首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.

Purpose  

The use of stormwater basins as constructed wetlands for the bioremediation of agricultural runoff waters contaminated with pesticides has great potential. The structure and dynamics of the bacterial community in such system, and its function with respect to contaminant removal, remain to be investigated in detail.  相似文献   

2.
A virological analyses of a sewage treatment plant which provided chlorinated, activated sludge treated sewage effluent to irrigate a complete two-year crop of sugarcane was made. The raw, the activated sludge treated and the chlorinated sewage effluent, as well as streams and a harbor receiving sewage effluents were concentrated by either the polymer two-phase, PE-60, Al(OH)3, protamine sulfate, or cellulose membrane method and assayed for human enteric viruses. Viruses were recovered from 100% (11/11) of the raw sewages tested at concentrations ranging from 27 to 19 000 PFU l?1 while 76% (13/17) of the activated sludge treated effluent was positive at concentrations ranging from 7 to 5222 PFU l?1. After chlorination, 58% (31/53) of the samples was positive for virus at concentrations ranging from 2 to 750 PFU l?1. Human enteroviruses were also isolated from shallow flowing streams at distances up to 3 mi (5 km) from the closest known sewage effluent discharge point and from a harbor approximately 0.5 mi (0.8 km) from the point of sewage discharge entering the harbor. The viruses most often isolated were echovirus 7, coxsackievirus B-4, B-5 and poliovirus 1, 2, and 3. These results indicate that although activated sludge treatment plus chlorination remove approximately 90% of the virus from the raw sewage, the final treated sewage effluent, which is normally discharged into a stream and in this experimental study to irrigate sugarcane, still contains a significant concentration of infectious viruses. Furthermore, the recovery of enteroviruses from waterways at points distant from the sewage treatment plants indicates that sewage-borne viruses persist in natural water environment. The significance of enteric viruses in waters accessible to the public and used for irrigation purposes remains to be determined.  相似文献   

3.
Yin  Xiaole  Zhang  Jian  Guo  Yeye  Fan  Jinlin  Hu  Zhen 《Water, air, and soil pollution》2016,227(2):1-13
Water, Air, &; Soil Pollution - Flow cytometry was applied to assess the microbiological impact of treated sewage effluent discharge into a small brook carrying surface runoff water. Increases...  相似文献   

4.
Stormwater wetlands collect and attenuate runoff-related herbicides, limiting their transport into aquatic ecosystems. Knowledge on wetland bacterial communities with respect to herbicide dissipation is scarce. Previous studies showed that hydrological and hydrochemical conditions, including pesticide removal capacity, may change from spring to summer in stormwater wetlands. We hypothesized that these changes alter bacterial communities, which, in turn, influence pesticide degradation capacities in stormwater wetland. Here, we report on bacterial community changes in a stormwater wetland exposed to pesticide runoff, and the occurrence of trz, atz, puh, and phn genes potentially involved in the biodegradation of simazine, diuron, and glyphosate. Based on T-RFLP analysis of amplified 16S rRNA genes, a response of bacterial communities to pesticide exposure was not detected. Changes in stormwater wetland bacterial community mainly followed seasonal variations in the wetland. Hydrological and hydrochemical fluctuations and vegetation development in the wetland presumably contributed to prevent detection of effects of pesticide exposure on overall bacterial community. End point PCR assays for trz, atz, phn, and puh genes associated with herbicide degradation were positive for several environmental samples, which suggest that microbial degradation contributes to pesticide dissipation. However, a correlation of corresponding genes with herbicide concentrations could not be detected. Overall, this study represents a first step to identify changes in bacterial community associated with the presence of pesticides and their degradation in stormwater wetland.  相似文献   

