首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
中试规模猪粪堆肥挥发性有机物排放特征   总被引:8,自引:3,他引:5  
为监测堆肥过程挥发性有机物(volatile organic compounds,VOCs)排放情况,该文开展了猪粪堆肥现场试验,采用苏玛罐采样,气相色谱-质谱法分析了猪粪好氧堆肥过程中VOCs浓度。结果表明:猪粪好氧堆肥过程中可以检测出的VOCs有81种,包括烷烃类34种,芳香烃类21种,卤烃类19种,胺类1种,含硫化合物3种,氟利昂类3种;其中检出率高且浓度远远超过其嗅阈值的VOCs包括三甲胺、二甲基硫、二甲基二硫和二甲基三硫,VOCs排放主要发生在堆肥的前2周。该研究将为控制猪粪堆肥过程中VOCs气体排放提供科学数据支持。  相似文献   

2.
工业遗留场地复合型污染分层健康风险评估研究   总被引:2,自引:0,他引:2  
许伟  施维林  沈桢  张建荣  郑家传 《土壤》2016,48(2):322-330
以某典型有机物-重金属复合型污染场地为研究对象,根据该场地水文地质特征将土层划分为回填土(0~4.1 m)、粉质黏土(4.1~6.5 m)、粉土(6.5~8.5 m)和粉砂(8.5~13.8 m)等4层,运用HERA软件分别进行健康风险评估,推算了土壤和地下水的风险值及修复目标值,并以此划分修复范围和确定修复技术。结果表明,土壤中存在严重的有机污染(苯和甲苯)和重金属(Cr(Ⅵ))污染,苯的最大致癌风险为0.000 155,甲苯的最大非致癌危害商为2.14;Cr(Ⅵ)在下层土壤中不存在暴露途径危害人体健康,而仅在表层回填土中存在致癌和非致癌危害商(0.014 2和97.6);地下水中关注污染物健康风险在可接受范围内;苯、甲苯在各土层中的修复目标值分别为:回填土层0.434、708 mg/kg;粉质黏土层0.807、2 460 mg/kg;粉土层1.42、4 440 mg/kg;粉砂层2.51、8 140 mg/kg;Cr(Ⅵ)仅在回填土层计算出修复目标值为0.251 mg/kg。苯、甲苯等挥发性有机物分层修复目标值随土层深度增加而变大,Cr(Ⅵ)等重金属修复目标值不遵循这个规律,因此,分层健康风险评估更适用于挥发性有机物健康风险评价。  相似文献   

3.
Kuwait's desert was inundated, in 1991, with massiveoil-spills from damaged well heads and from oil fires.Large volumes of seawater used for fire-fightingfreely mixed with oil and then seeped into the ground.The dissolved compounds not only contaminated soil butalso threaten to pollute groundwater. The compositionof the volatile organic compounds (VOCs) in thewater-soluble fraction (WSF), in seawater, of tendifferent crude oils produced in Kuwait and Kuwaitcrude oil (export) was investigated. The resultsshowed that the composition of the WSFs variedconsiderably (ranging from 5970 μg L-1 to10494 μg L-1). On average, about 40 volatilecompounds were identified and quantified in the WSFs.Aromatics formed the bulk of the WSF of all of thecrude oils, amounting to about 90% of the total VOCs.The WSF prepared from Raudatain crude oil containedthe highest total VOCs (benzene and toluene) whilethat of Um-Ghadair contained the lowest. The WSF ofKuwait crude oil (export) was compared with that ofindividual oils and was found to contain relativelysmaller amounts of individual components and the VOCs.Relatively higher amounts of toxic VOCs in the WSF ofRaudatain crude oil has potential to impact the fonaand flora as well as potable ground water in the area.  相似文献   

