首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
禽畜粪肥和化肥对结球西生菜生产的影响   总被引:4,自引:1,他引:3  
针对结球西生菜营养特性和生产环境需要, 采用田间试验研究方法, 在冲积性水稻土和山原红壤上进行了禽畜粪肥和化肥的施用研究.结果表明, 在两种土壤上施用禽畜粪肥可改善土壤的物理化学性状, 提高土壤微生物活性.两种土壤上不同肥料处理土壤容重的排列顺序为禽畜粪肥处理<1/2禽畜粪肥处理<化肥+禽畜粪肥处理<化肥处理, 不同肥料处理总孔隙度、水稳性团聚体的排列顺序则相反.化肥的施用导致土壤pH下降, 而禽畜粪肥对土壤酸度的影响不大.施用禽畜粪肥可提高土壤有机质、有效氮磷钾、土壤微生物总量、细菌、真菌、放线菌的数量.在一定量范围内施用禽畜粪肥对降低结球西生菜中重金属含量和控制结球西生菜中的硝酸盐含量有显著作用, 但会增加结球西生菜中大肠杆菌数量, 施用禽畜粪肥应先进行无害化处理.氮肥用量与结球西生菜中硝酸盐含量呈正相关, 氮肥用量过多会提高结球西生菜硝酸盐含量.磷肥中含有一定量的重金属, 大量施用会提高结球西生菜中重金属含量.钾肥可提高结球西生菜的产量和产值.山原红壤系缺硼土壤, 施硼有一定的增产效果.化肥和禽畜粪肥配合施用可提高结球西生菜产量产值, 获得较好经济效益.采用化肥和禽畜粪肥相结合的施肥方式对结球西生菜的产量和品质及其生产环境有良好作用.  相似文献   

2.
针对连续旋耕白土田耕层浅薄、下层土壤黏重紧实、养分分布不均衡等问题,探索适合于白土稻田的耕作与施肥措施,以进一步提高江淮地区白土生产力和水稻产量水平。设置2种耕作方式(旋耕和翻耕)及3种施肥措施(单施化肥、化肥+有机肥、化肥+秸秆还田),通过大田定位试验研究不同耕作方式与施肥措施对白土稻田土壤理化性质、水稳性团聚体分布以及水稻产量的影响。结果表明,相较于旋耕,翻耕降低0—10cm土层土壤养分含量,而使10—20cm土层有机质、全氮、有效磷和速效钾含量分别提高3.2%~8.8%,4.5%~9.2%,5.2%~8.2%和8.3%~17.7%。增施有机肥或秸秆还田使土壤有机质和速效钾含量较单施化肥处理分别提高1.3%~8.6%和4.1%~21.1%。翻耕方式下10—20cm土层土壤容重较旋耕降低14.4%~19.5%,土壤大团聚体比例在0—10,10—20cm土层则较旋耕分别降低3.0%~5.4%和3.5%~9.7%;在翻耕的基础上增施有机肥或秸秆还田土壤容重较单施化肥降低2.1%~6.6%,大团聚体比例则提高2.8%~8.4%。翻耕有利于水稻产量的提高,较旋耕的增产幅度在11.7%~18.0%,增施有机肥或秸秆还田使水稻产量提高1.7%~7.5%。因此,江淮地区连续多年旋耕的白土田进行适宜翻耕结合秸秆还田或增施有机肥可改善0—20cm土层土壤理化性质,有利于水稻产量的提升。  相似文献   

