首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concentrations of Hg, Cu, Pb, Cd, and Zn accumulated by regional macrophytes were investigated in three tropical wetlands in Colombia. The studied wetlands presented different degrees of metal contamination. Cu and Zn presented the highest concentrations in sediment. Metal accumulation by plants differed among species, sites, and tissues. Metals accumulated in macrophytes were mostly accumulated in root tissues, suggesting an exclusion strategy for metal tolerance. An exception was Hg, which was accumulated mainly in leaves. The ranges of mean metal concentrations were 0.035?C0.953 mg g?1 Hg, 6.5?C250.3 mg g?1 Cu, 0.059?C0.245 mg g?1 Pb, 0.004?C0.066 mg g?1 Cd, and 31.8?363.1 mg g?1 Zn in roots and 0.033?C0.888 mg g?1 Hg, 2.2?C70.7 mg g?1 Cu, 0.005?C0.086 mg g?1 Pb, 0.001?C0.03 mg g?1 Cd, and 12.6?C140.4 mg g?1 Zn in leaves. The scarce correlations registered between metal concentration in sediment and plant tissues indicate that metal concentrations in plants depend on several factors rather than on sediment concentration only. However, when Cu and Zn sediment concentrations increased, these metal concentrations in tissues also increased in Eichhornia crassipes, Ludwigia helminthorriza, and Polygonum punctatum. These species could be proposed as Cu and Zn phytoremediators. Even though macrophytes are important metal accumulators in wetlands, sediment is the main metal compartment due to the fact that its total mass is greater than the corresponding plant biomass in a given area.  相似文献   

2.
The To Lich and Kim Nguu Rivers, laden with untreated waste from industrial sources, serve as sources of water for irrigating vegetable farms. The purposes of this study were to identify the impact of wastewater irrigation on the level of heavy metals in the soils and vegetables and to predict their potential mobility and bioavailability. Soil samples were collected from different distances from the canal. The average concentrations of the heavy metals in the soil were in the order zinc (Zn; 204 mg kg?1) > copper (Cu; 196 mg kg?1) > chromium (Cr; 175 mg kg?1) > lead (Pb; 131 mg kg?1) > nickel (Ni; 60 mg kg?1) > cadmium (Cd; 4 mg kg?1). The concentrations of all heavy metals in the study site were much greater than the background level in that area and exceeded the permissible levels of the Vietnamese standards for Cd, Cu, and Pb. The concentrations of Zn, Ni, and Pb in the surface soil decreased with distance from the canal. The results of selective sequential extraction indicated that dominant fractions were oxide, organic, and residual for Ni, Pb, and Zn; organic and oxide for Cr; oxide for Cd; and organic for Cu. Leaching tests for water and acid indicated that the ratio of leached metal concentration to total metal concentration in the soil decreased in the order of Cd > Ni > Cr > Pb > Cu > Zn and in the order of Cd > Ni > Cr > Zn > Cu > Pb for the ethylenediaminetetraaceitc acid (EDTA) treatment. The EDTA treatment gave greater leachability than other treatments for most metal types. By leaching with water and acid, all heavy metals were fully released from the exchangeable fraction, and some heavy metals were fully released from carbonate and oxide fractions. The concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the vegetables exceeded the Vietnamese standards. The transfer coefficients for the metals were in the order of Zn > Ni > Cu > Cd = Cr > Pb.  相似文献   

3.
This study assessed the accumulation of Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in the sediment and biomass of P. australis (Cav.) Trin. ex Steud. in a combined constructed wetland (CW) designed for the treatment of domestic wastewater of 750 population equivalents. The CW consists of two vertical subsurface flow (VSSF) reed beds followed by two horizontal subsurface flow (HSSF) reed beds. The sediment in the VSSF reed bed was contaminated with Cu (201 ?±? 27 mg kg?1 DM) and Zn (662 ?±? 94 mg kg?1 DM) after 4 years of operation. Concentrations of Cd, Cu, Pb and Zn in the sediment generally decreased along the treatment path of the CW. On the contrary, higher Al, Cr, Fe, Mn and Ni concentrations were observed in the sediment of the inlet area of the HSSF reed bed. Redox conditions were presumably responsible for this observed trend. Metal concentrations in the reed biomass did not show excessive values. Accumulation in the aboveground reed biomass accounted for only 0.5 and 1.4% of, respectively, the Cu and Zn mass load in the influent. The sediment was the main pool for metal accumulation in the CW.  相似文献   