4.
挥发性有机化合物(volatile organic compounds, VOCs)是大气污染物的重要组成成分,对环境和人体健康有潜在危害。生猪养殖业是畜牧业的支柱产业,但其发展受到猪场排放的VOCs等引起的空气污染严重制约。该研究从特征和减排技术两个方面对猪场的VOCs进行综述,重点介绍了猪场VOCs的来源、种类及其特征、致臭性VOCs的特征和检测方法等,从源头减排、过程控制与末端处理 3 个环节对猪场VOCs减排技术进行分析和探讨,并对该研究领域的发展趋势与研究重点进行展望,以期为开展畜牧业VOCs污染减排技术研究和推动畜牧业可持续发展提供参考。  相似文献   

5.
Human exposure to volatile organic compounds (VOCs) and residential indoor and outdoor VOC levels had hitherto not been investigated in Turkey. This study details investigations of indoor, outdoor, and personal exposure to VOCs conducted simultaneously in 15 homes, 10 offices and 3 schools in Kocaeli during the summer of 2006 and the winter of 2006–2007. All VOC concentrations were collected by passive sampling over a 24-h period and analyzed using thermal desorption (TD) and a gas chromatography/flame ionization detector (GC/FID). Fifteen target VOCs were investigated and included benzene, toluene, m/p-xylene, o-xylene, ethylbenzene, styrene, cyclohexane, 1,2,4-trimethylbenzene, n-heptane, n-hexane, n-decane, n-nonane, n-octane and n-undecane. Toluene levels were the highest in terms of indoor, outdoor, and personal exposure, followed by m/p-xylene, o-xylene, ethylbenzene, styrene, benzene and n-hexane. In general, personal exposure concentrations appeared to be slightly higher than indoor air concentrations. Both personal exposure and indoor concentrations were generally markedly higher than those observed outdoors. Indoor target compound concentrations were generally more strongly correlated with outdoor concentrations in the summer than in winter. Indoor/outdoor ratios of target compounds were generally greater than unity, and ranged from 0.42 to 3.03 and 0.93 to 6.12 in the summer and winter, respectively. Factor analysis, correlation analyses, indoor/outdoor ratios, microenvironment characteristics, responses to questionnaires and time activity information suggested that industry, and smoking represent the main emission sources of the VOCs investigated. Compared with the findings of earlier studies, the level of target analytes in indoor air were higher for several target VOCs, indicating a possible trend toward increased inhalation exposure to these chemicals in residential environments.  相似文献   

6.
通过模拟土壤气相抽提技术(Soil Vapor Extraction,SVE)通风处理甲苯、乙苯、正丙苯混合污染的黄棕壤,研究了不同通风流量、不同土壤含水率、间歇通风等因素对目标污染物去除率的影响。结果表明,通风流量和含水率是影响去除率的重要因素。当柱径14 cm、土壤粒径为10目连续通风时,最佳通风流量为0.15 L.min-1,最佳含水率约17.98%条件下,甲苯、乙苯、正丙苯的去除率分别为99.84%、99.45%、98.25%,总挥发性有机物(Total VOCs,TVOCs)去除率达到了99.30%,且优于间歇通风;含水率为6.01%、24.73%时,TVOCs的去除率仅为63.03%、89.03%,表明含水率过高或过低都不利于VOCs的去除;苯环上支链越长,分子量越大,沸点越高,越难以被脱附去除,反之亦然,表明有机物的分子结构和大小也是影响通风效果的重要因素。  相似文献   

