和表面活性剂的结构是非常重要的。  相似文献   

3.
4.
以平衡吸附法研究了菲和萘在塿土上的吸附行为,考察了初始浓度、温度、pH、离子强度和CaCO3对塿土吸附菲和萘的影响,Henry方程、Freundlich方程和deBoer-Zwikker极化方程被用来拟和吸附等温线。结果表明,菲和萘在塿土上的吸附等温线为非线性,Freundlich方程最符合其吸附行为。菲和萘在塿土上的吸附量随温度升高而降低,其吸附是一个放热过程;吸附自由能小于零,表明吸附过程是自发的;熵变值也小于零,说明焓变是吸附过程的驱动力。随着pH增加,塿土对菲和萘的吸附量下降;而随着离子强度增加,塿土对菲和萘的吸附量增加。CaCO对菲和萘的吸附等温线也为非线性,其对塿土吸附菲和萘具有较大的贡献。  相似文献   

5.
Though knowledge about the distribution and properties of soils is a key issue to support sustainable land management, existing knowledge of the soils in Tigray (Northern Ethiopian Highlands) is limited to either maps with a small scale or with a small scope. The goal of this study is to establish a model that explains the spatial soil variability found in the May-Leiba catchment, and to open the scope for extrapolating this information to the surrounding basalt-dominated uplands. A semi-detailed (scale: 1/40 000) soil survey was conducted in the catchment. Profile pits were described and subjected to physico-chemical analysis, and augerings were conducted. This information was combined with information from aerial photographs and geological and geomorphologic observations. The main driving factors that define the variability in soil types found were: 1) geology, through soil parent material and the occurrence of harder layers, often acting as aquitards or aquicludes; 2) different types of mass movements that occupy large areas of the catchment; and 3) severe human-induced soil erosion and deposition. These factors lead to “red-black” Skeletic Cambisol–Pellic Vertisol catenas on basalt and Calcaric Regosol–Colluvic Calcaric Cambisols–Calcaric Vertisol catenas on limestone. The driving factors can be derived from aerial photographs. This creates the possibility to extrapolate information and predict the soil distribution in nearby regions with a comparable geology. A model was elaborated, which enables the user to predict soil types, using topography, geomorphology, geology and soil colours, all of which can be derived from aerial photographs. This derived model was later applied to other catchments and validated in the field.  相似文献   

6.
Copper adsorption and desorption under acid conditions by soil clay fractions separated from Vertisol, Planosol and Gleyic Acrisol has been studied in 0.01 M Ca(NO3)2. A Freundlich equation was appropriate to describe Cu adsorption. Within the range of 150 to 2600 mg of copper per kg of soil clay fraction the proportions of Cu not displaced during 5 successive 48-hour desorptions with 0.01 M Ca(NO3)2 decreased with increasing adsorption density and at the lower pHs. The proportions ranged from as high as 0.98 in th case of the Vertisol clay (pH 5.3) to as low as 0.12 (88% desorption) in the Planosol clay (pH 4.5). Measurement of separation factors (ga Cu/Ca) showed that the preference of the clay surface for Cu over Ca decreased in the order: Gleyic Acrisol > Planosol > Vertisol. A considerable amount of sorbed copper could be solubilized by decreasing pH values to 4 when in the Planosol clay 39% was desorbed and 45% was desorbed in the Gleyic Acrisol clay.  相似文献   

7.
The widespread use of sodium p-perfluorous nonenoxybenzene sulfonate(OBS), a typical alternative to perfluorooctane sulfonate, has resulted in potential threats to the environment, but the adsorption behavior of OBS in soils has not yet been reported. In this study, the adsorption behaviors of OBS on five soils with different physicochemical properties were investigated. The rate of OBS adsorption was fast, and most of the OBS uptake was completed within 12 h. The good model fit of OBS adsorption to the pseudo-second-order and Elovich models indicated the occurrence of chemical adsorption. The adsorption isotherms of OBS on the soils were better described by the Freundlich model than by the Langmuir model, suggesting that the OBS adsorption sites on the soils were heterogeneous. This is possibly associated with various adsorption mechanisms including hydrophobic, π-π, hydrogen bonding, and electrostatic interactions,further confirmed by the good model fit to the D-R isotherm. Adsorption of OBS occurred on the soils, and the adsorption process was spontaneous and endothermic. In addition, the soils were more suitable for OBS adsorption at lower pH values due to the stronger electrostatic adsorption. The OBS adsorption on the soils decreased with the increase of soil depth from 0 to 30 cm. Moreover, the presence of organic matter and ammonia nitrogen in the soils was favorable for OBS adsorption, and these parameters decreased with increasing soil depth, making OBS adsorption less prominent in the deeper soil. This study indicates that OBS is easily enriched in surface soils, and that soil organic matter and ammonia nitrogen significantly affect OBS migration in soil.  相似文献   

