首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wastewater treatment in waste stabilization ponds (WSP) is a very efficient, low cost, low maintenance process which is well able to produce an effluent quality that meets the World Health Organization's recommendations for wastewater reuse for crop irrigation. Treatment in anaerobic and facultative ponds is required for restricted irrigation, with further treatment in maturation ponds for unrestricted irrigation. However, it is shown that the land requirements for the latter are at least twice that for the former. Unrestricted irrigation should, therefore, only be selected if it is economically viable. The use of wastewater storage and treatment reservoirs (WSTR), after pretreatment in anaerobic ponds, is advantageous in that it permits the whole year's wastewater to be used for irrigation, so allowing a much greater quantity of crops to be produced. A hybrid WSP-WSTR system can be used which produces effluents safe for both restricted and unrestricted irrigation.  相似文献   

2.
北京市再生水利用潜力与配置方案研究   总被引:1,自引:0,他引:1  
开展再生水利用潜力与配置研究将促进再生水的安全利用。再生水的科学配置应以区域水资源配置为基础,应当优先利用于农业,其次是工业和城市河湖。北京市再生水利用潜力为14.04亿m~3,其中,中心城再生水利用潜力为8.44亿m~3,郊区再生水灌溉利用潜力为5.6亿m~3。提出北京市再生水资源配置方案到2010年全市利用再生水6亿m~3,其中市政用水、工业用水、河湖用水、农业灌溉再生水配置量分别为0.3234、1.6516、1.025、3亿m~3,以污水处理级别来分,三级处理出水和二级处理出水利用量分别为1.09和4.91亿m~3。  相似文献   

3.
The effects of two types of treated wastewater on soil biological activity were studied in a pot experiment. Four irrigation treatments were tested on both soils sown with barley and unsown soils: distilled water (DW), half-strength Hoagland nutrient solution (NS), treated wastewater from a conventional treatment plant (CWW), and treated wastewater from a lagoon (LWW). Three types of soils were used: Chromic Luvisol, Calcaric Regosol, and Calcaric Arenosol. The greatest barley production was obtained under NS treatment in the three soils, whereas the least was produced by the DW treatment. Soil biological activity was strongly correlated to plant production, whereas no effect of treated wastewater irrigation was observed in the unsown soils. The greatest soil biological activity was found in the Luvisol. In conclusion, both soil type and the presence of plant root systems were found to have more influence on soil biological activity than irrigation water type.  相似文献   

4.
排水循环灌溉驱动的稻区水循环模型与评价   总被引:4,自引:4,他引:0  
排水循环灌溉可补充灌溉和减少涝水排放,具有缓解南方稻区旱涝急转和农业面源污染危害的潜力,但仍无有效的模型来模拟排水循环灌溉驱动下的水文过程。为此采用penman-monteith公式和作物系数法并考虑稻田渗漏与降雨有效性条件下应用水量平衡估算水稻灌溉需水量,改进SCS(soil conservation service)模型估算排水量,再以塘堰为对象建立调蓄排水和灌溉需水的水平衡演算模型。在漳河水库灌区应用该模型发现,水稻种植区存在大量的排水可供灌溉利用,而排水循环灌溉利用量受灌排面积比、塘堰容积率和塘堰初始蓄水率的影响;提高灌排面积比和塘堰容积率能明显提高补充灌溉率和排水再利用率,当两者达到一定值时补充灌溉率和排水再利用率便稳定在最高值,补充灌溉率高达20%;补充灌溉率随塘堰初始蓄水率的增加而缓慢增至20%,排水再利用率先随初始蓄水率的增加而稳定不变,随后逐渐降低。排水循环灌溉驱动的水循环模型为合理匹配排水循环灌溉的塘堰或排灌规模提供有效方法。  相似文献   