7.
Twenty-six Streptomyces spp. were screened for their volatile production capacity on yeast starch agar. The volatile organic compounds (VOCs) were concentrated on a porous polymer throughout an 8-day growth period. VOCs were analyzed by gas chromatography with flame ionization detection and identified or characterized by gas chromatography-mass spectrometry. A total of 120 VOCs were characterized by retention index and mass spectra. Fifty-three compounds were characterized as terpenoid compounds, among which 18 could be identified. Among the VOCs were alkanes, alkenes, alcohols, esters, ketones, sulfur compounds, and isoprenoid compounds. Among the most frequently produced compounds were isoprene, acetone, 1-butanol, 2-methyl-1-propanol, 3-methyl-3-buten-1-ol, 3-methyl-1-butanol, 2-methyl-1-butanol, cyclopentanone, dimethyl disulfide, dimethyl trisulfide, 2-phenylethanol, and geosmin. The relationship between the excretion of geosmin and the production of spores was examined for one isolate. A good correlation between headspace geosmin and the number of spores was observed, suggesting that VOCs could be used to indicate the activity of these microorganisms in heterogeneous substrates.  相似文献   

8.
牛粪好氧发酵挥发性物质排放特征及恶臭物质分析   总被引:1,自引:1,他引:0  
不同原料好氧发酵产生的臭气物质组分和浓度存在差异。以牛粪和玉米秸秆为原料研究好氧发酵过程挥发性有机物(Volatile Organic Compound,VOCs)的产排特征及主要致臭物质,开展牛粪好氧发酵试验,采用气相色谱-质谱法分析测定发酵升温期、高温期、降温期及腐熟期等不同发酵阶段的VOCs组分和浓度,硼酸溶液吸收,盐酸滴定法测定NH3,便携式检测器(Tion NH3-H2S 300 G)测定H2S,3点比较式臭袋法测定不同发酵阶段臭气浓度。结果表明,牛粪好氧发酵过程中共检出31种VOCs,其中含硫化合物4种,醇类1种,酯类1种,酮类1种,卤代烃4种,苯系物9种,烷烃类8种,烯烃3种;在好氧发酵高温期臭气浓度最高为724(无量纲),VOCs产生与排放主要在高温期。基于恶臭污染排放标准和恶臭物质气味活度值,并结合各物质检出率、GS-MS图谱及相关性分析,发现NH3、H2S、甲硫醚是牛粪好氧发酵过程的主要致臭物质;其次芳香族化合物对臭气浓度贡献也相对较大,应进行重点监测与控制。该研究可为牛粪好氧发酵过程臭气物质减控提供理论支撑。  相似文献   

9.
Twenty-eight volatile organic compounds have been measured in a 3-month monitoring campaign. The sampling point is locatedin the urban centre of La Coruña, a medium-size town in theNorthwest of Spain. Only a petrol refinery can be consideredas an important point VOCs source in its surrounding area.The municipal landfill collapsed in September 1996, and rebuilding works caused strong odour episodes at the urbancentre. We tried to check how this problem affected urban airquality. Samples were taken with Tenax-TA tubes and analysedby thermal desorption-GC-MS. From the results obtained, traffic emissions were recognised as the main VOCs source inthe sampling zone. On November 9th a contaminationepisode took place. Aromatic and aliphatic compounds levelswere probably affected by emissions from fuel treatmentprocesses in a nearby petrol refinery. No influence onquantified VOCs concentrations from the remaking landfillworks was observed. Several compounds (organosulphurs, estersand alcohols) were recognised as the cause of odour problems.  相似文献   

10.
Centaurea solstitialis, commonly known as yellow starthistle, is an invasive plant listed as a noxious weed in the western areas of North America and is the target of classical biological control, which involves release of herbivores known to be specific to this plant. These insects often choose their host plant on the basis of the volatile organic compounds (VOCs) emitted. Accordingly, volatile analysis of host plants can provide insight into VOCs that may attract and/or repel the insect. To this end, solid-phase microextraction (SPME) and a customized collection bag were utilized to perform in situ volatile collection on intact and mechanically damaged leaves of Centaurea solstitialis, Centaurea cyanus, and Centaurea cineraria. Volatile identification was performed by GC-MS, and the VOC differences were determined. The plants C. solstitialis and C. cyanus have been reported to attract the weevil, Ceratapion basicorne, a candidate for biological control, whereas C. cineraria does not attract the weevil. Major VOCs unique to C. cineraria include the sesquiterpenes cyclosativene, alpha-ylangene, and trans-alpha-bergamotene. The compound trans-beta-farnesene was unique to C. solstitialis and C. cyanus.  相似文献   

