首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selenium (Se) is an essential element for humans but is not considered as essential for plants. However, its beneficial role in improving plant growth and stress tolerances is well established. In order to study the role of Se in cadmium (Cd) toxicity in pepper (Capsicum frutescens cv. Suryankhi Cluster), this experiment was carried out in greenhouse conditions. Treatments comprised Cd [0, 0.25, and 0.5 mM cadmium chloride (CdCl2)] and Se [0, 3, and 7 µM sodium selenite (Na2SeO3)] with three replications. The result showed that Cd decreased chlorophyll a, chlorophyll b, and carotenoids, whereas Se supplementation diminished Cd toxicity on photosynthetic pigment. Selenium at 7 µM significantly increased the leaf area in the plants grown at 0.25 mM Cd. The application of Se at 3 µM with 0.25 mM Cd and Se at 3 µM and Se at 7 µM with 0.5 mM Cd increased the activity of catalase (CAT). Selenium at 7 µM decreased the proline content of pepper leaves exposed to Cd at 0.5 mM (30%). Selenium significantly enhanced the antioxidant activity of leaves, which was diminished by Cd toxicity. In general, Se has a beneficial effect on plant growth and is an antioxidant enzyme of pepper cv. Suryankhi Cluster under Cd stress and non-stress conditions.  相似文献   

2.
Brassica rapa is frequently used as a vegetable for human consumption and can accumulate metals that are bioavailable in soils. We studied the oxidative stress induced by 25 μM cadmium (Cd) and 50 μM copper (Cu) on Brassica rapa leaves and evaluated the intracellular antioxidative plant response mechanisms and the accumulation of these metals. With this purpose, hydrogen peroxide (H2O2) concentration, lipid peroxidation, and enzymatic and nonenzymatic responses was determined. The obtained results indicate that Cd and Cu induced different plant responses. Oxidative stress induced by Cu was characterized by increased lipid peroxidation and free proline levels. Guaiacol peroxidase and ascorbate peroxidase showed a relevant role in H2O2 removal. Cadmium did not influence lipid peroxidation, H2O2, proline and glutathione contents, and the enzymatic response mainly involves superoxide dismutase and ascorbate peroxidase. It was concluded that both excess Cu and Cd induced oxidative stress but plant response is characterized by different antioxidative response mechanisms.  相似文献   

3.
Abstract

In this research the effect of foliar application of selenium (Se) at four levels (Na2OSe4; 0, 5, 10 and 20?mg L?1) was evaluated on some phytochemical characteristics of Sultana grapevine under different salinity levels (NaCl; 0 or 75?mM). The vines were fed twice a week with Hoagland nutrient solution and Se was foliar applied twice with 24 intervals. During growing period, plant height, leaf number and leaf area were recorded. Moreover, at the end of experiment, mature leaves from middle nods of canes were used for measurement of some phytochemical indices. According to results, Se application had a positive effect on plant height, leaf numbers, leaf area and photosynthetic pigments content especially at 5?mg L?1 and to some extent 10?mg L?1 Se levels. Under salinity stress, foliar application of Se at 5?mg L?1 considerably decreased vines leaves electrolyte leakage and lipid peroxidation values compared to non se-treated plants under salinity stress condition. Selenium had an additive effect on salinity stress (75?mM NaCl) induced accumulation of total phenol, total flavonoid, soluble sugars and proline content in leave of vines. Moreover, the interaction of salinity and Se at 5 and 10?mg L?1 improved leaves antioxidant enzymes activities in Sultana grapevine. Likewise, foliar application of Se improved leaf mineral content in 75?mM NaCl -treated vines. Totally, foliar application of selenium (Se at 5 or 10?mg L?1) increased salt tolerance through improvement in nutritional balance and by enzymatic and non-enzymatic antioxidant capacity in grapevine leaves.  相似文献   