5.
Textile industry is responsible for a large amount of wastewater inappropriate for both human consumption and aquatic species. Aquatic ecosystems are way more sensitive to the release of textile wastewater, and the usage of Winogradsky columns is interesting, once they are a simulated aquatic ecosystem in which the growth of algae and other microorganisms can be observed. In this research, simulated textile effluents with the dye Acid Blue 40 were treated with an electrolytic reactor, for a later ecotoxicological evaluation using Winogradsky columns. The algal and microbial population and primary production were measured. The results have shown that the electrolytic treatment was satisfactory when it comes to color removal, but the presence of the treated effluent in the Winogradsky columns changed the microecosystem. The number of algae identified decreased when exposed to certain effluents, and some algae groups even disappeared, while others such as Cyanophyceae were benefited.  相似文献   

6.
Chen  Aihui  Liang  Huixing  Chen  Tianming  Yang  Wenjun  Ding  Cheng 《Journal of Soils and Sediments》2016,16(4):1352-1359
Purpose

A large-scale managed reed wetland in Yancheng Biosphere Reserve of China has been irrigated by treated papermaking wastewater (TPW) for approximately 8 to 12 years. This report details the risk evaluation of long-term TPW irrigation on the soil and its microbial viability, providing important perspective on the suitability of TPW reuse for irrigation.

Materials and methods

An extensive field survey was employed for assessing the impacts of long-term TPW irrigation of reed fields (F1 to F6), as compared to river water irrigated field, on soil physicochemical properties, accumulation of heavy metals (Cu, Cd, Pb), soil enzyme activities (i.e., urease, invertase, catalase, and polyphenol oxidase), and soil microbial community metabolic profiles.

Results and discussion

The results revealed that long-term TPW reuse for irrigation resulted in a slight increase of pH value, while a remarkable increase was identified regarding to soil organic carbon, as expected from the organic carbon content of the wastewater, but was not proportional to the time of irrigation. TPW irrigation caused a remarkable increase in soil electrical conductivity and resulted in soil salinization, having strong correlation with the duration of irrigation. Soil salinization increase in irrigated area was mainly due to the high sodium content of the wastewater applied for irrigation. Furthermore, soil enzymes displayed significantly increased activities (except for catalase) in the irrigated fields, while the microbial ability of utilizing carbon source was enhanced. The diversity of microbial communities was boomed due to the increase of soil organic matter, as evidenced by the calculated diversity indices. However, a remarkable increase of heavy metals was also identified regarding Cd and Pb concentrations, which may pose potential risks to human health.

Conclusions

The input of excessive pollutants and nutrients will disrupt the equilibrium mechanism of the wetland ecosystem. Although long-term TPW irrigation may increase the soil fertility and microbial activity, heavy metals (i.e., Cd and Pb) in wastewater can be accumulated in the soil. Furthermore, alkaline TPW caused an increase in soil salinity. Therefore, more cautions should be exercised in the reuse of TPW for irrigation.

  相似文献   

7.
An investigation was carried out at pilot scale to test the feasibility of using the effluent of a rotating biological contactors (RBC) unit treating wastewater generated from a university campus. The objective of the study was to cerefully monitor the impact of wastewater irrigation on the soil, percolating water, crop growth and the pathogenic condition within the immediate vicinity of wastewater application. Experimental plots with three crops: alfalfa, radish and tomato were irrigated with fresh and waste waters. The irrigation water was applied by sprinklers. Each crop was given two sub-treatments: with fertilizer and without fertilizer. The physical and chemical properties of the soil, the crop yields, and subsurface drainage were measured. In most of the cases, the yields resulted from the uses of wastewater with fertilizer were compatible with those of the uses of freshwater with fertilizer. The washings of tomato fruits grown with wastewater were analyzed for fecal coliforms. It appeared that the fruit skins were free of viable fecal coliforms 24 hours after the wastewater application. Subsurface drainage analyses did not show any alarming levels of constituents irrespective of the source of the water: wastewater or freshwater. The wastewater irrigation applied for a season had no significant effect on a silty loam soil. With wastewater irrigation, slught changes in the soil porosity and salinity were observed.  相似文献   

8.