4.
The main objective of this study was to compare the effectiveness of different methods (heavy metals in pore water (PW), diffusive gradients in thin films (DGT), diethylene triamine pentaacetic acid (DTPA) extraction, and total heavy metals (THM) in soil) for the assessment of heavy metal bioavailability from soils having various properties and heavy metal contents. The effect of soil heavy metal pollution on shoot yield and sulfatase enzyme activity was also studied. Wheat (Triticum aestivum) was grown in different soils from Spain (n?=?10) and New Zealand (n?=?20) in a constant environment room for 25 days. The bioavailabilities of Cd, Cr, Cu, Ni, Pb, and Zn were assessed by comparing the metal contents extracted by the different methods with those found in the roots. The most widely applicable method was DGT, as satisfactory Cu, Ni, Pb, and Zn root concentrations were obtained, and it was able to distinguish between low and high Cr values. The analysis of the metal concentrations in PW was effective for the determination of Cr, Ni, and Zn content in root. Copper and Pb root concentrations were satisfactorily assessed by DTPA extraction, but the method was less successful with determining the Ni and Cr contents and suitable just to distinguish between high and low concentrations of Zn. The THM in soil method satisfactorily predicted Cu and Pb root concentrations but could only be used to distinguish between low and high Cr and Zn values. The Cd root concentration was not successfully predicted for any of the used methods. Neither shoot yield nor sulfatase enzyme activity was affected by the metal concentrations.  相似文献   

5.
Lygeum spartum, Zygophyllum fabago and Piptatherum miliaceum are typical plant species that grow in mine tailings in semiarid Mediterranean areas. The aim of this work was to investigate metal uptake of these species growing on neutral mine tailings under controlled conditions and their response to fertilizer additions. A neutral mine tailing (pH of soil solution of 7.1–7.2) with high total metal concentrations (9,100 and 5,200 mg kg?1 Zn and Pb, respectively) from Southern Spain was used. Soluble Zn and Pb were low (0.5 and <0.1 mg l?1, respectively) but the major cations and anions reached relatively high levels (e.g. 2,600 and 1,400 mg l?1 Cl and Na). Fertilization caused a significant increase of the plant weight for the three species and decreased metal accumulation with the exception of Cd. Roots accumulated much higher metal concentrations for the three plants than shoots, except Cd in L. spartum. Shoot concentrations for the three plants were 3–14 mg kg?1 Cd, 150–300 mg kg?1 Zn, 4–11 mg kg?1 Cu, and 1–10 mg kg?1 As, and 6–110 mg kg?1 Pb. The results indicate that neutral pH mine tailings present a suitable substrate for establishment of these native plants species and fertilizer favors this establishment. Metal accumulation in plants is relatively low despite high total soil concentrations.  相似文献   

6.
The present study is an attempt to assess the heavy metal contamination in the marine environment of the Arabian Gulf of Saudi Arabia. The concentrations of heavy metals in water and the soft tissues of the bivalve species Meretrix meretrix Linnaeus, 1758, from different stations along the Arabian Gulf coastline, were determined during the summer season of 2008. Bioaccumulation of some heavy metals (Cd, Pb, Cu, and Zn) in fresh parts of the clam (M. meretrix) was measured by an atomic absorption spectrophotometer. The average concentrations of heavy metals in the clam tissues were 0.224?C0.908, 0.294?C2.496, 3.528?C8.196, and 12.864?C24.56 mg/kg wet weight for Cd, Pb, Cu, and Zn, respectively. In water, the mean concentration values of these metals were arranged in the following descending order: Pb > Cu > Zn > Cd. The heavy metal concentrations in tissues of M. meretrix were within the acceptable standards set by the US Environmental Protection Agency, the Commission Européenne, and the Food and Drug Administration of the USA. From the human public health point of view, these results seem to show no possibility of acute toxicities of Cd, Cu, Pb, and Zn if the edible clam is consumed. It is recommended that relevant authorities should carry out a continual assessment on the levels of these pollutants in the studied area.  相似文献   