11.
为了控制猪粪好氧发酵中产生的挥发性有机物(volatile organic compounds)及主要致臭物质,开展了猪粪好氧发酵试验,通过连续监测猪粪好氧发酵过程中所排放的挥发性气体,研究猪粪好氧发酵中产生的VOCs组分及其致臭因子。研究表明,在猪粪好氧发酵过程中共产生33种挥发性物质,除氨气和硫化氢外,共有31种VOCs,包括芳香烃12种,醛类8种,硫醇硫醚类4种,卤代烃4种,酮类2种,胺类1种;猪粪好氧发酵中主要致臭物质为:二甲二硫、甲硫醚、二甲三硫、乙醛和硫化氢,并建议将甲硫醚作为猪粪好氧发酵中产生的恶臭污染指示物。该研究可为猪粪堆肥过程中恶臭物质的监测、制定控制策略提供参考。  相似文献   

12.
To devise effective procedures for the remediation of soil contaminated by VOCs, an improved understanding of their fate and transport mechanisms in soil is essential. To show the effect of plants on the dissipation of 1,1,1-trichloroethane (TCA), trichloroethylene (TCE) and tetrachloroethylene (PCE), two types of experiments, vial and column, were conducted. The results suggested that keeping the soil moisture content at field capacity is desirable for VOCs dissipation. All VOCs were dissipated quickly in unplanted columns than planted conditions in early periods of the experiment because more volatilization occurred in unplanted conditions. The plants could take up and retard volatile contaminants, and prevent contamination of ambient air. Although the time for acclimation for microbial communities to contaminants for enhanced biodegradation should be considered, phytoremediation is potentially a cost-effective remediation technique for soils contaminated by volatile organic compounds (VOCs).  相似文献   

13.
Fungistasis is a widespread phenomenon that can be mediated by soil microorganisms and volatile organic compounds (VOCs). The relationship between soil microorganisms and VOCs is still unclear, however, and many fungistatic compounds remain to be identified. We assessed the effects of soils (soil direct fungistasis) and VOCs produced by natural soils (soil volatile fungistasis) on the spore germination of several fungi. Both strong soil direct fungistasis and soil volatile fungistasis were observed in a wide range of soils. Soil fungistasis and VOC fungistasis were significantly correlated (P<0.001). The volatile fungistatic activity of soils stopped after autoclaving. Some VOCs were identified by using solid-phase microextraction-gas chromatography/mass spectrum. VOC composition and in vitro antagonism of relatively pure commercial compounds also were measured. Some VOCs, trimethylamine, 3-methyl-2-pentanone, dimethyl disulfide, methyl pyrazine, 2,5-dimethyl-pyrazine, benzaldehyde, N,N-dimethyloctylamine and nonadecane, were produced by various fungistatic soils. Moreover, antifungal activity test of above VOCs showed that trimethylamine, benzaldehyde, and N,N-dimethyloctylamine have strong antifungal activity even at low levels (4-12 mg l−1).  相似文献   

14.
Reaction behaviors and kinetics of catalytic oxidation of benzene, toluene, and ethyl acetate with feed concentrations in the range of 700–5,000 ppm over Pd/ZSM-5 catalyst were investigated. Results for single components show that ethyl acetate (T 50?=?190–200°C) is more easily oxidized than benzene (T 50?=?215–225°C) and toluene (T 50?=?225–235°C). The conversion of ethyl acetate was increased with the increase of its feeding concentration, while the opposite behaviors were observed for benzene and toluene as their conversion rates were decreased with the increase of the inlet concentration. Different behaviors were observed in catalytic oxidation of volatile organic compound (VOC) multi-components, the presence of benzene or toluene inhibits the conversion of ethyl acetate, and the aromatic hydrocarbons inhibit each other in all cases. Ethyl acetate possesses obvious inhibitory effect on benzene oxidation, while it is interesting to note that ethyl acetate has a promotion effect on toluene conversion. The kinetic data were fitted by the Power-law and Mars–van Krevelen kinetic models. The fitting result shows that the Power-law model is more suitable for predicting the conversion of benzene than the other VOCs, and the Mars–van Krevelen model can accurately express the reaction rate of all investigated VOCs.  相似文献   