3.
Wong  J. W. C.  Lai  K. M.  Su  D. S.  Fang  M. 《Water, air, and soil pollution》2001,128(3-4):339-353
The use of sewage sludge on agriculture provides an alternativefor sewage sludge disposal. Therefore, it was the aim of thepresent study to evaluate the feasibility of using a domestic(Tai Po sludge) and an industrial (Yuen Long sludge) sewagesludge produced in Hong Kong for the growth of vegetable crops.The acidic loamy soil with or without lime treatment was amendedseparately with each sludge at application rates of 0, 5, 10, 25and 50% (v/v) for the growth of a common local vegetable crop,Brassica chinensis. The plant available metal contents, asindicated by the DTPA extraction, increased with an increase insludge amendment, but decreased with lime amendment at eachsludge application rate due to the reduced metal availabilityat a higher pH. Sludge amendment enhanced the dry weight yieldof B. chinensis and the increase was more obvious for thesoil with lime treatment. The industrial sludge caused a loweryield than that of the domestic sludge amendment and asignificant reduction in yield at high application rates of YuenLong sludge was also noted. Tissue heavy metal contents, exceptfor Fe, increased as the sludge amendment rate increased whileplant grown in Yuen Long sludge amended soil contained higher Crand Zn contents at each sludge application rate. Liming the soilreduced the heavy metal contents in the plant tissues, exceptfor Fe, which were all below the allowable levels for vegetablecrops. The present experiment demonstrates that liming wasimportant in facilitating the growth of B. chinensis in sludge amended soil. The optimal sludge amendment rate for thesoil with lime amendment was 25% Tai Po sludge and 10% YuenLong sludge, while for the soil without lime amendment was 10% and5%, respectively.  相似文献   

4.
A pot experiment was conducted in heat-sterilized soil to evaluate the effect of effective microorganism (EM) application on growth, yield, and nutrient uptake in Vigna radiata (L.) Wilczek var. NIAB Mung 98 in different soil amendment systems. Pot soil was amended with farmyard manure (FYM), Trifolium alexanrinum L. crop residues (TCR), and half (½NPK) and recommended dose (NPK) of chemical fertilizers. The EM application significantly enhanced shoot and root biomass in TCR-amended soil. However, grain yield was significantly enhanced in FYM, TCR, and NPK amendments by 24%, 15%, and 84%, respectively, as a result of EM application. Effect of EM application on nutrient uptake was variable with respect to soil amendment and plant growth stage. In general, EM application enhanced plant nitrogen (N), phosphorus (P), and potassium (K) nutrition in organic amendments while its effect was either negative or insignificant in chemical fertilizer amendments. Effects of EM application on plant nutrient uptake were more pronounced at maturity than at flowering stage.  相似文献   

5.
稻草与生石灰对设施土壤微量元素含量和番茄产量的影响   总被引:3,自引:0,他引:3  
为了探究设施内添加稻草与生石灰对土壤微量元素含量和番茄产量的影响,以长期施肥定位试验为依托,比较了施用鸡粪(M)的基础上,添加稻草(MR)、生石灰(MCa)、稻草与生石灰同时添加(MRCa)各处理全土及各粒级团聚体中有效态Fe、Mn、Cu、Zn含量和番茄产量的变化。结果表明:(1)添加稻草可增加土壤中有效态Fe、Mn、Zn含量,MR处理较M处理分别增加3.2%,80.9%,15.1%,对有效态Cu含量无显著影响;添加生石灰也可增加土壤中微量元素含量,其中Mn含量增加显著。土壤中有效态Fe、Mn、Cn、Zn含量与pH呈极显著负相关(P<0.01),与有机质含量呈极显著正相关(P<0.01)。(2)随着土壤团聚体粒级的减小,有效态微量元素含量呈下降趋势。添加稻草和生石灰可增加1~0.25mm粒级中有效态Mn含量,MRCa处理较其他处理增加6.6%~46.6%;添加稻草可增加<0.25mm粒级中有效态Zn含量。土壤中有效态Fe含量与<1mm粒级中含量呈显著正相关(P<0.01);土壤中有效态Mn、Zn含量分别与各粒级中含量呈显著正相关(P<0.01);土壤中有效态Cu含量与1~0.25mm粒级中含量呈显著正相关(P<0.01)。(3)施入稻草或生石灰可增加番茄产量,且稻草和生石灰同时施入产量最高,MRCa处理较MCa、MR处理分别增加12.6%,33.8%。土壤有效态Fe、Cu含量与产量正相关,其中有效态Fe含量对产量具有直接作用,决策系数最高,土壤有效态Cu含量对产量具有间接作用。因此,可以通过长期添加稻草和适量生石灰缓解设施土壤微量元素短缺的现状,且可获得最高作物产量,为设施内土壤可持续利用和设施农业可持续发展提供保障。  相似文献   