Purpose

Water shortage in most countries of the southern Mediterranean basin has led to the reuse of municipal wastewater for irrigation. Despite numerous advantages for soil fertility and crop productivity, recycling wastewater in the soil also has several ecotoxicological and sanitary problems. To evaluate the chronic soil contamination and the cumulative impact of wastewater, we compared seven plot sites irrigated with treated wastewater 1, 2, 7, 9, 13, and 15 years and one nonirrigated taken as control, and these were sampled for soil analysis.

Materials and methods

Soil samples were analyzed for pH, electrical conductivity (EC), total Kjeldahl nitrogen (TKN), total organic matter, and total concentrations of Cu, Zn, Fe, Ni, Pb, and Cd. Microbial biomass and enteric bacteria (fecal coliforms and fecal streptococci) were determined in all soil samples.

Results and discussion

The soil pH values were not consistently affected. Soil salinity, measured as EC, appeared significantly high and proportional to the duration of wastewater irrigation. Also, concentrations of total Ni, Zn, Cu, Pb, and Cd increased significantly (P?≤?0.05) according to the number of irrigation years but are usually under Tunisian standards. The concentration of heavy metals (Ni, Zn, Cu, Pb, and Cd) showed a significant decrease in the soil profile. The microbial biomass carbon (MBC) is 1.5 times larger in the soil irrigated for 15 years with treated wastewater as compared to the one taken as control. The growth of microorganisms might be explained by the ready source of easily degradable compounds in the oligotrophic soil environment brought about by wastewater irrigation. Soil bacteriological analysis showed that the number of fecal coliforms (FC) and that of fecal streptococci (FS) were affected appreciably (P?≤?0.05) by the duration of wastewater application (number of years) and by the soil depth (0–20, 20–40, and 40–60 cm).

Conclusions

Treated wastewater irrigation led to changes in physicochemical and microbiological soil properties. The magnitude and specificity of these changes significantly correlated with the duration of such practice. It can be concluded, based on these results, that the proper management of wastewater irrigation and periodic monitoring of soil fertility and quality parameters are required to ensure successful, safe, and long-term reuse of wastewater irrigation.  相似文献   

9.
本文探讨了农业生态系统自净能力的内涵与层次结构,从生态系统的构成要素角度,对农业生态系统的自净能力进行了评述,同时分析了农牧结合自净体系、沼气生态农业自净体系、立体农业自净体系、现代农业高效清洁生产自净体系以及环境保护和生态修复自净体系等5种典型农业生态自净体系结构与功能特征,提出农业生态系统自净能力在农业污染防治上具有一定的借鉴意义。  相似文献   

10.
This investigation was conducted to determine the elemental composition of effluents from three anaerobic swine waste lagoons and one aerobic swine waste lagoon and to evaluate effects of effluent application on growth of corn (Zea mays L.) Wide variation occurred in the elemental composition of effluents among the four lagoons and among four sampling dates from each lagoon. Use of these effluents as irrigation water would lead to application of a wide range in amounts of nutrients to soil. Effluent application increased corn grain yield on a Woodstown loamy fine sand. This yield increase was attributed to alleviation of moisture stress and to correction of N deficiency.  相似文献   

11.
在排水沟上建立不同型式的沟水再利用泵站是开源补灌的主要工程措施,为探讨灌区沟水再利用适宜的泵站工程模式,该文采用面上调查和理论评价分析相结合,对沟水再利用泵站的适宜规模、基本结构模式及布局形式进行了理论探讨和经济评价。结果表明,对于沟水补充灌溉泵站工程,1 500元/hm2左右的泵站投资规模易于推广和应用,对于纯沟水灌溉泵站工程,6 000元/hm2左右投资规模可以作为推荐采用类型;根据沟水流量大小和沟道规模,可采用跨沟式或旁侧式布局形式,对于纯沟水灌溉用水方式,为进行适时适量灌溉,以保证作物正常生长,宜采用能调控水位的跨沟式泵站工程。该研究为制订当地水资源合理利用规划提供了依据,并为今后进一步发展灌区沟水灌溉提供了理论基础。  相似文献   