8.
The adsorption isotherms indicated that the adsorption of boron (B) increased with its increasing concentration in the equilibrium solution. The Langmuir adsorption isotherm was curvilinear and it was significant when the curves were resolved into two linear parts. The maximum value of adsorption maxima (b1) was observed to be 7.968 mg B kg?1 in Garhi baghi soil and the bonding energy (k) constant was maximum at 0.509 L mg?1 in Jodhpur ramana soil. The Langmuir isotherm best explains the adsorption phenomenon at low concentrations of the adsorbent, which of course was different for different soils. There was significant correlation between b1 and clay (r = 0.905**), organic matter contents (r = 0.734*), and cation exchange capacity (CEC; r = 0.995**) of soils. A linear relationship was observed in all the soils at all concentration ranges between 0 and 100 mg B L?1, indicating that boron adsorption data conform to the Freundlich equation. Soils that have a higher affinity for boron adsorption, like Garhi baghi, tended to desorb less amount of boron, that is, 43.54%, whereas Ballowal saunkhari desorbed 48.00%, Jodhpur ramana 48.42%, and Naura soil 58.88% of the adsorbed boron. Boron desorption by these soils is positively and significantly correlated with the sand content (r = 0.714**) and negatively with clay content (r = ?0.502*) and CEC (r = ?0.623**). The maximum value of 37.59 mg kg?1 for desorption maxima (Dm) was observed in Garhi baghi soil and also a constant related to B mobility (Kd) was found to be maximum in Garhi baghi (0.222 L kg?1) soil Note: *P<0.05; **P<0.01.  相似文献   

9.
Sorption of polycyclic aromatic hydrocarbons to mineral surfaces   总被引:1,自引:0,他引:1  
Minerals contribute crucially to the retention of polycyclic aromatic hydrocarbons (PAHs) in subsurface environments. To investigate the sorption behaviour to mineral surfaces batch sorption experiments were conducted using three PAHs (phenanthrene, pyrene, benzo(a)pyrene) and three mineral sorbents that were representative of subsurface materials (quartz, goethite‐coated quartz, quartz‐montmorillonite mixture). Sorption kinetics showed an instantaneous, considerable PAH sorption to all minerals, except for phenanthrene sorption to quartz at small aqueous‐phase concentrations. Apparent sorption equilibrium was achieved after 4 hours of contact time. The sorption characteristics were fitted to six isotherm models by applying Monte Carlo simulation and nonlinear regression. Best‐fit models were obtained by a model discrimination approach. Phenanthrene and pyrene sorption were best described by the Freundlich isotherm model, with the exception of phenanthrene sorption to quartz (linear isotherm). Good fit results for quartz were also obtained for the combined linear‐Freundlich isotherm. Benzo(a)pyrene sorption to all minerals followed linear high‐affinity isotherms. In the case of phenanthrene and pyrene, the Monte Carlo simulations resulted in mean values with small standard deviations for the isotherm parameters, indicating a negligible influence of the experimental uncertainties on the accuracy of the fitted parameters. For phenanthrene, (i) linear isotherms to quartz and goethite‐coated quartz and (ii) a nonlinear concave‐shaped isotherm to quartz–montmorillonite, assuming a pore‐filling process to micropores formed by clay aggregates, were confirmed. For pyrene, nonlinear convex‐shaped isotherms to the mineral surfaces were assessed. A specific sorption affinity of pyrene to the goethite surface indicated a non‐covalent cation‐π interaction. Small sorption affinities to quartz–montmorillonite support an unfavourable partitioning into the adjacent water.  相似文献   