6.
Large quantities of mussel shells(66 000-94 000 t year 1),an alkaline material that can be used as a soil amendment,are generated as waste in Galicia,NW Spain.A field trial was carried out by planting different pasture species in a Haplic Umbrisol using a randomized block design with four blocks and six treatments(not amended control or soil amended with lime,finely ground shell,coarsely ground shell,finely ground calcined shell or coarsely ground calcined shell) to compare the effects of lime and mussel shells additions on a soil with a low cation exchange capacity and high Al saturation.The trial was established in March 2007,and samples of plants and soil were collected when plots were harvested in summer 2008(separating the bulk and rhizosphere soil).The soils were analyzed for pH,total C,total N,available P,exchangeable cations,effective cation exchange capacity and available micronutrients.Dry matter yield was measured in all plots and plants were analyzed for nutrients.Application of mussel shells and the commercial lime resulted in an increase in pH and exchangeable Ca and a decrease in exchangeable Al and Al saturation.The stability of pH over time was high.These effects were most noticeable in the rhizosphere.The amendment also had a positive effect on dry matter yield and concentration of Ca in the plant.  相似文献   

7.
土壤改良剂对鄱阳湖区潜育性稻田的改良作用研究   总被引:3,自引:0,他引:3  
潜育化水稻土存在渍、冷、烂、闭(气)、毒及缺素等障碍因素,土壤改良剂是其改良的有效办法之一。本文研究了有机与无机材料相结合对鄱阳湖区潜育化稻田的改良效果,旨在为湖区此类土壤改良提供技术参考。田间定位试验设有机、无机改良剂10个互作处理,分别为(1)对照,T1;(2)牛粪+粉煤灰,T2;(3)牛粪+石灰,T3;(4)枯饼+粉煤灰,T4;(5)枯饼+石灰,T5;(6)牛粪+粉煤灰+石灰,T6;(7)枯饼+粉煤灰+石灰,T7;(8)牛粪+枯饼+粉煤灰,T8;(9)牛粪+枯饼+石灰,T9;(10)牛粪+枯饼+粉煤灰+石灰,T10,研究了土壤改良剂对土壤氧化还原电位、还原物质总量及土壤肥力的影响,并结合水稻产量分析了有机无机改良剂相结合的改良作用。结果表明:在提高土壤氧化还原电位方面,T5处理最明显,在抽穗期比T1显著提升了69.2%(P0.05)。在消减土壤还原性物质方面,各施用改良剂处理均能显著降低土壤还原性物质,其中T5、T8、T10三个施用石灰的处理效果最为显著,比T1分别降低了84.5%、79.3%和72.2%(P0.05)。施用土壤改良剂对土壤有机质、碱解氮、水溶性碳无显著影响,但对土壤速效磷、速效钾、pH值、电导率和水溶性氮有显著的提升作用。在提高水稻SPAD值方面,所有施枯饼的处理T4、T5,T7~T10均能显著提高水稻SPAD值,在抽穗期比T1提高了13.5~28.6%(P0.05)。3年平均产量表明,T10能显著提高潜育性稻田产量,比T1显著提高10.3%(P0.05)。因此,枯饼与石灰配合是降低鄱阳湖区潜育化稻田土壤还原性物质、提升氧化还原电位、电导率的最有效措施;牛粪、枯饼、粉煤灰、石灰相配合则是综合提升水稻产量的最有效措施。  相似文献   

8.
Effects of local green manure (GM) and lime on soil productivity in a low-input agricultural system were evaluated by growing three successive crops of sweet corn (Zea mays) on an acid Oxisol (Typic acrorthox, Togitogiga series) in Western Samoa. The soil was amended with coral lime at 0, 5, and 10Mgha–1 and with cowpea GM at 0, 7.5, and 15Mgha–1. Commercial NPK fertilizers at 50kgha–1 each of N, P, and K were included for comparison. The amendments were applied only once prior to planting of the first crop. Response parameters measured included nutrient composition of leaves at tasseling and grain yield of each crop, and selected soil chemical properties at each planting. Yields of the first crop were nearly tripled with GM additions and doubled with lime additions. Such yield increases were caused mainly by better K nutrition and to a lesser extent by enhanced P nutrition. Yields of subsequent crops were much lower than those of the first, and the declines were much steeper for the GM treatments than for the lime treatments. Thus, the enhancement effect on K nutrition did not last beyond one crop. Poor growth of the second and third crops was caused by K deficiency; probably coupled with Mn toxicity. Significant yield reductions were found when Mn-to-K ratios in leaves exceeded 0.010. As for effects on soil, soil pH was increased significantly by lime but only slightly by GM. Given the variable charge property of this Oxisol, each unit pH increase corresponds to a cation exchange capacity (CEC) increase of 5cmolckg–1. Having greater CEC, the amended soil retained K more effectively, thereby causing yield increases, especially of the first corn crop, which required at least 0.75cmolckg–1 of exchangeable soil K or 7% of CEC for adequate growth. Received: 15 April 1996  相似文献   

