首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Hydrogeochemical fluxes and their relationship to environmental factors were evaluated in three catchments of the Maricá-Guarapina fluvio-lagoonar system located on the coast of Rio de Janeiro State, Brazil. Sampling was performed biweekly from March to December 1993 at the outlets of three sub-basins with different land use distributions. Water discharge, physico-chemical parameters, major cations and anions, and dissolved inorganic N and P were analyzed. Despite an increase in contributions of weathering processes westward, the major constituent concentrations covaried temporally among catchments, indicating similarity of the involved biogeochemistry processes. Moreover, there is a spatial dissolved nutrient pattern, with concentrations increasing westward in association with urbanization and farming. Land use classes were arranged according to their potential impacts as follows: forest < small properties < farming < urbanization.  相似文献   

3.
Nitrogen (N) deposition and its impact on terrestrial and aquatic ecosystems is a concern facing federal land managers at the Lye Brook Wilderness in Vermont and other protected aras throughout the northeastern United States. In this study, we compared N production in soils with N concentrations and outputs in leachates to determine how forest cover types differ in regulating N losses. Also, precipitation inputs and modeled estimates of streamwater outputs were used to calculate a watershed N budget. Most ammonium and nitrate were produced in organic soils with deciduous cover. Softwood stands had low net nitrification rates and minimal N leaching. A comparison of watershed inputs and outputs showed a net gain in total dissolved N (5.5 kg ha-1 yr-1) due to an accumulation of dissolved inorganic N. The Lye Brook Wilderness ecosystem has N budgets similar to other forested ecosystems in the region, and appears to be assimilating the accumulating N. However seasonal losses of nitrate observed in mineral soils and streamwater may be early warnings of the initial stages of N saturation.  相似文献   

4.
ABSTRACT

The aim of this study was to examine the usefulness of physical and chemical fractionation in quantifying soil organic matter (SOM) in different stabilized fraction pools. Soil samples from three land use types in Lorestan province, Southwest Iran were examined to account for the amount of organic carbon and nitrogen in different SOM fractions. Size/density separation and chemical oxidation methods were applied to separate the SOM fractions including particulate organic matter (POM), Si + C (silt and clay), DOC (dissolved organic C), rSOM (oxidation-resistant organic carbon and nitrogen) and S + SA (sand and stable aggregates). The values obtained for TOC, TN, and HWC were highest in forest lands followed by the range and agricultural lands. Among the SOM fractions, S + SA showed the highest values (5.75, 5.77 and 20.6 g kg?1 for agriculture, range and forest lands respectively) followed by POM, Si + C, rSOM, and DOC. The concentrations of C and N in the labile fractions obtained the higher values than in the stabilized fractions. Forest lands had the highest amounts of organic C and N among all fractions whereas agricultural lands showed highest values for inorganic C content of soils in different fractions.  相似文献   

5.
Input-output budgets for dissolved inorganic nitrogen (DIN) are summarized for 24 small watersheds at 15 locations in the northeasternUnited States. The study watersheds are completely forested, free of recent physical disturbances, and span a geographical region bounded by West Virginia on the south and west, and Maine on the north and east. Total N budgets are not presented; however, fluxes of inorganic N in precipitation and streamwater dominate inputs and outputs of N at these watersheds. The range in inputs of DIN in wet-only precipitation from nearby National Atmospheric Deposition Program (NADP) sites was 2.7 to 8.1 kg N ha-1 yr-1 (mean = 6.4 kg N ha-1 yr-1; median = 7.0 kg N ha-1 yr-1). Outputs of DIN in streamwater ranged from 0.1 to 5.7 kg N ha-1 yr-1 (mean = 2.0 kg N ha-1 yr-1; median = 1.7 kg N ha-1 yr-1). Precipitation inputs of DIN exceeded outputs in streamwater at all watersheds, with net retention of DIN ranging from 1.2 to 7.3 kg N ha-1 yr-1 (mean = 4.4 kg N ha-1 yr-1; median = 4.6 kg N ha-1 yr-1). Outputs of DIN in streamwater were predominantly NO3-N (mean = 89%; median = 94%). Wet deposition of DIN was not significantly related to DIN outputs in streamwater for these watersheds. Watershed characteristics such as hydrology, vegetation type, and land-use history affect DIN losses and may mask any relationship between inputs and outputs. Consequently, these factors need to be included in the development of indices and simulation models for predicting 'nitrogen saturation' and other ecological processes.  相似文献   