7.
朝天委陵菜的重金属耐性与吸收性研究   总被引:1,自引:0,他引:1  
利用植物生长室水培试验和温室土培盆栽试验的方法,研究了朝天委陵菜在不同浓度Pb水培条件下和Cu、Zn、Pb、Cd复合污染土壤条件下的重金属耐性和吸收性,结果表明,水培条件下随着处理浓度的增加,朝天委陵菜均生长良好,虽高浓度Pb处理下出现植株矮小、叶渐黄、根系变黑等毒害症状,但植株并未死亡,表明在水培条件下朝天委陵菜对Pb具有极强的耐性;在最高浓度3 600μmol/L Pb处理下地上部和根中Pb浓度达到最大值,分别为947 mg/kg和71 053 mg/kg。在温室土培盆栽条件下,朝天委陵菜在外加Cu、Zn、Pb和Cd分别为200、1 000、1 000和5 mg/kg的土壤上较对照生长受到抑制,地上部Cu、Zn、Pb和Cd浓度分别达到741±164、18 248±2 222、1 543±483和29.4±5.2 mg/kg;外加重金属更高时则导致植株死亡。朝天委陵菜对Pb胁迫和Cu、Zn、Pb、Cd复合污染土壤具有较强的耐受性,可作为重金属尤其是Pb污染土壤的修复植物。  相似文献   

8.

Purpose

The objectives of this study were to explore the influences of pH on the release of Cu, Zn, Cd, Pb, Ni, and Cr in sediments derived from the upstream, middle, and downstream reaches of Dongdagou stream in Gansu Province, Northwest China, and to examine the fractionation changes of heavy metals in the sediments after reaching their release equilibrium under different pH conditions.

Materials and methods

Sediment samples were obtained using a stainless steel grab sampler to collect the uppermost 10 cm of sediment from the channel bed. The pH-dependent release experiment was conducted in the solid-to-liquid ratio of 1:20 at different pH values (2, 4, 6, 8, 10, and 12) at room temperature. The total Cu, Zn, Cd, Pb, Ni, and Cr concentrations in the sediments were digested using an acid digestion mixture (HNO3 + HF + HClO4) in an open system. Metal fractionation of selected sediments was obtained using the Tessier sequential extraction procedure. Heavy metal concentrations in the samples were determined using atomic absorption spectrophotometry.

Results and discussion

The mean concentrations of heavy metals in sediments decreased in the following order: Zn (1676.67 mg kg?1) > Pb (528.65 mg kg?1) > Cu (391.34 mg kg?1) > Cr (53.48 mg kg?1) > Ni (34.27 mg kg?1) > Cd (11.53 mg kg?1). Overall, the solubility of Cu, Zn, Cd, Pb, and Ni decreased with increasing pH, and they were strongly released at pH 2. Moreover, the solubility of Cr increased with increasing pH, and its release was highest at pH 12. After reaching the release equilibrium of heavy metals under different pH conditions, the percentages of organic Cu, Zn, Cd, and Fe-Mn oxyhydroxide Pb decreased, compared to their initial fractions. The residual fractions of Ni and Cr were dominant, regardless of pH.

Conclusions

The average concentrations of Cu, Zn, Cd, and Pb in sediments were highly elevated compared with the soil background values in Gansu Province, China. The results of this pH-dependent release experiment showed that the release behaviors of Cu, Zn, Pb, and Cr followed an asymmetric V-shaped pattern, whereas Cd and Ni followed an irregular L-shaped pattern. The changes in the release of heavy metals in sediments were related to their redistribution between chemical fractionations.
  相似文献   