9.
As a result of increased population, improved standards of living, and strict environmental laws, biowastes have been generated in huge quantities. Thus, land applications of these wastes are desirable, or even necessary, to keep the environment healthy and to conserve natural resources. Yet, the success of such uses requires knowledge of complex biochemical reactions when the wastes are applied to soils. To obtain this knowledge, we evaluated soil amendment properties, primarily nitrogen (N) mineralization/immobilization of six bio wastes when used as plant growth media. An immature yard trimmings compost, ground fresh corn stovers, a commercial peat moss, a chicken manure, and two biosolids were each mixed with a Mollisol at either 25 percent and 50 percent by volume for the plant based wastes, or at 2.5 percent and 5.0 percent by weight for the animal based wastes. Treatments with urea at 0, 70 and 210 mg N kg?1 were included for comparison. The treated soils were incubated moist for two weeks at which time they were sampled for chemical analysis, and planted to tomatoes. The results showed that those wastes, when added to soil, produced growth media with C/N < 15, and released inorganic N that increased dry matter yield of tomatoes many times over that of the unamended control. In contrast, a waste amended soil with a C/N > 20 immobilized some inorganic N, reduced plant growth, and caused N deficiency in tomatoes. Such a deficiency was characterized by low N concentrations in leaves (< 2.0 percent) and chlorosis, which corresponded to a color index of 0.25 or less. Biowaste amendments also affected soil P extractability differently: Chicken manure increased NaHCO3-extractable P many fold over the control, whereas corn stover, peat moss and raw biosolids did not. The yard trimmings compost and the anaerobically digested biosolids increased soil P moderately.  相似文献   

10.
The production of new liquid fuels from coal creates the potential for environmental releases of new products and waste materials via spills or leaching of material from waste storage areas. The chemical composition of these products and waste materials suggests possible toxic effects upon exposed plants and animals. In this study, barley was grown in field lysimeters containing three concentrations (0.07, 0.74, 7.421 m?2 equivalent to 80, 800, and 8000 gal/acre, respectively) of a sample product blend of Solvent Refined Coal (SRC) heavy and middle distillates. Three methods of soil amendment simulated possible spill clean-up alternatives: adding the coal liquid as a surface layer, as a subsurface layer covered by uncontaminated soil, or intermixed with the top 1 dm of soil. To permit comparison of the coal liquid with familiar commercial material, the study protocol was followed simultaneously in lysimeters amended with # 2 diesel fuel. Statistically significant reductions in grain yield were observed for both the SRC and diesel materials for all methods of soil amendment at concentrations equivalent to 0.74 and 7.421 m?2, and for the SRC material only when mixed with soil at a concentration equivalent to 0.071 m?2. Where differences between fuel types were observed, the coal liquid was consistently more toxic.  相似文献   

11.
Spinach grown in cadmium (Cd)-contaminated soils accumulates Cd compounds in toxic concentration contaminating the food chain leading to the chronic toxic effects on human and animal health. A study was conducted in a Cd-contaminated soil to examine the ameliorative effect of lime and organic manure on the mobility of Cd and its uptake in spinach. Application of lime or organic manure or both decreased the Cd concentration in soil and shoots and increased chlorophyll content of leaves. As compared to the control treatment, combined application of lime and organic manure decreased the level of Cd in soil by 54.7%, in spinach shoot by 61.3%, and the transfer factor of Cd by 35.0% and increased in leaf chlorophyll content by 29.4%. Combined application of lime and organic manure emerged as a viable option in reducing the mobility of Cd in contaminated soil for growing spinach.  相似文献   