15.
Understanding the effect of plant volatile organic compounds (VOCs) on soil nematodes and water may explain plant damage in the field and how some nematode management strategies reduce soil nematode populations. M. incognita is a damaging plant pathogenic nematode that affects crops worldwide. The aims of this study were to evaluate the effect of the VOCs emitted by five common crops used for soil incorporation to control the second-stage juveniles (J2) of Meloidogyne incognita. To investigate the “in vitro” role of water in the relationship between nematodes and plant VOCs. And to identify the volatile molecules by gas chromatography (GC/MS). The method used permitted the volatile molecules from macerated plant organs to only contact the J2 nematodes by air. Plants organs from all plants macerated with and without water emitted VOCs that immobilized J2 nematodes, with higher levels emitted when the plant organs were macerated without water. Only water exposed to VOCs from neem and mustard leaves were capable of immobilizing M. incognita J2. The M. incognita J2 exposed to neem and mustard VOCs and inoculated in tomato seedlings resulted in reduced gall formation and nematode reproduction, showing the nematicidal effect of the plant-emitted VOCs. GC/MS analysis revealed the presence of 58 and 32 molecules in the VOCs emitted from neem and mustard macerates, respectively. Alcohols were found in both the neem and mustard VOCs. Esters were found in the neem VOCs, and sulfur-containing compounds, mostly isothiocyanates, were found in mustard. Our results demonstrate that plant VOCs contain diversified molecules that affect M. incognita mobility, pathogenicity and reproduction. Nematode toxic VOCs may be retained in water, which prevents the VOCs from escaping into the air and causing the water to become toxic to nematodes. These data may explain part of the role of VOCs in the biofumigation process, through plant incorporation with the soil, and suggests that irrigation performed directly after incorporation may trap the VOCs in soil water and thereafter retain nematode toxicity longer than incorporation that is performed later.  相似文献   

16.
Microwave-assisted headspace solid-phase microextraction (MA-HS-SPME) was developed as a simple and effective method for fast sampling of volatile organic compounds (VOCs) from Eucalyptus citriodora Hook (E. citriodora) leaves. During microwave heating, a simple shielding device made of aluminum foil was used to protect the SPME fiber from microwave irradiation while allowing the sample to be heated. A room temperature water bath was also used to allow microwave heating to be conducted in a more controlled manner. The inner heating caused by microwave irradiation dramatically accelerated the emission of VOCs from the sample, but no marked change in headspace temperature in the sample vial was found. Under optimum conditions, the extraction efficiencies obtained with microwave heating were much higher than those obtained without microwave heating for all fibers used, namely, 7-microm polydimethylsiloxane (PDMS), 100-microm polydimethylsiloxane (PDMS), 65-microm polydimethylsiloxane/divinylbenzene (PDMS/DVB), and 75-microm carboxen/polydimethylsiloxane (CAR/PDMS). The improvement of extraction efficiency using MA-HS-SPME allowed more VOC events to be detected, with more balanced extraction of VOCs of lower and higher molecular masses. Moreover, a good linear relationship was found between sample size and GC-FID response (total peak area of VOCs), indicating the usefulness of MA-HS-SPME for quantitative analysis of individual volatile compounds in E. citriodora leaves.  相似文献   