5.
Stormwater biofilters manage quantity and quality of urban stormwater runoff. Particulate solids from natural and anthropogenic sources accumulate on paved surfaces and eventually reach receiving waters. Retention of suspended solids in stormwater management systems ensures the quality of stormwater runoff to water resources. Stormwater biofilters are similar in most of design parameters to sand filters employed in water treatment systems. The understanding and design of stormwater biofilters are often based on generic models of sand filters. Unlike water treatment sand filters, which are continuously fed, stormwater biofilters operate intermittently with spontaneously alternating wetting and drying cycles. This results in dynamic pollutant removal pattern that employs different mechanisms during and across rainfall events. As such, pilot scale biofilter columns fabricated with a layer of organic material were operated. Removal of suspended solids was very dynamic, where impact of age of filter, antecedent dry days, and inflow quality varied during and across events. Flush of retained solids and filter material occurred during the stabilisation period during each event while very high removal percentages (more than 90%) were observed after stabilisation, during an event. Clogging was not observed due to re-entrainment, re-distribution, and flush of retained solids during intermittent wetting and drying cycles.  相似文献   

6.
Irrigation of crops with treated wastewater has the potential to introduce effluent-derived organic microcontaminants into surface waters through agricultural runoff. To determine whether compounds indicative of the presence of treated effluent in irrigation water could be identified in agricultural runoff, surface runoff samples collected from effluent-irrigated and rain-fed cultivated fields were analyzed for a broad spectrum of organic compounds. A variety of compounds was identified that appeared to be associated with irrigation with treated wastewater. These compounds included human pharmaceuticals (e.g., carbamazepine, gemfibrozil, carisoprodol), personal care product ingredients (e.g., insect repellent, polycyclic musks), and alkyl phosphate flame retardant chemicals. Most of these compounds appear not to have been previously reported in agricultural runoff. These compounds were present at concentrations below the few published aquatic toxicology data available; however, their potential to elicit more subtle effects in aquatic organisms cannot be excluded. None of these compounds were detected by broad-spectrum analysis in samples from the same fields during runoff-producing rain events.  相似文献   

7.
再生水短期灌溉对土壤-作物中重金属分布影响的试验研究   总被引:16,自引:2,他引:16  
再生水是农业灌溉的重要水资源。该文在田间小区开展了为期4年的再生水灌溉试验,研究了重金属在土壤-作物系统中的转化与分布规律。结果表明:短期内重金属在土壤中的累积不明显,且土壤和作物籽粒中的重金属含量都远低于国家标准规定的允许值,再生水短期灌溉对土壤环境和作物均不会造成污染影响;同时,不同再生水灌溉水量条件下,土壤中重金属含量无显著差异,再生水灌溉带入土壤中的重金属量小于作物收获所带走的重金属量,带出量和带入量对土壤中重金属平衡的影响较小。  相似文献   

8.

The fate of wastewater effluents discharged from 17 septic tank disposal systems located near the shores of eight lakes in northeastern and eastern New York State was investigated. Fecal coliforms chloride, conductivity, dissolved 02, phosphate and various forms of N in ground water samples were analyzed. Of 46 ground water samples, 23 were found to be highly contaminated and 16 slightly contaminated. Only 7 were not contaminated by the wastewater effluent. Seventeen of the 23 highly contaminated samples were collected within 30.5 m of the discharge point of the septic systems. Eleven of these were collected from ground water less than 122 cm below ground level. Eight of the 16 slightly contaminated samples and 3 of the 7 noncontaminated samples were collected at a distance greater than 30.5 m. The depth to the ground water from ground surface and the distance of the ground water from the discharge point of the sewage system are main factors influencing pattern and severity of ground water contamination. This survey indicated that significant nutrient and fecal coliform contamination of lakeshore ground waters was occurring.