6.
Mortality of Atlantic salmon alevins in solutions containing Al and dissolved organic anions (both synthetic and natural) was correlated with Al accumulation in alevin tissues. Both mortality and accumulation could be related to the concentration differences between Al and organic anions. Mortality and body accumulation of Al both increased dramatically as total Al concentrations increasingly exceeded organic anion concentrations. Alevin growth and yolk utilization were both less rapid at inorganic monomeric Al concentrations exceeding 2 μM (50 μg L-1). The acidic fractions of dissolved organic matter (DOM) are more effective in protecting alevins against Al toxicity than are the neutral and basic fractions. Ambient inorganic monomeric Al is probably not toxic to salmon alevins in acidic Nova Scotian streams, even during snow-melt.  相似文献   

7.
In Brazil most of the urban sewage is dumped without treatment into rivers. Because of this, it is extremely important to evaluate the consequences of organic matter rich sewage on the structure and functioning of river ecosystems. In this study we investigated the effects of urban sewage on the dissolved oxygen (O2), dissolved inorganic (DIC) and organic carbon (DOC), and electrical conductivity (EC) in 10 small streams of the Piracicaba River basin, southeast region of Brazil. In the Piracicaba River basin, which is one of the most developed regions of the country, only 16% of the total sewage load generated is treated. These streams were classified into two groups, one with heavy influence of urban sewage and another with less influence. Both concentrations and seasonal variability were distinct between the two groups. The streams that received sewage effluent had a combination of low O2 with high DIC, DOC, and EC. In the polluted streams, concentrations of dissolved carbon forms and EC were higher and O2 concentration lower during the low water period. In the less polluted streams seasonal variations in concentrations were small. We also investigated the efficiency of a sewage treatment plant installed two years ago in the catchment of one of these streams. It was observed an increase in the O2 concentration after the beginning of the treatment, and a decrease of DIC and DOC concentrations especially during the low water period. However, no significant change was observed in the EC, suggesting that the concentrations of major ions is still unaltered, and that a secondary treatment is necessary in order to reduce ion load into the stream.  相似文献   

8.
Abstract

In this report, we propose a new method of evaluating the effect of nitrogen deposition on forest ecosystems, namely the spatial variation in nitrogen deposition enables to detect readily the effect of anthropogenic N deposition on biogeochemical processes in forest ecosystems. We analyzed the nitrogen deposition (throughfall fluxes) and stream water chemistry over five adjacent small catchments in which soil types (Hapludants) and vegetation composition (50 to 60 years old larch plantation) were fairly identical. Thirty-two throughfall collectors were set up in the five catchments (six to eight collectors in each catchment) and throughfall samples were collected after a rain event, while stream water samples were collected once or twice a month. The monitoring was carried out during a period of 6 months (2002 June to 2002 November). Throughfall dissolved inorganic nitrogen (DIN) fluxes were highly variable: the highest N input, 1.32 kg N ha?1 6 months?1, was sixty-six times higher than the lowest input, 0.02 kg N ha?1 6 months?1. The mean DIN inputs and the mean nitrate concentrations in streams showed a three-time variation across the five catchments. In addition, the DIN inputs showed a high correlation with the stream nitrate concentrations (r = 0.88).  相似文献   

9.
The effects of peat total N on the dissolved N and C concentrations and microbial biomass and activity and their range of seasonal fluctuation were studied in a drained peatland forest in Finland. Seasonal fluctuations in the concentrations of extractable dissolved organic (DON) and inorganic nitrogen (DIN) compounds and extractable dissolved organic carbon (DOC), microbial C and N, ergosterol, net and gross N mineralisation rates were investigated during two growing seasons along a natural peat N gradient in a drained peatland. Significant seasonal fluctuations in NH4+ and DOC concentrations, microbial C and N, but not in ergosterol or microbial C-to-N ratios in the peat, were observed during the 1999 and 2000 growing seasons. The peat total N concentration affected extractable DON and DOC, but not DIN concentrations in the peat. A negative correlation was found between total N concentration in peat and microbial N and C, and a positive correlation between total N and ergosterol, in peat with N concentrations of up to 2%. Gross mineralisation rates did not show any correlation, whereas net mineralisation rates showed a significant positive correlation with the total N concentration of the peat in both 1999 and 2000.  相似文献   