4.
To examine tolerance of cadmium (Cd) by eggplant (Solanum melongena L.) cv. ‘Hybrid PK 123’, plants were grown in refined sand in complete nutrient solution for 52 days in a glasshouse at ambient temperature. Cadmium sulfate was superimposed on day 53, at variable levels: nil, 0.05, 0.1, 0.2, 0.4, and 0.5 mM. Influence of excess Cd was discernible after 5 days of metal supply at 0.4 and 0.5 mM Cd as depression in growth. At these levels, foliar symptoms were initiated as paling of young leaves at the base progressing upward. With increase in age, affected leaves turned golden yellow and these effects spread to lower leaves. Leaf size and floral initiation were very much restricted. These types of phenotypes induced leaf senescence. Excess Cd reduced the biomass and fruit yield of plants. At higher levels (>0.1 mM) of Cd, fruit formation was completely inhibited and fruits formed at 0.05 and 0.1 mM Cd were smaller in size. Besides this, excess Cd disturbed the metabolism of eggplant by reducing the concentration of chlorophyll (a and b), protein, Hill reaction activity, and activity of antioxidant enzymes—catalase and ascorbate peroxidase; whereas the activity of peroxidase and ribonuclease increased in leaves of eggplant. Cadmium excess reduced the concentration of Fe and Zn and Cd increased that of proline, lipid peroxidation, phenols, reducing sugars and Cd concentration in leaves of eggplant.  相似文献   

5.
Two cucumber cultivars (Cucumis sativus L.) exposed to three cadmium (Cd) concentrations (0, 1, and 5 μM) were supplemented or un-supplemented with silicon (Si) (1 mM). Exposure to 1 μM Cd had no effect on shoot and root dry mass, whereas exposure to 5 μM Cd significantly reduced plant growth. Addition of Si stimulated the growth of Cd-treated cucumber. Exposure to 5 μM Cd significantly increased shoot Cd concentration and decreased iron (Fe) and zinc (Zn) concentration. Plants supplied with Si had lower Cd and higher Zn and Fe compared with unsupplied plants. Exposure to Cd resulted in a higher production of malondialdehyde (MDA). Si nutrition partly ameliorated lipid peroxidation induced by Cd toxicity. Activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX), and catalase (CAT) decreased, whereas ascorbate peroxidase (APX) activity increased in response to 5 μM Cd. Induction of APX activity might play an important role in the response of cucumber to Cd toxicity.  相似文献   

6.
The effects of boron (B) and high irradiance (HI) on the growth and activities of antioxidant enzymes have been investigated in cowpea plants (Vigna unguiculata L. Walp. ‘P152’). A significant decrease in root and shoot lengths were observed in B-deficient (0 ppm) and B-excess (50 ppm) plants compared to B-sufficient (0.5 ppm) plants. Under B and B + HI stress, significant increase in membrane permeability (EC), lipid peroxidation (MDA) and hydrogen peroxide (H2O2) were observed in B-deficient and B-excess leaves. Under B and B + HI stress, the superoxide dismutase (SOD) activity was found to be significantly high whereas the peroxidase (POX), polyphenol oxidase (PPO) activities and the non-enzymatic antioxidants, ascorbic acid and proline accumulation were found to be significantly decreased in B-deficient and B-excess leaves which showed the B inefficiency and susceptible nature of the cowpea plants to B and B + HI stress.  相似文献   

7.
Heavy metal-polluted water has become a problem for sustainable environment, agriculture, and human health. Phyto-accumulation is an eco-friendly technique for decontamination of metal-polluted water and soil. The efficiency of phyto-accumulation and rhizo-filtration can be enhanced by the application of certain nutrients to accumulator plants. In this study, we focused on the role of iron (Fe) in rhizo-filtration and phyto-accumulation of cadmium (Cd) from polluted water/media, using Ricinus communis plant. Medium was contaminated with 10 ppm Cd while Fe (2.50, 5.00, and 7.50 ppm) was applied both as foliar spray and medium addition separately. Accumulation of Cd and concentrations of soluble proline, phenolic compounds, and chlorophylls were measured in plant tissues. Addition of Fe into media significantly increased biomass in the plants but decreased Cd absorption by roots and its accumulation in other tissues of the plants. Foliar application of Fe, especially 7.5 ppm, significantly increased biomass as well as accumulation of Cd in tissues of the plants. Contents of soluble proline (41.88?±?3.56 ppm) and phenolics (171.00?±?4.98 ppm) in leaves were highly increased by foliar spray of 7.5 ppm Fe on the plants. On the other hand, highest concentrations of free proline (67.00?±?2.00 ppm) and total phenolics (82.67?±?2.52 ppm) in plant roots were observed in 7.5 ppm Fe added to media and as foliar spray, respectively. Strong correlations were observed between phenolics content in roots and leaves with Cd accumulation after foliar application of 7.5 ppm Fe.  相似文献   