  相似文献   

9.
多级串联潜流人工湿地净化城市地面径流的试验研究   总被引:1,自引:0,他引:1  
在室外露天试验场按不同水流方式设计和建造2组多级串联潜流人工湿地,通过中型试验测试其在不同运行方式下对西安市地面径流中COD、NH4+-N、TN、TP的净化效果。结果表明:2组人工湿地系统出水水质均达到GB 3838-2002《地表水环境质量标准》Ⅳ类标准;在湿地净化过程中,填料起主要作用,可吸附40%~50%的污染物,植物和微生物的协同作用可将净化效果提高20%~30%;2种人工湿地系统HRT为36~48h,运行间隔时间为7~15d的运行效果最佳;改变水流方式的复合流人工湿地系统净化效果优于水平潜流人工湿地系统,净化效果高出5%左右。研究设计的2种人工湿地均可用于城市地面径流污染的控制和雨水利用。  相似文献   

10.
Tropical floodplain wetlands and the fish communities they support are subject to great pressure from human demands for water and aquatic living resources. In densely populated agricultural areas where such pressures are greatest, floodplain wetlands may be dewatered for the dual purpose of crop irrigation and fish harvesting. Viewed as highly destructive to fish communities, the practice is widely discouraged but remains common. We investigated the impacts of dewatering on fish abundance and assemblage structure in permanent floodplain wetlands of the lower Mekong region. Draining was carried out only in wetlands where access for fishing and water withdrawal was exclusive to individual households or groups, and where fishing was restricted to draining events. Subsequently, the impacts of draining were found to be equivalent to those of intensive fishing, rather than entirely catastrophic. Many wetlands were drained and fished repeatedly in a single dry season, with catches declining by 72% on average between consecutive events. Species richness and mean length of fish also declined with consecutive dewatering events. Fish biomass was higher in drained wetlands prior to the first and second draining events than in open access, non-drained wetlands. These surprising results suggest that draining of floodplain wetlands is not as fundamentally destructive to fish populations as is often assumed. Where fishing pressure under open access conditions is high, allocation of exclusive rights to fish and dewater wetlands can aid fish conservation as long as dewatering is carried out only once.  相似文献   

11.
Nonpoint stormwater runoff remains a major threat to surface water quality in the USA. More effective stormwater control measures can be designed by understanding patterns in pollutant export with respect to the runoff hydrograph. In particular, nutrient concentrations in urban stormwater can cause deleterious effects in sensitive watersheds in the Southeast and Mid-Atlantic USA. A year-long study captured stormwater samples from 36 storm events at two catchments (one primarily impermeable and the other substantially wooded) and analyzed for total suspended solids and various nutrient species. Using these data, the first flush effect (the assumption that the initial portion of a rainfall-runoff event is more polluted than the later portions) was evaluated based on several published methods and definitions. Based on an analysis of multiple methodologies, the ranking of first flush strength among the pollutants was total suspended solids (TSS) > ammonia (NH3) > total Kjeldahl nitrogen > NO2-NO3 > total phosphorus > orthophosphate (O-PO4). Nitrogen species generally displayed a stronger first flush than phosphorus species, with O-PO4 showing the weakest first flush effect. Various relationships ° climate, land use, and the first flush strength were also explored. Of the rainfall characteristics analyzed, total rainfall and runoff volume each inversely affected the first flush strength of TSS on the more impervious catchment. Although orthophosphate did not have a strong first flush effect, the relative first flush strength for O-PO4 increased with increasing rainfall or runoff. Land use did not influence the first flush strength of the pollutants. On average, most pollutants exhibited a slight first flush effect, but substantial pollutant loading still occurred in the latter portion of the storm??s total runoff volume. Thus, treating the majority of a storm??s total pollutant load requires capturing a commensurate fraction of runoff volume.  相似文献   