10.
To improve our knowledge of how nutrient cycling in Mediterranean environments responds to climate change, we evaluated the effects of the continuous changes in soil nitrogen (N) pools during natural wetting and drying events. We measured soil N pools (microbial biomass [MB-N], dissolved organic nitrogen [DON], NH4+ and NO3) and N ion exchange resins at weekly intervals for one year in two contrasting Mediterranean ecosystems. All soil N fractions in both ecosystems showed high intraseasonal and interseasonal variability that was greater in inorganic soil fractions than in organic N soil fractions. MB-N, DON and resin-NH4+ showed increased concentrations during wetting events. Only the soil NO3 and resin-NO3 showed the opposite trend, suggesting a different response to water pulses compared to the other soil variables. Our results show that N pools are continuously changing, and that this high variability is not associated with the total amount of organic matter and labile soil carbon (C) and N soil fractions found in each ecosystem. The highest variability was found for inorganic N forms, which suggests that organic N forms are more buffered in soils exposed to wetting-drying cycles. Our results suggest that the changes in wetting-drying cycles expected with global climate change may have a significant impact on the availability and turnover of organic and inorganic N.  相似文献   

11.
Recent evidence from nitrogen (N) saturation studies indicates that forest floors in moderately impacted forests are the primary sink for atmospheric N inputs. Some researchers have suggested that the sink capacity of organic horizons is dependent on the amount of available carbon (C), which can be used for microbial N assimilation. To test the hypothesis that C limitation in forest floors exposed to chronic N deposition leads to an enhanced N leaching, a field C input manipulation experiment is under way in a deciduous forest. Since September 1999 aboveground C input has been doubled (by doubling litter input or by amending glucose) or excluded in replicated plots. Here we report the short-term response of concentrations of dissolved inorganic N (DIN: NO3 ?-N and NH4 +-N) in forest floor percolate to the C input manipulation. In autumn following the C input manipulation, DIN concentrations in forest floor percolate decreased in all plots except the No Litter plots compared to the pre-treatment summer concentrations. In contrast, the concentrations of DIN in the No Litter plots remained high. A different seasonal pattern of DIN leaching among treatments, along with measurements of microbial biomass C and potential nitrification rates of forest floor samples, indicates that seasonal N dynamics in the forest floor are largely regulated by C availability changes assoicated with litterfall C input.  相似文献   

12.
Mexico City experiences some of the most severe air pollution in the world. Ozone injury has been documented in sensitive tree species in urban and forested areas in the Valley of Mexico. However, little is known of the levels of other atmospheric pollutants and their ecological effects on forests in the Valley of Mexico. In this study bulk throughfall deposition of inorganic nitrogen (N) and sulfur (S) was measured for one year at a forested site upwind (east) and downwind (southwest) of Mexico City. Edaphic and plant (Pinus hartwegii Lindl.) indicators of N and S nutrient status were also measured. Streamwater NO3 - and SO4 2- concentrations were also determined as an indicator of watershed-level N and S loss. Annual bulk throughfall deposition of inorganic N and S at the high-pollution forested site 23 km southwest of Mexico City (Desierto de los Leones National Park; DL) was 18.5 and 20.4 kg ha-1. Values for N and S deposition at Zoquiapan (ZOQ), a relatively low-pollution site 53 km east of Mexico City, were 5.5 and 8.8 kg ha-1 yr-1. Foliar concentrations of N, foliar N:P and C:N ratios, extractable soil NO3 -, and streamwater NO3 - concentrations indicate that the forest at DL is N enriched, possibly as a result of chronic N deposition. Sulfur concentrations in current-year foliage were also slightly greater at DL than at ZOQ, but S concentrations in one-year-old foliage were not statistically different between the two sites. Streamwater concentrations of NO3 - ranged from 0.8 to 44.6 μEq L-1 at DL compared to 0.0 to 11.3 μEq L-1 at ZOQ. In summary, these findings support the hypothesis that elevated N deposition at DL has increased the level of available N, increased the N status of P. hartwegii, and resulted in export of excess N as NO3 - in streamwater.  相似文献   