12.
Two greenhouse pot experiments were conducted in Agrinion, Greece, using a randomized block design in four replications, respectively, as follows: The first one included five levels of treated municipal wastewater (TMWW), being used as an irrigation water source. The second one, five levels of applied Cl at a constant soil applied Cd level of 10.36?mg/kg soil, the plants being irrigated with fresh well water. The purpose of these experiments was to study the impact of the Cl ?? Cd interrelationship on planning TMWW reuse, for the irrigation of Brassica oleracea var. Capitata (cabbage) cv F1 Gloria, ehich was used as test plant, in both of these experiments. It was found that the TMWW Cl content, originating mainly from the procedure of wastewater chlorination, was synergistically interrelated with the toxic heavy metal Cd, increasing its soil availability and cabbage plant leaf uptake (edible plant part). As this increase is directly associated with the consumer??s health, it was suggested that the TMWW be subjected to dechlorination process or the disinfection be made by ozonation or UV, which do not include Cl.  相似文献   

13.
Development of alternative sources through wastewater reuse is important to meet water demands in arid regions. However, effects of wastewater irrigation on soil properties and crop performance must be evaluated before advocating its widespread use. Objectives of this study were to evaluate: (i) effects of prior evaporative disposal of saline‐sodic blowdown water (BW) on soil (fine‐loamy, mixed, and thermic Typic Calciorthods) properties in the disposal area, and (ii) effects of flood irrigation with three water qualities (control, BW 1X, and BW 2X) on soil salinity and alfalfa performance using a greenhouse soil column study (soil collected from same study area as objective (i)). Results indicated that although prior land disposal of BW had increased salinity and sodicity of soil, they were within the tolerance limits of the intended crop, alfalfa. Mass balance calculations indicated measured (15·6 Mg ha−1) and calculated (13·2 Mg ha−1) salt accumulation at the test site used for evaporative disposal were similar. Alfalfa grown using BW under greenhouse conditions produced prime quality hay and biomass yield similar to the control treatment (8·3 g column−1 vs. 10·5 g column−1 in control). Although 3·6 years equivalent of flood irrigation with BW 1X did not result in saline soil (BW 1X irrigated soils EC ranged from 2·2 to 3·5 dS m−1), BW 2X irrigation resulted in saline soils. Sodicities of irrigated soils were greater in fine textured deep soils than coarse textured surface soils (e.g., SAR of 6·1 at 0–5 cm vs. 19·5 mmol1/2 L−1/2 at 30–60 cm in BW 1X), indicating the need for high solubility Ca amendments for long‐term irrigation with BW on fine texture soils within the soil profile. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Water shortage and a deterioration in the quality of water resources in Israel have made necessary a national policy recommending reuse of practically all municipal wastewater in order to supply a major part of agricultural water demand. Two pilot-scale systems were operated and studied for several years. The first one consisted of an advanced treatment scheme incorporating a sequencing batch reactor (SBR) system with further deep-bed granular filtration. The second system was an SBR unit, for the purpose of optimizing nitrogen and phosphorus removal and testing further microfiltration of SBR effluents. The SBR process has been shown to be an efficient biological treatment method producing low Biochemical Oxygen Demand (BOD) and Total Suspended Solids (TSS) effluents. SBR effluents, even if loaded with high TSS concentrations, could be further purified in the filtration stage, producing low-turbidity effluents. Granular filtration experiments were carried out using a gravitational single-medium filter composed of uniformly-sieved quartz sand. It was found that most of the suspended solids were removed in the top 10 cm of the filter bed. Influent turbidity was found to be the main parameter affecting the process, while filtration rate had only a minor effect. Microfiltration of SBR effluents showed highly efficient removal of turbidity and pathogens. Advanced mathematical models were developed and calibrated for both the biological process and for the granular filtration process.  相似文献   