9.
The relationships between heavy metal concentrations and physico-chemical properties of natural lake waters and also with chemical fractions of these metals in lake sediments were investigated in seven natural lakes of Kumaun region of Uttarakhand Province of India during 2003–2004 and 2004–2005. The concentrations of Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb in waters of different lakes ranged from 0.29–2.39, 10.3–38.3, 431–1407, 1.0–6.6, 5.3–12.1, 12.6–166.3, 0.7–2.7 and 3.9–27.1 μg l?1 and in sediments 14.3–21.5, 90.1–197.5, 5,265–6,428, 17.7–45.9, 13.4–32.0, 40.0–149.2, 11.1–14.6 and 88.9–167.4 μg g?1, respectively. The concentrations of all metals except Fe in waters were found well below the notified toxic limits. The concentrations of Cr, Mn, Ni, Cu, Zn, Cd and Pb were positively correlated with pH, electrical conductivity, biological oxygen demand, chemical oxygen demand and alkalinity of waters, but negatively correlated with dissolved oxygen. The concentrations of Cr, Ni, Zn, Cd and Pb in waters were positively correlated with water soluble + exchangeable fraction of these metals in lake sediments. The concentrations of Zn, Cd and Pb in waters were positively correlated with carbonate bound fraction of these metals in lake sediments. Except for Ni, Zn and Cd, the concentrations of rest of the heavy metals in waters were positively correlated with organically bound fraction of these metals in lake sediments. The concentrations of Cr, Mn, Ni, Cu and Zn in waters were positively correlated with reducible fraction of these metals in lake sediments. Except for Cd, the concentrations of rest of the metals in waters were positively correlated with residual fraction and total content of these heavy metals in lake sediments.  相似文献   

10.

Purpose

Heavy metal distribution in soils is affected by soil aggregate fractionation. This study aimed to demons trate the aggregate-associated heavy metal concentrations and fractionations in “sandy,” “normal,” and “mud” soils from the restored brackish tidal marsh, oil exploitation zone, and tidal mudflat of the Yellow River Delta (YRD), China.

Materials and methods

Soil samples were sieved into the aggregates of >2, 0.25–2, 0.053–0.25, and <0.053 mm to determine the concentrations of exchangeable (F1), carbonate-bound (F2), reducible (F3), organic-bound (F4), and residual fraction (F5) of Cd, Cr, Cu, Ni, Pb, and Zn.

Results and discussion

The 0.25–2 mm aggregates presented the highest concentrations but the lowest mass loadings (4.23–12.18 %) for most metal fractions due to low percentages of 0.25–2 mm aggregates (1.85–3.12 %) in soils. Aggregates <0.053 mm took majority mass loadings of metals in sandy and normal soils (62.04–86.95 %). Most soil aggregates had residual Cr, Cu, Ni, Zn, and reducible Cd, Pb dominated in the total Cd, Cr, Cu, Ni, Pb, and Zn concentrations. Sandy soil contained relatively high F4, especially of Cu (F4) in 0.25–2 mm aggregates (10.22 mg kg?1), which may relate to significantly high organic carbon contents (23.92 g kg?1, P?<?0.05). Normal soil had the highest total concentrations of metals, especially of Cu, Ni, and Pb, which was attributed to the high F3 and F5 in the <0.053 mm aggregates. Although mud soil showed low total concentrations of heavy metals, the relatively high concentrations of bioavailable Cd and Cu resulted from the relatively high Cd (F2) and Cu (F2) in the >2 mm aggregates indicated contribution of carbonates to soil aggregation and metal adsorption in tidal mud flat.

Conclusions

Soil type and aggregate distribution were important factors controlling heavy metal concentration and fractionation in YRD wetland soil. Compared with mud soil, normal soil contained increased concentrations of F5 and F3 of metals in the 0.053–0.25 mm aggregate, and sandy soil contained increased concentrations of bioavailable and total Cr, Ni, and Zn with great contribution of mass loadings in the <0.053 mm aggregate. The results of this study suggested that oil exploitation and wetland restoration activities may influence the retention characteristics of heavy metals in tidal soils through variation of soil type and aggregate fractions.
  相似文献   

11.
Changes in the soil chemical environment can be expected to increase the leaching of trace metals bound in soils. In this study the mobility of trace metals was monitored in a column experiment for two contaminated urban soils. Four different treatments were used (i.e. rain, acid rain, salt and bark). Leachates were analysed for pH, dissolved organic carbon (DOC) and for seven trace metals (cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn)). The salt treatment produced the lowest pH values (between 5 and 6) in the effluent whereas the DOC concentration was largest in the bark treatment (40–140 mg L?1) and smallest in the salt and acid treatments (7–40 mg L?1). Cadmium, Ni and Zn were mainly mobilised in the salt treatment, whereas the bark treatments produced the highest concentrations of Cu and Pb. The concentrations of Cu, Cr, and Hg were strongly correlated with DOC (r 2?=?0.90, 0.91 and 0.96, respectively). A multi-surface geochemical model (SHM-DLM) produced values for metal dissolution that were usually of the correct magnitude. For Pb, however, the model was not successful indicating that the retention of this metal was stronger than assumed in the model. For all metals, the SHM-DLM model predicted that soil organic matter was the most important sorbent, although for Pb and Cr(III) ferrihydrite was also important and accounted for between 15 and 50% of the binding. The results confirm the central role of DOC for the mobilization of Cu, Cr, Hg and Pb in contaminated soils.  相似文献   