12.
Rain gardens have been recommended as a best management practice to treat stormwater runoff. However, no published field performance data existed on pollutant removal capabilities. Replicated rain gardens were constructed in Haddam, CT, to capture shingled-roof runoff. The gardens were sized to store the first 2.54 cm (1 inch) of runoff. Influent, overflow and percolate flow were measured using tipping buckets and sampled passively. Precipitation was also measured and sampled for quality. All weekly composite water samples were analyzed for total phosphorus (TP), total Kjeldahl nitrogen (TKN), ammonia-nitrogen (NH3-N), and nitrite+nitrate-nitrogen (NO3-N). Monthly composite samples were analyzed for copper (Cu), lead (Pb) and zinc (Zn). Redox potential was measured using platinum electrodes. Poor treatment of NO3-N, TKN, organic-N, and TP in roof runoff was observed. Many Cu, Pb and Zn samples were below detection limit, so statistical analysis was not performed on these pollutants. The only pollutants significantly lower in the effluent than in the influent were NH3-N in both gardens and total-N in one garden. The design used for these rain gardens worked well for overall flow retention, but had little impact pollutant concentrations in percolate. These results suggest that if an underdrain is not connected to the stormwater system, high flow and pollutant retention could be achieved with the 2.54 cm design method.  相似文献   

13.

Purpose

Stormwater discharges include contaminated sediments that accumulate in the receiving water body. It is thus important to investigate sediment and pollutant processes and pathways from the catchment to, and within, the receiving water. These processes may be influenced by seasonal changes. The objective of this study was to investigate the stormwater impact on receiving waters in the Luleå area, Northern Sweden; seasonal changes in contamination loads in the receiving waters due to snowmelt; and factors influencing the pollutant pathways in the receiving waters.

Materials and methods

In front of three storm sewer outlets in Luleå, samples of bottom sediment (surface layer 0–2 cm) were collected from the connecting ditches and the downstream water body in autumn and spring (before and after the snow season 2009/2010). The characteristics of the receiving waters differed in geomorphology and vegetation. The sediment was analyzed for loss-on-ignition (LOI), grain size, and bulk concentrations of SiO2, Al2O3, CaO, Fe2O3, MnO, Na2O, P2O5, TiO2, As, Cd, Co, Cr, Cu, Hg, Ni, Pb, S, V, and Zn. The sediment contamination was compared to concentrations at a reference point in Luleå where the bottom sediment was not affected by stormwater discharges and with Swedish environmental quality guidelines. Pearson’s correlation and a principal component analysis were used to further evaluate the results.

Results and discussion

Relative to the reference point, elevated trace metal concentrations were detected in sediments at all three sampling stations. At two of the stations, seasonal variations in ditch sediment grain size, LOI, and contaminant concentrations were observed, originating from stormwater sediment. Snowmelt runoff caused an increased proportion of fine-grained sediment fractions (<0.063 mm) in spring, mainly due to changes in runoff intensity and high sediment loads in the snowmelt runoff. The retention of metals appeared to be due to low turbulence in the water and the presence of organic material.

Conclusions

Stormwater discharge affected the contaminant concentrations in the bottom sediments. The observed seasonal variation of contaminants indicated that relatively high amounts of contaminants are discharged during snowmelt and then reallocated within the receiving water body, either directly or after some temporal retention, depending on the characteristics of the receiving water. A calm water column and the presence of organic material in the receiving water body were crucial for the retention of metals.
  相似文献   

14.
The use of vegetated wetlands for accelerating pesticide removal from agricultural runoff is gaining acceptance as a best management practice. In this study, the dissipation of five cotton pesticides – endosulfan, chlorpyrifos, aldicarb, prometryn and diuron – was quantified in cotton field runoff water contained in glasshouse columns, under light or dark conditions. Two water samples sourced from large, non-vegetated storage dams were compared with two other water samples obtained from vegetated wetlands receiving runoff from cotton fields. All pesticides studied except chlorpyrifos dissipated significantly faster from the storage dam samples than the vegetated wetland samples. Suggested reasons include a greater number of pesticide-degrading microorganisms in the storage dam waters and/or the presence of more organic matter in the wetland samples, limiting contaminant volatilisation and hydrolysis. Exposure to light significantly reduced the rate of endosulfan removal, whereas light increased the rate of chlorpyrifos removal. Half-lives are presented for each pesticide where appropriate.  相似文献   