15.
再生水灌溉对玉米和大豆品质影响的试验研究   总被引:2,自引:0,他引:2  
为了合理利用城市污水处理后的再生水资源,研究再生水灌溉对作物品质的影响,该文采用北京高碑店污水处理厂的两种再生水(二级再生水、三级再生水),以清水为对照进行玉米和大豆盆栽种植试验。通过对籽粒常规养分、微量元素和重金属含量等项目的测定分析,对再生水灌溉情况下的作物品质进行研究。研究结果表明:再生水灌溉对玉米和大豆籽粒粗蛋白、粗淀粉含量无显著影响;在微量元素方面,对大豆籽粒的影响同对照差异不显著,而对玉米籽粒的影响同水质有关;玉米和大豆籽粒中的重金属铅、镉含量虽均低于国家卫生标准(GB 2715-1981)规定,但二级再生水灌溉的玉米镉含量相对对照增加显著。因此认为三级再生水相对二级再生水应用于作物灌溉更具安全性,对二级再生水中重金属镉含量应严格控制。  相似文献   

16.
The use of reclaimed wastewater in agriculture can be a solution for regions with water shortages or low rainfall periods; besides fulfilling the crop's water needs, it would also promote the recycle of nutrients. However, care should be taken regarding soil salinization, especially in closed environments such as greenhouses for the cultivation of ornamental plants. The domestic effluents are rich in sodium which can accumulate on soil and cause soil sealing. This study evaluated the use of effluents from anaerobic filters and intermittent sand filters in the production of rosebushes (Rosa hybridaAmbiance”). The crop yield of the rosebushes irrigated with reclaimed wastewater exceeded the one obtained with traditional cultivation, reaching a value 31.8 % higher when employing nitrified effluent originated from intermittent sand filters, with no difference in the product quality. The salinity levels are below the critical limits found in the literature; however, there was a significant increase compared to the irrigation with drinking water.  相似文献   

17.
碳含量对再生水灌溉土壤氮素迁移转化规律的影响   总被引:3,自引:1,他引:2  
为深入了解碳含量对再生水灌溉系统中氮素迁移转化的影响,该研究进行了碳含量影响下的再生水灌溉系统氮素迁移转化规律试验。利用不同碳含量的再生水灌溉种植在土柱中的黑麦草,测定各试验周期内灌溉水、土壤溶液和排水中不同形态氮的含量,分析不同生育期作物干物质产量和氮含量。结果表明,随灌溉水进入系统的氮素约有34%可被作物吸收利用,62%可通过反硝化作用去除或调节土壤氮库中的氮量,随水分下渗到根系层以下并随排水排出系统的氮量仅占灌溉水中氮量的3%~4%。从作物长势、干物质量和氮的利用量看,高碳处理优于低碳处理。试验条件下,再生水中碳含量较高时有利于氮素的转化、作物吸收利用以及氮的反硝化作用。研究结果对于以灌溉利用为目的的污水处理,具有一定的指导意义。  相似文献   

18.
[目的]探究作物生育期需水量的变化趋势及其与气象因子的关系,为气候变化下农作物灌溉排水决策提供理论基础。[方法]基于联合国粮农组织(FAO)推荐的参考作物蒸散计算方法和相关作物系数,利用石河子地区1954—2012年逐日气温、降水、日照时数、风速、相对湿度等资料,计算石河子地区冬小麦近59a作物需水量和灌溉需水量,并探究其气候趋势变化的影响。[结果](1)过去50a,石河子垦区冬小麦需水量总体呈增加趋势,越冬—返青期增势最为明显(气候倾向率为2.65mm/10a);拔节—抽穗期冬小麦需水量最大,为130.23mm。(2)灌溉需水量总体呈减少趋势,其中拔节—抽穗期灌溉需水量最大(平均值为88.65mm)且减少趋势最为明显(气候倾向率为-3.11mm/10a)。(3)气象因子对冬小麦不同生育期的需水量和灌溉需水量有很强的相关性,其中冬小麦生育后期需水量与气象因子有极强的相关性;气象因子中,降水对于灌溉需水量影响最大。[结论]气候变化下,石河子地区冬小麦作物需水量呈增加趋势,但降雨量的增加趋势下,灌溉需水量总体呈减少趋势。  相似文献   