8.
The present study investigated the mediatory effects of salicylic acid (SA) in alleviating nickel (Ni) toxicity in Melissa officinalis L. One-month-old plants were exposed to different levels of Ni and SA concentrations in sand culture under greenhouse conditions. Excess Ni significantly inhibited the growth indices and dramatically increased accumulation of Ni in the leaves and roots. Exogenously SA applications (1.0 mM) led to a substantial improvement in the shoot and root fresh and dry weights. Foliar application of SA mitigated the deleterious effects of Ni and decreased its transport to the shoots. The results showed a significant loss in chlorophylls and carotenoids contents only at 500 µM of Ni. The impact of SA was not significant in terms of chlorophyll contents, while carotenoid contents of the Ni-stressed plants were significantly affected by SA. Exposure to Ni did not modify proline accumulation. Hydrogen peroxide accumulation was observed under Ni stress, while lipid peroxidation significantly decreased at the same conditions. Application of SA caused a significant decrease in electrolyte leakage of Ni-stressed plants. Due to the high potential for Ni accumulation in the roots and translocation factor values lower than 1, M. officinalis could be introduced as an excluder medicinal plant.  相似文献   

9.
Solution cultures were conducted to investigate the effects of cadmium (Cd) toxicity on the growth of mung bean (Phaseolus aures Roxb. cv VC‐3762), autoxidation rate of tissue and accumulation of proline. Results showed that leaf proline concentrations increased significantly in response to increasing Cd concentrations from 0 to 20 umol L‐1 Cd in the solution. Compared to the control, Cd treatments increased lipid peroxidation (malondialdehyde concentration) and autoxidation rate of leaves and roots. In all treatments, leaves of mung bean had greater proline concentration and had lower the autoxidation rate of tissue than the roots. There was a close positive relationship between accumulation of free proline and the rate of tissue autoxidation.  相似文献   

10.
Although boron deficiency (BD) is a drastic disorder to the agriculture crops, its effects on watermelon still unknown. Therefore, the present study investigates the effect of BD (0 and 0.5 mg L?1) on different morphological, physiological and biochemical traits, and mineral uptake during early seedlings stage of watermelon. B-deficiency induced leaf chlorosis in watermelon initiated from the leaf margins and tips. Despite that, BD increased shoot length, and root and shoot dry weight of BD-watermelon seedlings. BD decreased leaf chlorophyll and carotenoid contents, and photosynthetic parameters without affecting quantum yield of PSII. BD significantly inhibited total soluble protein accumulation, while leaf proline content was unaffected. A significant increase in antioxidant enzyme activities in response to higher hydrogen peroxide (H2O2) generation could possibly reduced lipid peroxidation and promoted BD-watermelon plant growth. BD influenced mineral uptake variously: the induction of phosphorus (P) and zinc (Zn), and the preservation of potassium (K), calcium (Ca) and molybdenum (Mo) levels in the leaves could maintain watermelon growth; while, the inhibition of magnesium (Mg) uptake seemed to be responsible for suppressed leaf chlorophyll and photosynthesis. These results would further help in understanding the physiological pathways and mechanisms associated with BD especially in watermelon, and provide database for fertilizer recommendations in B-deficient areas.  相似文献   