12.
A novel system for organic waste stabilization and reuse, combined with production of nitrate-rich liquid fertilizer was developed by manure digestion followed by volatilization of ammonia-rich gas (originating in manure extract) and its nitrification and recovery. This approach has several advantages, including biowaste stabilization and high recovery (over 60%) of manure N mainly as nitrate which is a better N form for many plants as compared to ammonium as the sole fertilizer N. Moreover, the potential utilization of different wastes as N sources in organic horticulture is possible as well as removal of suspended particles and microorganisms (including pathogens) that might otherwise clog the irrigation system and pose health risks, respectively. In a pilot-scale study, the system yielded several hundred liters of nitrate-rich (ca. 11 g N L−1) liquid fertilizer using guano as substrate. In a fertilization experiment, lettuce fertigated with the nitrate-rich extract exhibited better growth and quality compared to the common organic practice of fertigation with guano extract. The resulting stabilized biowaste was estimated as “low-risk” according to current guidelines and may be used for liming or land application.  相似文献   

13.
Abstract

A field experiment investigating amendments of organic material including farmyard manure, paper factory sludge and crop residues combined with fly ash, lime and chemical fertilizer in a rice-peanut cropping system was conducted during 1997–98 and 1998–99 at the Indian Institute of Technology, Kharagpur, India. The soil was an acid lateritic (Halustaf) sandy loam. For rice, an N:P:K level of 90:26.2:33.3 kg ha?1 was supplied through the organic materials and chemical fertilizer to all the treatments except control and fly ash alone. The required quantities of organic materials were added to supply 30 kg N ha?1 and the balance amount of N, P and K was supplied through chemical fertilizer. Amendment materials as per fertilization treatments were incorporated to individual plots 15 days before planting of rice during the rainy season. The residual effects were studied on the following peanut crop with application of N:P:K at 30:26.2:33.3 kg ha?1 through chemical fertilizer alone in all treatments, apart from the control. An application of fly ash at 10 t ha?1 in combination with chemical fertilizer and organic materials increased the grain yield of rice by 11% compared to chemical fertilizer alone. The residual effect of both lime and fly ash applications combined with direct application of chemical fertilizer increased peanut yields by 30% and 24%, respectively, compared to chemical fertilizer alone. Treatments with fly ash or lime increased P and K uptake in both the crops and oil content in peanut kernel compared to those without the amendments. Alkaline coal fly ash proved to be a better amendment than lime for improving productivity of an acid lateritic soil and enriching the soil with P and K.  相似文献   

14.
《Applied soil ecology》2005,28(2):125-137
Microbial properties such as microbial biomass carbon (MBC), arylsulfatase, β-glucosidase and dehydrogenase activities, and microbial heterotrophic potential, together with several chemical properties such as pH, CaCl2 soluble heavy metal concentrations, total organic carbon and hydrosoluble carbon were measured to evaluate changes in soil quality, after “in situ” remediation of a heavy metal-contaminated soil from the Aznalcóllar mine accident (Southern Spain, 1998). The experiment was carried out using containers, filled with soil from the affected area. Four organic amendments (a municipal waste compost, a biosolid compost, a leonardite and a litter) and an inorganic amendment (sugarbeet lime) were mixed with the top soil at the rate of 100 Mg ha−1. Unamended soil was used as control. Agrostis stolonifera L. was sown in the containers. The soil was sampled twice: one month and six months after amendment application. In general, these amendments improved the soil chemical properties: soil pH, total organic carbon and hydrosoluble carbon increased in the amended soils, while soluble heavy metal concentrations diminished. At the same time, higher MBC, enzyme activities and maximum rate of glucose mineralization values were found in the organically amended soils. Plant cover was also important in restoring the soil chemical and microbial properties in all the soils, but mainly in those that were not amended organically. As a rule, remediation measures improved soil quality in the contaminated soils.  相似文献   