10.
The aim of this work was to investigate the influence of the organic matter on copper and lead adsorption in soils with different physiochemical and mineralogical attributes. Suspensions (pH 6.0) of a Latosol, a Neosol and a Vertisol containing increasing amounts of copper or lead were used to obtain sorption isotherms while identical experiments were carried out with the soils previously treated with H2O2 to remove organic matter (OM). For the undisturbed soils, L-type and H-type isotherms were predominant for copper and lead respectively, showing that lead interacts more strongly with adsorption sites. For both metals, the non-linear Freundlich adsorption model revealed higher concentration of adsorption sites for Vertisol due to 2:1 clays. For the OM-removed soils, C-type isotherms were observed for copper with the permanence of less stable and more homogeneous sites. For this metal, a high correlation (R2 = 0.997) was observed between the decrease of adsorbent sites and the loss of organic carbon, evidencing the central role of organic matter on copper complexation, while lead may be able to interact efficiently with both organic matter and soil minerals.  相似文献   

11.
萘在土壤上的吸附行为及温度影响的研究   总被引:2,自引:0,他引:2  
采用批量平衡法研究了多环芳烃萘在塿土耕层土、塿土粘化层土、塿土古土壤、黄壤、紫色土和石灰土上的吸附行为,比较了不同吸附模型方程对实验数据的拟合情况,并探讨了温度对萘在土壤上吸附行为的影响机理及吸附热力学特征。Henry模型、Freundlich模型和deBoer-Zwikker极化模型均能较好地拟合萘的吸附等温线;45℃下的吸附等温线明显地高于25℃的吸附等温线,表现出随温度升高吸附量增大的趋势。Freundlich模型的吸附容量参数Kf和deBoer-Zwikker模型的起始吸附势ε0在两个温度下有极显著的差异;但Freundlich模型的n参数表征了土壤颗粒表面的性质,对温度变化不敏感。在25℃条件下,萘在土壤有机碳上的分配可能是吸附的主要机制,但随着温度增加,吸附机制变得复杂。土壤对萘的吸附是一吸热反应,整个吸附体系中熵增是吸附作用进行的主要驱动力。  相似文献   

12.
河流渗滤是一种自然净化过程,污染河水通过该过程在河流沉积层中发生物理、化学和生物作用,使得污染物浓度降低,入渗河水水质得到净化。为了研究BTEX污染河水通过河流渗滤系统时的吸附行为,进行了静态吸附模拟实验。结果表明BTEX 4种组分在3种河流沉积物样品中的吸附平衡均可以在48 h内完成。通过比较BTEX在3种不同河流沉积物样品中的吸附动力学曲线,可以发现BTEX在粉土中吸附速率最大,细砂中次之,粗砂中最小。BTEX在粉土和细砂中的吸附等温线符合Henry等温吸附方程,而在粗砂中符合Langmuir等温吸附方程。3种土壤中粉土和细砂具有较大的吸附容量,而粗砂吸附容量相对较小;粉土和细砂对苯的吸附能力最强,甲苯次之,乙苯和间二甲苯相对较小。从阻滞因子的计算结果来看,黄河花园口区采集的河流沉积物样品对BTEX各组分的迁移均具有较强的阻滞作用,在较高浓度范围内,河流渗滤系统能够通过吸附作用有效阻滞BTEX污染物,降低其对地下水的危害。  相似文献   

13.
Abstract

Despite the increasing prevalence of salinity worldwide, the measurement of exchangeable cation concentrations in saline soils remains problematic. Two soil types (Mollisol and Vertisol) were equilibrated with a range of sodium adsorption ratio (SAR) solutions at various ionic strengths. The concentrations of exchangeable cations were then determined using several different types of methods, and the measured exchangeable cation concentrations were compared to reference values. At low ionic strength (low salinity), the concentration of exchangeable cations can be accurately estimated from the total soil extractable cations. In saline soils, however, the presence of soluble salts in the soil solution precludes the use of this method. Leaching of the soil with a prewash solution (such as alcohol) was found to effectively remove the soluble salts from the soil, thus allowing the accurate measurement of the effective cation exchange capacity (ECEC). However, the dilution associated with this prewashing increased the exchangeable calcium (Ca) concentrations while simultaneously decreasing exchangeable sodium (Na). In contrast, when calculated as the difference between the total extractable cations and the soil solution cations, good correlations were found between the calculated exchangeable cation concentrations and the reference values for both Na (Mollisol: y=0.873x and Vertisol: y=0.960x) and Ca (Mollisol: y=0.901x and Vertisol: y=1.05x). Therefore, for soils with a soil solution ionic strength greater than 50 mM (electrical conductivity of 4 dS/m) (in which exchangeable cation concentrations are overestimated by the assumption they can be estimated as the total extractable cations), concentrations can be calculated as the difference between total extractable cations and soluble cations.  相似文献   