13.
Site conditions such as parent material, soils, but also vegetation cover and elevation explain the varying snowmelt streamwater chemistry in the Black Forest. The results are derived from multiple statistical analysis of a regional survey of 104 small mountain streams in the first phase of snowmelt in spring 1984. Cluster analysis classifies the snowmelt streams into three groups which are clearly linked to bedrock geology. Factor analysis finds podsolization, weathering and mineralization processes in the soils of the catchments to have most impact even under snowmelt conditions. There is no evidence that acidic atmospheric deposition directly affects the acidity of the investigated streams. However, the deposition rates are low compared to certain other regions in Central Europe. In areas with podsolic soils the organic soil layer plays a key role in the acidity and mobilization of Al and heavy metals. This is shown in the high correlations between pH, DOC, UV-extinction, color and metal concentrations. Because the concentrations of DOC are low (<10 mg.L?1) and an anion deficit cannot be found, it is assumed that water acidity is not caused by dissolved humic acids, but by cations exchanged in the organic layer of acidic soils. Streamwater chemistry in areas with brown earth soil types is mainly affected by leaching of basic cations in the mineral soil horizons and mineral weathering.  相似文献   

14.
Increased concentrations of solutes in drainage waters following forest clearcutting may affect downstream water quality. The objective of this study was to evaluate some of the processes regulating concentrations of trace metals and Fe in soil solutions and streamwater in a clearcut watershed by determining changes in metal release by soil horizon, stand vegetation and elevation. Commercial whole-tree harvesting of a watershed at the Hubbard Brook Experimental Forest, NH, U.S.A. resulted in increased loss of NO inf3 sup? from the study watershed. This N0 inf3 sup? loss resulted in acidification of soil solutions, which was associated with release of Mn and Zn from mineral soil to soil solutions and streamwater. Significant correlations of Pb and Fe with dissolved organic C (DOC) suggested that mobilization of these metals was linked to DOC transfer. However, there was little evidence of increased release of DOC, Fe, or Pb following the whole-tree harvest, except in a high elevation spruce-fir zone with shallow soils.  相似文献   

15.
Chronic N deposition has been hypothesized to affect DOC production in forest soils due to the carbon demand exerted by microbial immobilization of inorganic N. We tested this hypothesis in field experiments at the Harvard Forest, Petersham, Massachusetts, USA. During four years of sampling soil solution collected beneath the forest floor in zero-tension lysimeters, we observed little change in DOC concentrations (10-30% increase, not statistically significant) associated with elevated N inputs, but did observe significant increases in DON concentrations. Both DOC and DON varied seasonally with highest concentrations in summer and autumn. Mean DON concentrations increased 200-300 % with the highest rate of inorganic N fertilization, and concentrations of DON were highest in samples with high inorganic N concentrations. We conclude that the organic chemistry of soil solution undergoes qualitative changes as a result of long-term N amendment at this site, with small changes in DOC, large increases in DON, and a decline in the C:N ratio of dissolved organic matter.  相似文献   

16.
Discharge to concentration relationships for eight streams studied by the U.S. Geological Survey (USGS) as part of the U.S. Environmental Protection Agency's (U.S. EPA) Long-Term Monitoring Project (1983–89) indicate acidification of some streams by H2SO4 and HNO3 in atmospheric deposition and by organic acids in soils. Concentrations of major ions in precipitation were similar to those reported at other sites in the northeastern United States. Average concentrations of SO4 2? and NO3 ? were similar among streams, but base cation concentrations differed widely, and these differences paralleled the differences in acid neutralizing capacity (ANC). Baseflow ANC is not a reliable predictor of stream acidity at high flow; some streams with high baseflow ANC (>150 Μeq L?1) declined to near zero ANC at high flow, and one stream with low baseflow ANC (<50 Μeq L?1) did not approach zero ANC as flow increased. Episodic decreases in ANC and pH during peak flows were associated with increased concentrations of NO3 ? and dissolved organic carbon (DOC). Aluminum concentrations exceeding 300 Μg L?1 were observed during peak flows in headwater streams of the Neversink River and Rondout Creek. Seasonal Kendall Tau tests for temporal trends indicate that SO4 2? concentrations in streamwater generally decreased and NO3 ? concentrations increased during the period 1983–1989. Combined acid anion concentrations (SO4 2? + NO3 ?) were generally unchanged throughout the period of record, indicating both that the status of these streams with respect to acidic deposition is unchanged, and that NO3 ? is gradually replacing SO4 2? as the dominant acid anion in the Catskill streams.  相似文献   