15.
  【目的】  研究长期不同培肥措施下玉米产量的稳定性、可持续性和土壤矿质氮累积分布、微生物量氮含量特征,为制定合理的施肥措施和保证东北棕壤地区农业的可持续绿色发展提供理论依据。  【方法】  棕壤肥料长期定位试验始于1979年。选取其中的12个处理:不施肥对照(CK)、单施氮肥(N)、氮磷肥配施(NP)、氮磷钾肥配施(NPK)、低量有机肥(M1)及其与化肥配施(M1N、M1NP和M1NPK)、高量有机肥(M2)及其与化肥配施(M2N、M2NP和M2NPK),分析长期施肥下玉米产量的变化,并于2018年在玉米收获期采集植株和土壤样品,阐明玉米地上部吸氮量变化,0—100 cm土层土壤矿质氮分布、累积及微生物量氮含量的差异。  【结果】  长期不同施肥下玉米产量呈波动变化,且在1979—1998年内玉米产量变化趋势较平稳,1999—2018年内变幅较大。M1NPK、M2NPK处理玉米平均产量最高,在试验前20年较NPK处理分别提高了10.3%、11.7%,后20年分别提高了17.1%、19.4%。随着试验年限增加,玉米产量的稳定性和可持续性增加,有机肥配施化肥各处理高于单施化肥处理,在试验前20年和后20年玉米产量的可持续性指数(SYI)介于0.43~0.58和0.50~0.67,低量有机肥配施处理高于高量有机肥配施处理。配施有机肥各处理肥料贡献率高于单施化肥处理,且试验后20年M1NPK处理肥料贡献率最高,达54%。施肥40年后(2018年)玉米地上部吸氮量以M1NPK处理最高(302 kg/hm2),与M2NPK处理差异不显著。配施低量有机肥玉米收获期80—100 cm土层土壤矿质氮含量较低,M1NPK处理 0—100 cm土层土壤矿质氮贮量为127 kg/hm2,显著低于M1N和M1NP处理。而高量有机肥配施各处理0—100 cm土层土壤矿质氮贮量较化肥试区和低量有机肥试区分别增加了324.5%和172.9%,增加了氮素损失风险。此外,长期配施有机肥处理0—40 cm土层土壤微生物量氮含量增加,但低量和高量有机肥试区各处理间差异不显著。  【结论】  长期不同培肥措施会影响玉米产量的稳定性和可持续性,改变土壤氮素分布和累积,进而影响玉米氮素吸收。低量有机肥(13.5 t/hm2)配施氮磷钾化肥可促进玉米生长和氮素吸收,降低0—100 cm土层土壤矿质氮贮量,降低氮素损失风险,增加微生物量氮含量,较高的微生物量氮又可作为有机氮库来增加土壤供氮并固持易损失的矿质氮和肥料氮,以保证玉米的高产稳产和环境友好。  相似文献   

16.
Understanding the impacts of manure amendments on soil microorganisms can provide valuable insight into nutrient availability and potential crop and environmental effects. Soil microbial community characteristics, including microbial populations and activity, substrate utilization (SU) profiles, and fatty acid methyl ester (FAME) profiles, were compared in three soils amended or not amended with dairy or swine manure at two temperatures (18 and 25°C) and two soil water regimes (constant and fluctuating) in laboratory incubation assays. Soil type was the dominant factor determining microbial community characteristics, resulting in distinct differences among all three soil types and some differing effects of manure amendments. Both dairy and swine manures generally increased bacterial populations, substrate diversity, and FAME biomarkers for gram-negative organisms in all soils. Microbial activity was increased by both manures in an Illinois soil but only by dairy manure in two Maine soils. Dairy manure had greater effects than swine manure on SU and FAME parameters such as increased activity, utilization of carbohydrates and amino acids, substrate richness and diversity, and fungal FAME biomarkers. Temperature and water regime effects were relatively minor compared with soil type and amendment, but both significantly affected some microbial responses to manure amendments. Overall, microbial characteristics were more highly correlated with soil physical factors and soil and amendment C content than with N levels. These results indicate the importance of soil type, developmental history, and environmental factors on microbial community characteristics, which may effect nutrient availability from manure amendments and should be considered in amendment evaluations.Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture  相似文献   