15.
The effect of three waste waters from two factories, Manquabad (fertilizer) and Bani Quara (detergents and oils), and a sewage effluent from Arab El‐Madabegh (sewage effluent) on the soluble nitrogen and carbon fractions in sunflower plants was studied. In addition, tissue concentrations of sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), chloride (Cl), sulfur (S), phosphorus (P), zinc (Zn), manganese (Mn), copper (Cu), and iron (Fe) were determined. Plants analyzed monthly that were grown in waste waters were found to have significantly higher soluble sugar, hydrolysable carbohydrate, and soluble protein in both their shoots and roots than plants grown in tap water (control). No definite pattern was noted for amino acid responses to the waste water treatment. Element concentrations in the plants were variable, affected by the pollution source differences and monthly sampling. Waste waters significantly enhanced the accumulation of most elements in both shoots and roots. The most notable effect was the increase in the Na, Cl, and Zn concentrations. In addition, waste waters significantly decreased the K content in both shoots and roots. Plants growing in Manquabad waste waters have the highest concentration of Zn, Mn, and Fe. The internal concentration for the mineral elements in the plant tissue was postively and negatively correlated with that found in the waste waters. The negative correlations existed with most elements in the plant tissue and waste waters, indicating the presence of an active regulation system that influenced the element uptake from the waste waters.  相似文献   

16.
Irrigation of arable land with contaminated sewage waters leads to the accumulation of trace metals in soils with subsequent phyto‐/zootoxic consequences. In this study, biochar derived from cotton sticks was used to amend an agricultural silt‐loam soil that had been previously irrigated with trace metal contaminated sewage waters. Metal accumulation and toxicity to spinach (Spinacia oleracea) and fenugreek (Trigonella corniculata) was investigated by measuring concentrations of Cd and Ni in plant tissues and various photosynthetic and biochemical activities of plants. Positive impacts of biochar on both spinach and fenugreek were observed in terms of biomass production that increased from 29% to 36% in case of spinach, while for fenugreek this increase was 32% to 36%. In the control treatment there was an increase in malondialdihyde, soluble sugar, and ascorbic acid contents, indicating heavy metal stress. Biochar applications increased soluble proteins and amino acids in plants and reduced the uptake of Cd from 5.42 mg kg?1 at control to 3.45 mg kg?1 at 5% biochar amended soil and Ni (13.8 mg kg?1 to 7.3 mg kg?1 at 5% biochar) by the spinach plants. In fenugreek, the Cd was reduced from 7.72 mg kg?1 to 3.88 mg kg?1 and reduction in Ni was from 15.45 mg kg?1 to 9.46 mg kg?1 at 5% biochar treated soil, reducing the possibility of transfer up the food chain. This study demonstrates that the use of biochar made from cotton‐sticks, as an amendment to arable soils that have received contaminated irrigation water, could improve plant growth and decrease Cd and Ni uptake to crops, alleviating some of the negative impacts of using sewage waters on arable land.  相似文献   

17.
Inorganic chemicals in urban stormwater and snowmelt runoff originate from catchment geology and anthropogenic activities. The occurrence, partitioning and mobility of six minerals and six trace metal (TM) indicators of anthropogenic activities were studied in stormwater, snowmelt and baseflow in four urban catchments, and the sampling of inorganics was supplemented by measurements of electrical conductivity (EC), pH and total suspended solids (TSSs). Minerals occurred at concentrations several orders of magnitude higher (1–102 mg/L) than those of TMs (10?2–102 μg/L) and reflected the composition of local groundwater seeping into sewers. Concentrations of Ca, K, Mg and Na were enhanced by baseflow contributions and followed closely the electrical conductivity. Al and Fe minerals occurred in insoluble forms, and their pollutographs were similar to those of TMs, whose concentrations mimicked, to some extent, the flux of TSS. The TMs with the highest and lowest particulate fractions were Cr&Pb and Cu&Zn, respectively. The concentrations of total TMs in snowmelt were two to four times higher than those in stormwater, and both sources likely exceeded some of the stormwater effluent limits (for Cd, Cu and Zn) proposed in Sweden. Where such concentrations depended on water hardness, the risk of toxicity might be reduced by elevated hardness of the monitored snowmelt and stormwater. Recognizing the good ecological status of the study area receiving water, Lake Storsjön, some protection against polluted runoff and snowmelt may be needed and could be achieved by implementing stormwater management measures controlling TSS and TMs.  相似文献   