12.
Freshly deposited stream sediments from six urban centres of the Ganga Plain were collected and analysed for heavy metals to obtain a general scenery of sediment quality. The concentrations of heavy metals varied within a wide range for Cr (115–817), Mn (440–1 750), Fe (28 700–61 100), Co (11.7–29.0), Ni (35–538), Cu (33–1 204), Zn (90–1 974), Pb (14–856) and Cd (0.14–114.8) in mg kg-1. Metal enrichment factors for the stream sediments were <1.5 for Mn, Fe and Co; 1.5–4.1 for Cr, Ni, Cu, Zn and Pb; and 34 for Cd. The anthropogenic source in metals concentrations contributes to 59% Cr, 49% Cu, 52% Zn, 51% Pb and 77% Cd. High positive correlation between concentrations of Cr/Ni, Cr/Cu, Cr/Zn, Ni/Zn, Ni/Cu, Cu/Zn, Cu/Cd, Cu/Pb, Fe/Co, Mn/Co, Zn/Cd, Zn/Pb and Cd/Pb indicate either their common urban origin or their common sink in the stream sediments. The binding capacity of selected metals to sediment carbon and sulphur decreases in order of Zn > Cu > Cr > Ni and Cu > Zn > Cr > Ni, respectively. Stream sediments from Lucknow, Kanpur, Delhi and Agra urban centres have been classified by the proposed Sediment Pollution Index as highly polluted to dangerous sediments. Heavy metal analysis in the <20-μm-fraction of stream sediments appears to be an adequate method for the environmental assessment of urbanisation activities on alluvial rivers. The present study reveals that urban centres act as sources of Cr, Ni, Cu, Zn, Pb and Cd and cause metallic sediment pollution in rivers of the Ganga Plain.  相似文献   

13.
The contents of ten elements [Cd, Pb, W, Zn, Mn, As, Se, Cr, Cu, and organic carbon (Corg)] have been determined in the surficial sediments of Keratsini harbor, Saronikos Gulf, Greece. The contamination of the sediments was assessed on the basis of geoaccumulation index and to corresponding sediment quality guidelines (SQGs) effects range low/effects range median. The results revealed highly elevated Cd, Pb, W, Zn, As, Se, Cr, Cu, and Corg values (Cd, 190–1,763 mg kg?1; Pb, 521–1,263 mg kg?1; W, 38–100 mg kg?1; Zn, 409–6,725 mg kg?1; Mn, 95–1,101 mg kg?1; As, not detectable–1,813 mg kg?1; Se, not detectable–58 mg kg?1; Cr, 264–860 mg kg?1; Cu, 195–518 mg kg?1; and Corg, 0.69–4.41%). The enrichment of metals in the sediments results from the contribution of the central Athens sewage outfall through which the waste of the Attica basin ends up in Keratsini harbor as well as from industrial and ship contaminants.  相似文献   

14.
ABSTRACT

The present work investigates the impact of municipal solid waste mechanical separation and industrial composting on the metal content of composts and assesses the availability of Cu, Cd, Cr, Pb, and Zn at different maturation stages of compost produced at the largest mechanical biological treatment plant in Greece. Substantial metal contamination of composts was found to take place within the industrial facility, attributed to segmentation and sorption mechanisms during composting. In fresh compost, Zn is present in mobile fractions (41%), Cu is mostly held on the less mobile organic phases (57%), Cd is mostly present in bioavailable forms (51%), whereas Pb and Cr are associated with less mobile phases, such as Fe-Mn oxides and organic molecules. Cd, Cu, and Zn migrate to more inert phases during compost maturation, paralleled by the decrease of overall metal leachability. Cu and Pb concentrations (mg kg?1) exceeded the permissible limits in both composts (Fresh: Cu: 213 ± 48, Pb: 128 ± 69; Mature: Cu: 263 ± 1, Pb: 158 ± 29) and water leachates (Fresh: Cu: 106 ± 4, Zn: 126 ± 13; Mature: Cu: 50 ± 0.50, Zn: 118 ± 20). Nevertheless, toxic effects were not observed in monocot, dicot, or aquatic biosensor plants as indicated by radicle and shoot growth and visual quality ratings. Since metal availability in composts is related to their leaching potential, metal speciation studies should be conducted in leachates for the appropriate characterization of industrial composts.  相似文献   