11.
Interactions between Zn and Cd on the accumulation of these metals in coontail, Ceratophyllum demersum were studied at different metal concentrations. Plants were grown in nutrient solution containing Cd (0.05–0.25 mg l?1) and Zn (0.5–5 mgl?1). High concentrations of Zn caused a significant decrease in Cd accumulation. In general, adding Cd solution decreased Zn accumulation in C. demersum except at the lowest concentration of Zn in which the Zn accumulation was similar to that without Cd. C. demersum could accumulate high concentrations of both Cd and Zn. The influence of humic acid (HA) on Cd and Zn accumulation was also studied. HA had a significant effect on Zn accumulation in plants. 2 mg l?1 of HA reduced Zn accumulation at 1 mg l?1 level (from 2,167 to 803 mg kg?1). Cd uptake by plant tissue, toxicity symptoms and accumulation at 0.25 and 0.5 mg l?1, were reduced (from 515 to 154 mg kg?1 and from 816 to 305 mg kg?1, respectively) by addition of 2 mg l?1 of HA. Cd uptake reached a maximum on day 9 of treatment, while that of Zn was observed on day 15. Long-term accumulation study revealed that HA reduced toxicity and accumulation of heavy metals.  相似文献   

12.
Influence of excess cobalt (Co; 10 to 400 μM Co) on growth, biomass, Co accumulation, photosynthetic pigments, lipid peroxidation, proline, non-protein thiols and cysteine contents as well as activities of anti-oxidative enzymes was studied in pigeon pea (Cajanus cajan Mill). In pigeon pea leaves decreased concentrations of chlorophyll and carotenoids on exposure to excess Co was associated with decrease activity of catalase and super oxide dismutase and suggest antiperoxidative nature of excess Co. However, a marked increase in the activities of ascorbate peroxidase and peroxidase and enhanced levels of cysteine, non-protein thiols, and proline are suggestive of induction of antioxidants in excess Co. The threshold of toxicity (10% growth reduction) and toxicity (33% growth reduction) values of Co in pigeon pea were 75 and 160 μg g?1in leaves, 42 and 180 μg g?1in stem and 50 and 340 μg g?1Co in roots, respectively.  相似文献   

13.
A tub experiment was conducted to assess the effect of exogenously applied trehalose (0, 10, and 20 mM) on various attributes of two rice cultivars (Bas-385 and Bas-2000) under salt stress (0, 50, 100, and 150 mM). Salinity decreased growth, gas exchange characteristics, shoot and root potassium (K+) ions, hydrogen peroxide (H2O2), total soluble proteins, activity of catalase (CAT), and yield attributes, while it increased chlorophyll contents, shoot and root sodium (Na+) and calcium (Ca2+), malondialdehyde (MDA), glycinebetain (GB), free proline, and peroxidase (POD) activity. Foliar-applied trehalose improved growth attributes, net photosynthetic rate, GB, total soluble proteins, superoxide dismutase (SOD) and yield. Yield was not obtained at 150 mM salt stress. The rice cultivar Bas-2000 showed better performance with respect to gas exchange attributes and activities of enzymatic antioxidants. Overall, varying levels of foliar-applied trehalose proved to be effective in ameliorating adverse effects of salt stress on rice.  相似文献   

14.
The effects of salt stress on plant growth parameters, lipid peroxidation and some antioxidant enzyme activities [superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7), glutathione reductase (GR; EC EC 1.6.4.2) and ascorbate peroxidase (APX, EC 1.11.1.11) activity] were studied in the leaves of mustard. Plants were exposed to two different concentrations of NaCl stress (100 and 150 mM) for 45 days and were sprayed with GA3 (75 ml pot?1, conc. 75 mg l?1) once a week. Salt stress resulted in decrease in the growth and biomass yield of mustard but the exogenous application of GA3 enhanced these parameters significantly. Application of GA3 counteracted the adverse effects of NaCl salinity on relative water content, electrolyte leakage and chlorophyll (Chl) content. GA3 was sufficient to attenuate partially the stimulatory effect of NaCl supply on proline and glycinebetaine biosynthesis. GA3 reduced lipid peroxidation in the leaves, which was increased during salt stress. The activity of all the antioxidant enzymes was increased significantly during salt stress in mustard. The exogenous application of GA3 decreased the enzyme activity. The results of the present study indicate that usage of GA3 reduces the harmful effects of salinity and increases resistance to salinity in mustard plant.  相似文献   