18.
Wetland development offers the opportunity to replace and enhance ecological functions lost through permitted wetland impacts. Components necessary for the restoration and creation of wetlands are presented and examples of wetland construction are described to illustrate the application of wetland design. Land contours, top soil, hydrology and vegetation were manipulated to develop wooded wetlands at sites in Ohio and South Carolina. In Ohio, approximately 30 ha of former crop land/sod farm were modified to bring water from the adjacent creek onto the site and hold it to saturate soils for wetland development. A 2.8 ha ponding area and channels were constructed, berms were built to slow the exit of stormwater runoff, and trees were planted in spring 1994. The mitigation site lies adjacent to a park and high school, thereby also providing community benefits and wetland education opportunities. In South Carolina, 9.5 ha of an abandoned soil borrow pit were converted into wooded wetlands, hydrologically connected to an adjacent swamp. Native plants were removed from the 4 ha of isolated wetlands to be impacted, and were augmented with nursery stock to create the mitigation wetland. Monitoring of vegetation, hydrology and wildlife usage of the constructed system continues to document wetland development and success.  相似文献   

19.
降雨侵蚀力对河岸滩区耕地土壤养分流失的影响   总被引:3,自引:0,他引:3  
河岸滩区的人类农业活动最为直接地影响着河流的水文生态.自1997年小浪底水利枢纽工程成功截流以来,下游孟津扣马黄河滩区1 955hm2的天然滨河湿地有72%常年出露.为当地农业开发提供了原生动力.在10 a期间滩区的土地利用状况也发生了明显的改变,其中28.8%转变成鱼塘-荷花塘等人工湿地,39.8%转变成小麦棉花等旱地农作物,剩下的328 hm2的河床湿地因受农业活动的影响,正发生着严重的退化和萎缩.通过野外定位观测,对孟津黄河滩区河岸耕地土壤养分随降雨径流流失的特征进行了研究.研究结果表明,次降雨侵蚀力(R)是影响径流量和土壤养分流失的重要因素.在弱侵蚀力下,产生的径流以蓄满产流为主;当降雨侵蚀力大于19.0,产生的径流以超渗产流为主.径流土壤养分流失量与次降雨侵蚀力之间存在明显的二次曲线关系.根据滩区土壤的渗透特征,在次降雨侵蚀力R=10.0~45.0之间的中等强度降雨将产生较为严重的土壤养分流失.并强调河岸带的水土保持工作应亟待加强.  相似文献   

20.
Wet detention ponds are a preferable alternative in treating stormwater runoff. Literature suggests that a detention pond’s efficiency in removing principal pollutants of concern, TSS and metals, is highly variable and is affected by a complex array of factors including its geographic location. The objective of this paper was to investigate the TSS and metal removal efficiency of a highway stormwater detention pond in Spokane, Washington along with its flow regime. Pond influent and effluent data for TSS and metal were collected for approximately two years. TSS removal by the pond was found to be 68.1–99.4% with an average of 83.9%. Average metal removal efficiency was 54.7–64.6% which is 72.5–86.9% of the TSS removal. The pond’s flow regime was found to vary with its changing surface topography, a result of sedimentation of suspended solids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号