14.
水稻秸秆生物质炭对土壤磷吸附影响的研究   总被引:3,自引:2,他引:3  
本文以水稻秸秆为原料,分析了不同热解温度下生物炭的性质,并利用批处理实验,分析了生物炭添加量和热解温度对土壤磷吸附特性的影响。结果表明:随着热解温度的升高,生物炭的碳化程度、比表面积和磷含量增加。生物炭添加显著减少了土壤对磷的吸附量,而且随着生物炭热解温度的增加,土壤对磷的吸附量显著增加。Langmuir方程和Freundlich方程都能够较好地拟合生物炭对土壤磷的等温吸附。准一级动力学方程和准二级动力学方程可较好地描述生物炭对土壤磷吸附动力学的行为。通过以上研究结果可知,水稻秸秆生物炭可以减少土壤对磷的吸附并增加土壤有效磷的含量,因此在土壤改良方面具有一定的应用潜力。  相似文献   

15.
The parameters of the atrazine migration in columns with undisturbed Vertisol sampled from an irrigated plot in Guanajuato, Mexico were determined. A model of the convection-dispersion transport of the chemical compounds accounting for the decomposition and equilibrium adsorption, which is widely applied for assessing the risk of contamination of natural waters with pesticides, was used. The model parameters were obtained by solving the inverse problem of the transport equation on the basis of laboratory experiments on the transport of the 18O isotope and atrazine in soil columns with an undisturbed structure at three filtration velocities. The model adequately described the experimental data at the individual selection of the parameters for each output curve. Physically unsubstantiated parameters of the atrazine adsorption and degradation were obtained when the parameter of the hydrodynamic dispersion was determined from the data on the 18O migration. The simulation also showed that the use of parameters obtained at water content close to saturation in the calculations for an unsaturated soil resulted in the overestimation of the leaching rate and the maximum concentration of atrazine in the output curve compared to the experimental data.  相似文献   

16.
吸附作用与不动水体对土壤溶质运移影响的模拟研究   总被引:14,自引:2,他引:14  
史海滨  陈亚新 《土壤学报》1996,33(3):258-267
  相似文献   

17.
Batch adsorption experiments were carried out with samples from an A-, Bh- and C-horizon of contaminated sandy soil of podzolic character from the Kempen region at the Dutch-Belgian border. Cadmium sorption was studied on 3 soil samples at 3 different pH-levels (3.6, 4.3 and soil buffered pH) and 3 different additions of zinc (0–40 mg l-1). Adsorption of cadmium by acid sandy soils can be fitted by a Freundlich adsorption isotherm. Although zinc competes with cadmium for the sorption sites, we observe a two to three times stronger competition effect of the proton cation, which is explained by the chemical properties of both ions. The cadmium adsorption coefficient KF decreases considerably by an increase of the proton activity used in the sorption experiments. Organic matter content explains for a large part the variation of KF of te three soil samples. Desorption data do not fit the proposed regression model for adssorption. Not all the cadmium, intitially present in the polluted soil, will fylly desorb reversibly. Thus, part of the cadmium may be irreversible bound.  相似文献   

18.
Inadequate nutrient and organic‐matter supply constitutes the principal cause for declining soil fertility and productivity in much of sub‐Saharan Africa (SSA). In a survey in Gare Arera, the central Ethiopian highland, farmyard manure (FYM) and compost enriched with ash were identified as underutilized organic nutrient sources. Mustard meal, a by‐product of mustard‐seed oil production, is also locally available. On‐farm experiments were carried out on two major soil types (Nitisol and Vertisol) to study effects of the organic fertilizers, synthetic fertilizer (urea + triple superphosphate) and an unfertilized control on the yield and yield components of tef [Eragrostis tef (Zucc) Trotter] and selected soil properties. Application of organic fertilizers at an N rate equivalent to that of urea produced grain yields of 82% and 99% of that produced with urea on Nitisol and Vertisol, respectively. The apparent N recovery from urea, mustard meal, FYM, and compost was, respectively, 31%, 25%, 16%, and 28% on Nitisol and 23%, 17%, 26%, and 21% on Vertisol. The mean agronomic efficiency for the organic and synthetic fertilizers on Nitisol was 20 and 24 kg grain (kg N)–1 applied, respectively, whereas on the Vertisol, it was 13 kg grain (kg N)–1 for both. On Vertisol, tef was most responsive to FYM and on Nitisol, it was most responsive to compost. Soil N and P contents increased due to organic‐fertilizer application. The results showed that compost enriched with ash is a good choice on Nitisol while FYM works well on Vertisol. Mustard meal can be applied on both soils.  相似文献   