15.
This study was conducted to evaluate the roles of glycine betaine (GB) in mitigating deleterious effect of salt stress on lettuce. Lettuce plants were subjected to two salinity (0 and 100 mmol l?1 NaCl) and four GB levels (0, 5, 10, 25 mmol l?1). Salinity resulted in a remarkable decrease in growth parameters, relative leaf water content and stomatal conductance. Plants subjected to salt stress exhibited an increase in membrane permeability (MP), lipid peroxidation (MDA), leaf chlorophyll reading value, H2O2 and sugar content. Exogenous foliar applications of GB reduced MP, MDA and H2O2 content in salt-stressed lettuce plants. Salt stress increased Na and generally decreased other nutrient elements. GB reduced Na accumulation, but significantly increased other element contents under salinity conditions. The study showed that gibberellic acid (GA) and salicylic acid (SA) content in salt-stressed plants were lower than those of nonstressed plants. However, salinity conditions generally increased the abscisic acid content. GB treatments elevated the concentrations of GA, SA and indole acetic acid (IAA) at especially 10 and 25 mmol l?1 GB under salt stress conditions. It could be concluded that exogenous GB applications could ameliorate the harmful effects of salt stress in lettuce.  相似文献   

16.
To check the efficacy of potassium in alleviating oxidative stress under salt stress, salt-tolerant (Indent-1) and salt-sensitive (Red Ball) tomato (Lycopersicon esculentum Mill.) genotypes were exposed to three levels of sodium chloride (NaCl) (0, 75, 150 mM) and two levels of potassium (4.5 and 9 mM) in solution and foliar form. Thirty days of treatments revealed that increasing NaCl stress increased lipid peroxidation (malondialdehyde, MDA) and correspondingly the activity of antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; and glutathione reductase GR) in both genotypes. However, higher potassium (K) level in solution or foliar spray during the salt-induced stress decreased MDA and antioxidant activity and increased the growth in salt-tolerant genotype than in the salt-sensitive genotype. Decrease in MDA concentration, activity of antioxidant enzymes, and increase in the growth of tomato plants by the application of potassium under salt stress suggest that potassium is an effective ameliorating agent against salt-induced oxidative damage.  相似文献   

17.
In vitro techniques may provide a suitable tool for effective propagation and conservation of plant species representing various ecological niches. The elaboration of such protocols is also prerequisite for selection of heavy-metal-tolerant plant material that could be afterwards used for restoration or remediation of polluted sites. In this study, culture protocol for Gypsophila fastigiata propagation was developed. The highest multiplication coefficient, which reached 6.5, and the best growth parameters were obtained on modified MS medium supplemented with 1.0 mg L?1 2iP and 0.2 mg L?1 IAA. The obtained cultures were treated with different concentrations of lead nitrate (0.1, 0.5, and 1.0 mM Pb(NO3)2) or cadmium chloride (0.5, 2.5, and 5.0 μM CdCl2). The growth parameters, photosynthetic pigments, and phenolic compound content were examined in order to evaluate whether tested metal salts can have an adverse impact on studied culture. It was ascertained that Pb ions induced growth disturbances and contributed to shoot wither. On the contrary, the proliferative shoot cultures were established on media containing Cd ions and the multiplication coefficients and shoot length increased on all media enriched with CdCl2. Chlorophylls and carotenoid contents were negatively affected by application of 5.0 μM of cadmium; nevertheless, in shoots treated with 2.5 μM CdCl2, increased accumulation of photosynthetic pigments occurred and their amount was similar to untreated culture. Adaptation to Cd was associated with stimulation of phenolic compound synthesis. Hence, we have reported on unambiguous positive result of in vitro selection procedure to obtain vigorous shoot culture tolerant to cadmium.  相似文献   

18.
The present study aimed to determine the effect of nephthyl acetic acid (NAA) on the physiological mechanism of drought tolerance in selected maize (Zea mays L.) varieties under induced drought stress at the vegetative stage. Maize seeds were sown in plastic pots (14 cm lower inside diameter, 18.5 cm upper inner diameter, 15.6 cm height, and 0.5 cm thickness) filled with 3 kg of air-dried soil and sand (3:1) in triplicate in the greenhouse of the Botany Department, Bacha Khan University, Charsadda in 2014. Results showed that the activities of antioxidant enzymes and proline accumulation were associated with the dry mass production and consequently with the drought tolerance of the maize varieties. It has been concluded that the inhibitory effects of water stress were ameliorated by exogenous application of NAA and were found to be significant for antioxidant enzymes at the vegetative stage in both varieties.  相似文献   