17.
Volatile organic compounds (VOCs) in soils   总被引:1,自引:0,他引:1  
Soils may act as sources or sinks of volatile organic compounds (VOCs). Many of the formed VOCs are produced by microorganisms, and it would be a challenge to investigate soil microbial communities by studying their VOC profile. Such “volatilomics” would have the advantage of avoiding extraction steps that are often a limit in genomic or proteomic approaches. Abundant literature on microbially produced VOCs is available, and in particular novel detection methods allow additional insight. The aim of this paper was to give an overview on the current knowledge of microbial VOC emissions from soils.  相似文献   

18.
Naturally occurring volatile compounds with nematicidal activities (NAs) are of significant economical importance in agriculture and forestry. In this study, volatile organic compounds (VOCs) produced by 200 isolates of soil bacterial were evaluated in in vitro experiments. Our results identified that among the 200 bacterial isolates, 149 (74.5%) and 165 (82.5%) exhibited a greater than 20% NA against the free-living nematode Panagrellus redivivus and the pinewood nematode Bursaphelenchus xylophilus, respectively. Among them, 22 isolates showed 100% NA against P. redivivus and seven isolates showed 100% NA against B. xylophilus. When exposed to nematicidal volatiles, nematodes gradually reduced their movements within 1-12 h after treatment, and most stopped moving completely after 24 h. Our analysis indicated significant variation in nematicidal capability of the VOCs not only among bacterial species but also among isolates of the same species. Volatiles of representative isolates were extracted using solid-phase micro-extraction (SPME) and their structures identified using gas chromatography-mass spectrometry (GC-MS). The detected so volatile compounds included alcohols, aldehydes, ketones, alkenes and ethers. Of the 20 VOCs with strong NA (?80%), nine (phenol, 2-octanol, benzaldehyde, benzeneacetaldehyde, decanal, 2-nonanone, 2-undecanone, cyclohexene and dimethyl disulfide) displayed 100% NA to both model nematodes. Furthermore, five compounds (terpineol, benzeneethanol, propanone, phenyl ethanone and nonane) showed different NA to B. xylophilus (75-100%) and P. redivivus (17.02-100%).  相似文献   

19.
We analyzed the volatile organic compounds (VOCs) emitted from different soils by using the PTR-MS-TOF technique under laboratory conditions and compared them with soil chemical biochemical activities. The emitted VOCs were related to soil microbial biomass, soil respiration and some soil enzyme activities so as to evaluate if size and activity of soil microbial communities influenced the soil VOCs profiles. Our results showed that the emitted VOCs discriminated between soils with different properties and management, and differences in the VOCs emission profiles were likely related to the active metabolic pathways in the microbial communities of the three studied soil. Our results also showed that some soil enzyme activities such as β-glucosidase and arylsulfatase were possibly involved in the release of compounds fueling microbial metabolic pathways leading to the production of specific VOCs. It was concluded that the PTR-MS-TOF technique is suitable for analyze VOCs emission from soil and that studies comparing soil enzyme activities and soil volatile profiles can reveal the origin of VOCs and give further insights on microbial activity and soil functionality.  相似文献   

20.

Background, aim and scope  

Vapours of volatile organic compounds (VOCs) emanating from contaminated soils may move through the unsaturated zone to the subsurface. VOC in the subsurface can be transported to the indoor air by convective air movement through openings in the foundation and basement. Once they have entered the building, they may cause adverse human health effects. Screening-level algorithms have been developed, which predict indoor air concentrations as a result of soil (vadose zone) contamination. The present study evaluates seven currently used screening-level algorithms, predicting vapour intrusion into buildings as a result of vadose zone contamination, regarding the accuracy of their predictions and their usefulness for screening purpose. Screening aims at identifying contaminated soils that should be further investigated as to the need of remediation and/or the presence of an intolerable human health risk. To be useful in this respect, screening-level algorithms should be sufficiently conservative so that they produce very few false-negative predictions but they should not be overly conservative because they might have insufficient discriminatory power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号