15.
Abstract

In an effort to expand the data base concerning heavy metal concentrations in Maryland tobacco and to acquire information on the nutritional status for Cu, 402 samples of cured tobacco collected on farms over the period 1980 to 1983 were analyzed for their Zn, Mn, Pb, Ni, and Cd contents, and the Cu contents were examined in 198 samples from 1982 and 1983. Mean concentrations for individual metals in mg/kg were: Zn (43.6), Cu (7.6), Mn (192), Pb (1.92), Ni (1.20), and Cd (2.26). Approximately 5% of the samples contained Zn, Cu, Ni, Pb, or Cd concentrations higher than expected for these elements in Maryland tobacco. Some 25% of the samples contained Mn levels within the range 332–2400 mg/kg which were likely caused by low soil pH conditions. A total of 5% of the cured samples were borderline deficient in Zn (≤18 mg/kg), and 27% were considered deficient in Cu (≤5.2 mg/kg). Problems associated with inadequate liming programs and the use of croplands for municipal waste disposal were discussed.  相似文献   

16.
Environmental damages like forest decline in Northern Slovakia could be a result of long-distance transport of pollutants with the dominating north-west winds. On 10 sites, primarily in the northbound upper slopes of west-east oriented mountain ranges in Northern Slovakia, the extent of the heavy metal contamination in soils along a north-south transect was examined. Oi, Oe, Oa, A, and B horizons were sampled and the total concentrations of Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were determined. The ranges of heavy metal concentrations in the forest floor were higher than reported for comparable samples from Bavarian soils except for Zn (Cd: 0.65–1.77; Cr: 12–40; Cu: 19–41; Ni: 8–24; Pb: 70–187; Zn: 31–92 mg kg?1), in the mineral soil the concentrations were lower. The depth distribution of the metal concentrations indicated a contamination with Cd, Cr, Cu, Ni, Pb, and Zn. The concentration differences between forest floor and mineral soil tended to be higher at the northern than at the southern sites for Cu, Ni, Pb, and Zn, indicating a long-distance transport from the north. Correlation and principal component analyses of the total metal concentrations revealed three groups: Cu, Pb, and Zn inputs mainly seemed to result from long-distance transport from the north, Cr and Ni inputs additionally from local sources. Cd probably had its origin mainly in local sources. This result was further confirmed by the grouping of the sites when clustered.  相似文献   

17.
Over 250 years of metal smelting in Swansea (South Wales) left metal-rich slag across the Nant-y-Fendrod valley floor and aerial metal pollution over the wider landscape. Reclamation since 1965 included: (1) partial removal of spoil, flattening the rest and capping it with topsoil, (2) culverting watercourses and creation of two flood-relief lakes and (3) revegetation of the aerially polluted landscape. This paper assesses downstream changes along the Nant-y-Fendrod stream–lake system in metal levels of (a) fine bed-sediment and (b) streamwater and seepages. In the upper, ‘aerial-pollution zone’ total Zn, Cu, Pb and Cd in surface bed-sediment increase marginally within the first lake to 892, 207, 212 and 7.2 mg/kg, respectively. Farther downstream, Cu and Pb rise sharply, and Zn and Cd progressively, to 12,853, 595, 871 and 155 mg/kg, respectively, as the stream traverses the ‘capped metal-rich waste zone.’ Zn and Cd reach 22,671 and 229 mg/kg, respectively, in the second lake, before falling 35–56% below its outlet. Streamwater metal levels rise (but seepage metal concentrations remain stable) in most storm events, though patterns (including whether levels are reduced downstream of the lake) vary with antecedent conditions. Possible interactions between seepages, bed sediment and streamwater metal dynamics are explored.  相似文献   