19.
The present study was conducted to investigate the effects of Zn application to salt stressed eggplant (Solanum melongena L.) seedlings grown in vitro and whether it can alleviate the deleterious effects of salinity or not. Zinc (0, 5, 10 and 20?mg/L) and sodium chloride (NaCl) at different concentrations (0, 50, 100 and 150?mM) were added to solidified half strength MS medium placed in 250?mL glass jars. The treatments were arranged in a 4?×?4 factorial experiment in a completely randomized design with four replications. Application of Zn to growing seedlings at different concentrations (5, 10 or 20?mg/L) increased the length of shoot and root and their dry weights, as well as enhanced the photosynthetic pigment contents and leaf relative water content compared to control. However, the application of NaCl to growing seedlings at different concentrations (50, 100 and 150?mM) significantly reduced the above mentioned attributes compared to control and those of Zn treatments alone. Treatment of seedlings with either Zn (5, 0 or 20?mg/L) or NaCl (50, 100 or 150?mM) significantly increased the proline content and the antioxidant enzyme activities of superoxide dismutase (SOD), peroxidase (POX) and ascorbate peroxidase (APX) in growing seedlings. However, the application of Zn to salt stressed seedlings mitigated the deleterious effects of salt stress in growing seedlings and increased the tolerance of seedlings to its deleterious effects.  相似文献   

20.

Purpose

Cadmium has caused serious environmental problems due to its phytotoxicity, requiring solutions to reduce its concentration in the environment. Because S can alleviate the phytotoxicity caused by heavy metals, the evaluation of the effects of S supply is a promising approach to address this problem. The aim of this study was to determine the influence of S in reducing the phytotoxicity caused by Cd to Panicum maximum Jacq. cv. Tanzania (guinea grass) and to evaluate the potential of this grass for Cd phytoextraction.

Materials and methods

Tanzania guinea grass was cultivated in a nutrient solution to evaluate the combinations of five rates of S (0.1, 1.0, 1.9, 2.8, and 3.7 mmol L?1) and five rates of Cd (0.0, 0.5, 1.0, 1.5, and 2.0 mmol L?1), in a 52 fractional factorial design with six replications. Six plants were grown per pot in two growth periods to evaluate the effect of Cd on the establishment (51 days of age) and on the regrowth (18 days of growth) of the plants. During regrowth, Cd was not supplied in the nutrient solution. At the end of each growth period, growth parameters, concentrations of S and Cd, Cd transport factor, and concentrations of hydrogen peroxide (H2O2), malondialdehyde, reduced glutathione, and oxidized glutathione were evaluated.

Results and discussion

On the establishment of Tanzania guinea grass, application of Cd reduced mass production by 39 % due to the increases in the concentration of Cd (30 times compared with the treatment without Cd) and in lipid peroxidation (124 %). During regrowth, the residual effect of Cd resulted in a lower number of tillers (62 %) and leaves (89 %) caused by the increase in concentrations of Cd, H2O2 (49 %), and lipid peroxidation, which resulted in a 65 % lower dry mass production. The proper supply of S reduced concentration of Cd and tiller mortality rate due to the residual effect of Cd on the regrowth of the grass. Mass production by the roots was 43 % lower because of Cd, but the transport of Cd from roots to shoots increased. The increase in the concentration of glutathione (GSH) associated with a possible higher activity of antioxidant enzymes alleviated the phytotoxic effects of Cd on the guinea grass.

Conclusions

The supply of S reduces the phytotoxicity caused by Cd to guinea grass, especially during the regrowth of the plant, when the concentration of Cd is higher because of the transport from roots to shoots. Tanzania guinea grass showed to be very promising for phytoextraction of Cd due to its high mass production, even when Cd was largely available in the nutrient solution.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号