17.
Forest management practices often generate clear-cut patches, which may be colonized by ants not present in the same densities in mature forests. In addition to the associated changes in abiotic conditions ants can initiate processes, which do not occur in old-growth stands. Here, we analyse the effects of ants and aphid honeydew on litter solution of Norway spruce, microbial enzyme activities, and needle decomposition in a field and greenhouse experiment during summer 2003. In the field, low ant densities had relatively little effects on litter solution 30 cm away from a tree trunk, but significantly increased organic carbon concentrations and decreased inorganic nitrogen concentrations next to a trunk where ants tend to build their nests. In a greenhouse experiment, the addition of ants to lysimeters containing spruce litter significantly increased dissolved organic carbon (DOC), dissolved organic nitrogen (DON), NH4-N, NO3-N and K concentrations in litter solutions compared to the control treatment, while the simulation of aphid infestation (addition of honeydew) significantly increased DOC as a direct result of honeydew leaching, and decreased inorganic N concentrations in leachates. The presence of ants resulted in a changed composition of dissolved organic matter (DOM) with more aromatic and complex compounds, and microbial enzyme activity was significantly higher in litter extracts from the ant treatment compared to the honeydew and control treatment. However, mass loss, litter %C and %N were not affected by ants or honeydew. Our results suggest that ants have a distinct and immediate effect on solution composition and microbial activity in the litter layer indicating accelerated litter decay whereas the effect of honeydew was insignificant.  相似文献   

18.
流溪河水库流域是亚热带典型的山地河源区,研究此流域的碳氮营养盐浓度时空变化特征及其影响因素对揭示亚热带流域生物地球化学循环与保障水资源供给具有重要意义.基于地形、气象、土地利用、土壤和实地采样获得的水质数据,采用相关分析及Elastic Net回归分析法,探讨了流溪河水库流域溪流碳氮营养盐浓度的时空变化特征及其影响因素...  相似文献   

19.
Longitudinal and temporal variations in water chemistry were measured in several low-order, high-elevation streams in the Great Smoky Mountains to evaluate the processes responsible for the acid-base chemistry. The streams ranged in average base flow ANC from ?30 to 28 μeq L?1 and in pH from 4.54 to 6.40. Low-ANC streams had lower base cation concentrations and higher acid anion concentrations than did the high-ANC streams. NO3 ? and SO4 2? were the dominant acid anions. NO3 ? was derived from a combination of high leaching of nitrogen from old-growth forests and from high rates of atmospheric deposition. Streamwater SO4 2? was attributed to atmospheric deposition and an internal bedrock source of sulfur (pyrite). Although dissolved Al concentrations increased with decreasing pH in the study streams, the concentrations of inorganic monomeric Al did not follow the pattern expected from equilibrium with aluminum trihydroxide or aluminum silicate phases. During storm events, pH and ANC declined by as much as 0.5 units and 15 μeq L?1, respectively, at the downstream sites. The causes of the episodic acidification were increases in SO4 2? and DOC.  相似文献   

20.
Abstract. Results from recent studies of peatland biogeochemistry suggest that appropriate soil water sampling techniques are required in order to advance our understanding of peatland soil systems. In a comparative field experiment, concentrations of inorganic solutes and dissolved organic carbon (DOC) were measured in soil water extracted at a depth of 10 cm beneath the surface of deep peat by three techniques: zero-tension (z-t) lysimeters, PTFE suction samplers, and polysulfone suction samplers. The majority of solute concentrations were broadly similar, but mean concentrations of silicon, DOC, iron and aluminium in water extracted by z-t lysimeters and PTFE samplers were in ratios of 1:5; 1:2; 1:5 and 1:3 respectively. Mean conductivity and concentrations of chloride and hydrogen ion were significantly larger in the z-t lysimeter samples, which had sodium, potassium and magnesium to chloride ratios that were very similar to local rainfall. The z-t lysimeters appeared to sample macropores preferentially, while the suction samplers collected micropore water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号