17.
Availability and plant uptake of nutrients were evaluated in three tropical acid soils (Kandiudult) amended with paper pulp and lime under greenhouse conditions. Amendments were applied to attain target pH values of 5.5, 6.0, and 6.5. A control treatment (no paper pulp or lime added) was also included. Rye grass (Lolium perenne L.) as a test plant was grown for three successive cycles of 40 days each. Extractable nutrients and cumulative nutrient uptake were determined. The application of paper pulp or lime resulted in a significant increase in exchangeable Ca and K and a decrease in exchangeable Mg and extractable Fe, Mn, and Zn. Amendment of soils with paper pulp or lime increased plant uptake of Ca and Mg and decreased that of K, Mn, and Zn. Both amendments behaved similarly, but the effect of lime seemed generally greater than that of paper pulp. Paper pulp in tropical acid soils behaved as a liming agent rather than an organic amendment. Similar to lime, amendment of soils with paper pulp resulted in an increase in availability of Ca and Mg and in a decrease in availability of K, Mn, and Zn for plants. Soil extractions appeared to be appropriate for assessing the availability of Ca, Mn, and Zn. Soil pH and effective cation exchange capacity positively influenced the availability of Ca and negatively the availability of Mn and Zn. Thus, the precision of predicting nutrient availability in paper pulp amended tropical acid soils could be improved by including soil pH or effective cation exchange capacity in relevant regression equations.  相似文献   

18.
猪粪对红壤铝毒的缓解效应   总被引:15,自引:4,他引:15  
利用盆栽实验研究了施用猪粪和石灰对红壤铝毒的缓解效应。结果表明 ,在对照土壤 (pH 4.2)上生长的小麦遭受铝毒害明显 ,出苗后 36d全部枯死 ,施用石灰和猪粪能不同程度地缓解铝毒害。施用猪粪和石灰都可以提高土壤pH ,降低交换性铝含量。与单施石灰相比 ,石灰猪粪混施可以提高土壤 pH ,降低交换性铝含量 ,增加小麦叶绿素含量、光合速率和地上部干物重。与单施猪粪相比 ,石灰猪粪混施使小麦地上部K、Mg和P含量减少。  相似文献   

19.
Limited information exists as to the effect of liquid swine manure on soil phosphorus (P) availability in Western Canadian soil. Swine manure is most often applied to meet additional requirements for nitrogen (N) and research to date has emphasized N effects. The effect of swine manure and urea on P supply to canola was investigated under controlled environment condition. Canola (Brassica napus) was grown in pots with manure or urea added to two Saskatchewan soils (sandy loam and clay loam) at 0 and 100 mg N kg‐1. Plants were grown to maturity, and yield and nutrient content were determined. Phosphorus supply rates in soils were measured in the pots using anion exchange resin membrane probes. Additions of swine manure and urea enhanced canola P accumulation and led to a higher proportion of P in seeds. This response was more evident in the manure treatment than with urea. Soil amended with manure significantly increased N and P supply rates in soils as the manure contains N and P. On the contrary, application of urea significantly increased N supply rate, but led to a slight decrease in the measured soil supply rate of available P. Despite the apparent decrease in soil supply of available P in urea treatment, canola maintained its N:P ratio by increasing P absorption, possibly due to a greater root mass.  相似文献   

20.
《Applied soil ecology》2002,19(2):147-160
Field experiments were conducted to examine the effects of organic and synthetic soil fertility amendments on soil microbial communities and soil physical and chemical properties at three organic and three conventional vegetable farms in Virginia and Maryland in 1996 and 1997. Two treatments, including either an alternative organic soil amendment (composted cotton-gin trash, composted yard waste, or cattle manure) or synthetic soil amendment (fertilizer) were applied to three replicated plots at each grower field location. Production history and time affected propagule densities of Trichoderma species which remained higher in soils from organic farms. Propagule densities of Trichoderma species, thermophilic microorganisms, and enteric bacteria were also detected in greater numbers in soils amended with alternative than synthetic amendments, whereas propagule densities of Phytophthora and Pythium species were lower in soils amended with alternative than synthetic fertility amendments. Concentrations of Ca, K, Mg, and Mn were higher in soils amended with alternative than synthetic fertility amendments. Canonical correlations and principle component analyses indicated significant correlation between these soil chemical factors and the biological communities. First-order canonical correlations were more negative in fields with a conventional history, and use of synthetic fertilizers, whereas canonical correlations were more positive in fields with a history of organic production and alternative soil amendments. In the first year, yields of corn or melon were not different in soil amended with either synthetic or organic amendments at four of six farms. In the second year, when all growers planted tomatoes, yields were higher on farms with a history of organic production, regardless of soil amendment type. Alternative fertility amendments, enhanced beneficial soil microorganisms reduced pathogen populations, increased soil organic matter, total carbon, and cation exchange capacity (CEC), and lowered bulk density thus improving soil quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号