18.
Bioretention cells, also known as raingardens, are increasingly being constructed as a means to collect, infiltrate, and treat stormwater runoff. There are concerns, however, about how stormwater management practices might function in terms of infiltration and pollutant removal as they age. Saturated hydraulic conductivity (K sat) values were obtained for eight cells in 2006 and again for three of those cells in 2010 using an infiltrometer. A strong positive correlation of mean K sat with service time was observed (slope = 10.2?±?2.4 cm/h per year, R 2 = 0.67). Results from metals analyses of bioretention media cores collected from six bioretention cells showed the expected trend of Cu and Zn enrichment at the surface while Cd was detected only in one out of 72 media samples analyzed. Sorption isotherms from batch testing of field media samples (T = 22.5 °C, pH = 7.2) were used to estimate metal sorption capacities based on representative stormwater Cd and Zn concentrations. Cu was not considered, as very little of the metal is dissolved under these conditions (22.8?±?7.1 %). The mean equilibrium sorption capacities for Cd (10.2?±?3.1 mg/kg) and Zn (294.9?±?14.9 mg/kg) far exceeded observed levels in the bioretention media such that the remaining sorption capacity was ≥83 % for Zn and ≥90 % for Cd for the cells. Overall, the results of this investigation suggest that bioretention cells can provide many years of effective infiltration (>6 years) and metals removal performance (>25 years).  相似文献   

19.
云南滇池沉积物中重金属的形态分布特征   总被引:7,自引:0,他引:7  
Fractionation of heavy metals in sediments can help in understanding potential hazards of heavy metals. The present study analyzed total concentrations and fractions of selected heavy metals (Cd, Cr, Cu, Pb, and Zn) in surface sediments from Dianchi Lake, Yunnan Province, China, as well as factors that may affect distributions of the various heavy metal fractions. Total concentrations of the heavy metals decreased in the order Zn 〉 Cu 〉 Pb 〉 Cr 〉 Cd. These heavy metals, except Cr, were much higher than their background levels, indicating that Dianchi Lake was polluted by Cd, Zn, Pb, and Cu. Cadmium occurred mainly as the non-residual fraction (sum of the HOAc-soluble, reducible, and oxidizable fractions) (97.6%), and Zn (55.7%) was also predominantly found in the non-residual fraction. In contrast, most of the Cr (88.5%), Pb (81.8%), and Cu (59.2%) occurred in the residual fraction. Correlation analysis showed that total heavy metal concentrations, organic matter and reducible Fe were the main factors affecting the distributions of the various heavy metal fractions. In the Walhai section of Dianchi Lake (comprising 97% of the lake area), the concentrations of Cd, Zn, Pb, and Cu in the non-residual fraction were significantly lower (P ≤ 0.01 or 0.05) than those of the Caohal section (3% of the lake area). This indicated that potential heavy metal hazards in the Caohai section were greater than the Waihai section.  相似文献   

20.
We assessed the response of the tomato variety “Tiny Tom” to the application of copper (Cu) and zinc (Zn) fertilizers in three tropical peat soils of Sarawak: mixed swamp forest, Alan forest and Padang Alan forest. Limed soils were used because peat soils in their natural condition are unsuitable to sustain healthy growth of most crops. Yield responses were correlated with added Cu and Zn using Mitscherlich model. Adequate levels of applied Cu and Zn were calculated as those which resulted in 90% of the maximum obtainable shoot dry weight. Application of Cu and Zn significantly (P ≤ 0.05) increased the shoot dry weight and the shoot Cu and Zn concentrations of tomato. Application of the equivalent of 8.3 kg Cu and 5.2 kg Zn per ha was required to achieve 90% of the maximum shoot dry weight. In tomato shoots, the critical concentration for Cu was 18 mg/kg and for Zn, 92 mg/kg. The corresponding concentrations for diethylenetriaminepentaaceticacid (DTPA) extractable Cu and Zn in the soils were 2.3 mg Cu kg ?1 and 3.6 mg Zn kg ?1 . However, the addition of Cu fertilizer also increased Zn uptake by tomato plant, probably by displacing native Zn that was weakly sorbed to the soil solid phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号