19.
砒砂岩改良风沙土对磷的吸附特性影响研究   总被引:2,自引:0,他引:2  
【目的】适量砒砂岩能有效改良风沙土的吸水和保水特性,但对于砒砂岩改良风沙土的养分有效性尚不清楚。本文研究了不同用量的砒砂岩改良风沙土对磷吸附特性的影响,以期为评价改良土壤对磷的吸附特性,揭示改良土壤对磷的吸附机理和指导磷肥合理施用提供依据。【方法】本试验设计了砒砂岩和风沙土0∶100(L)、10∶90(LS1)、25∶75(LS2)、50∶50(LS3)、75∶25(LS4)、90∶10(LS5)和100∶0(S)(烘干质量比)7个不同比例的改良模式。研究了在25℃下砒砂岩不同添加量改良风沙土的磷吸附动力学和等温吸附特征,并应用吸附动力学模型和等温吸附模型进行参数拟合,以揭示改良土壤对磷的吸附机理,同时分析了砒砂岩添加比例与改良土壤中磷的最大吸附量的关系。【结果】1)同一初始浓度下,随着吸附时间的延长,改良土壤对磷的吸附量呈增大趋势,24 h后逐渐达到平衡。2)吸附时间一定的情况下,随着磷初始浓度的增大,改良土壤对磷的吸附量逐渐增大,直到接近或达到吸附最大值。3)风沙土对磷的吸附量大于砒砂岩的吸附量,改良土壤中随着砒砂岩添加比例的增加,土壤对磷的吸附量呈减小趋势。4)风沙土、砒砂岩和改良土壤对磷的吸附动力学曲线符合准二级动力学模型。等温吸附曲线以Langmuir模型的拟合效果最优。5)风沙土、砒砂岩和改良土壤对磷的吸附属于均质的单层吸附,由膜扩散和颗粒内扩散共同控制吸附反应速率,吸附机理主要是化学吸附和离子交换。6)改良土壤对磷的最大吸附量随砒砂岩添加比例的增加呈线性减小关系。在生产实践中,可通过测定砒砂岩和风沙土对磷的最大吸附量及风沙土中砒砂岩的添加比例来对改良土壤中磷的最大吸附量进行预测。【结论】砒砂岩可显著减小风沙土对磷的吸附固定,增加施入磷肥的有效性。所以当改良土壤恢复植被以后,磷肥施用初期,砒砂岩添加比例较大的改良土壤中,磷素的肥效较好。但随着植物的生长利用,各改良土壤中吸附磷素的释放效果以及磷肥肥效的持续性有待进一步研究。  相似文献   

20.
应用OECD106批平衡方法,研究了毒死蜱的有毒代谢物3,5,6-TCP在6种典型土壤中的吸附-解吸行为。结果表明:Elovich方程、双常数方程和抛物线扩散方程能较好地拟合3,5,6-TCP在第四纪红土、黑土、黄壤和褐土中的吸附动力学过程,而对紫色土和潮沙土的拟合度较低(拟合相关系数小于0.85);应用Freundlich方程和线性方程拟合第四纪红土、黑土、黄壤和褐土的经验常数nfads均小于1(非线性吸附),而紫色土和潮沙土的nfads值则接近于1(线性吸附);3,5,6-TCP在6种土壤中解吸的滞后系数H值均大于1,即解吸速率大于吸附速率。6种土壤对3,5,6-TCP的吸附常数Kfads从1.37-6.74μg1-n·fmLn·fg^-1,吸附系数Kd值从0.50-1.30mL·g^-1,其中第四纪红土和黑土对其吸持力较强(Kd〉1),因而更应注意环境安全;其他4种土壤的Kd值则均小于1,淋溶风险较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号