19.
Irrigation with wastewater provides the opportunity to solve the problems of its disposal, reuse and water conservation. Freshwater, differentially diluted wastewater and undiluted wastewater (hereafter called wastewater) were used to grow wheat in sandy loam soil under fertilized and unfertilized conditions at the experimental farm of Bangladesh Agricultural University, Bangladesh. Fresh groundwater and wastewater of Mymensingh municipality were used to irrigate a wheat field for three consecutive years to examine the effects of wastewater application on soil properties. In this study, the properties of wastewater-irrigated soil were compared with freshwater-irrigated soil. The application of wastewater reduced the bulk density of the surface soil by 1.92% and augmented the porosity by 5.89%. The unsaturated hydraulic conductivity and water retention capacity of the soil were improved under wastewater irrigation. Soil pH increased due to wastewater application but decreased, to a smaller extent, due to fertilizer application. Soil electrical conductivity (EC) increased both with wastewater and with fertilizer application; both parameters changed significantly in the 0–20 cm soil layer. However, at the deeper layers, they were not affected by wastewater application. The organic carbon (C) and total nitrogen (N) level of the soils were higher under wastewater irrigation than under freshwater-irrigated soil. The organic C increased by 23.93% under wastewater irrigation in the top 20 cm soil layer. The N content of the soil showed similarities with the organic C contents. Available P and S concentrations were greater in the soil irrigated with wastewater compared with the soil irrigated with freshwater. The exchangeable cations – sodium (Na), potassium (K), calcium (Ca) and magnesium (Mg) – also increased significantly with wastewater application. Thus, farmers are advised for irrigation with municipal wastewater to ease pressure on freshwater and to improve soil fertility.  相似文献   

20.
城市污水再生水灌溉对黑麦草生长及土壤磷素转化的影响   总被引:3,自引:0,他引:3  
为了进一步明确城市污水再生水的农业利用价值,在温室条件下采用盆栽试验方法种植黑麦草,以自来水(clean water,CW)灌溉为对照,分别进行全再生水(reclaimed municipal wastewater,RW)和混合再生水(自来水+再生水,CW+RW,1∶1)灌溉处理,研究了再生水灌溉对黑麦草生长和土壤磷素的转化特征。结果表明,城市污水再生水灌溉显著增加了黑麦草地上部和根系的生物量,CW+RW处理黑麦草地上部和根系生物量在播种55 d后分别较对照(CW)增加18.92%和6.42%,RW处理分别增加26.79%和10.55%;黑麦草地上部磷含量分别显著增加8.48%和10.93%。再生水灌溉土壤全磷含量变化不大并有减少趋势,但土壤速效磷含量CW+RW和RW处理分别较对照(CW)增加29.15%和43.80%;CW+RW和RW处理显著增加了土壤有机磷组分中的活性有机磷和中活性有机磷,与对照CW相比,其中活性有机磷增幅分别为50.30%和81.57%,中活性有机磷增幅分别为7.66%和13.68%;也显著增加了无机磷组分中的Ca2-P和Ca8-P,CW+RW和RW处理Ca2-P含量由对照的12.90 mg·kg-1分别增加到16.42 mg·kg-1和15.49 mg·kg-1,与对照相比,增幅分别为27.29%和19.38%,Ca8-P增幅分别为19.94%和16.03%。再生水灌溉显著降低了土壤pH并显著增加了土壤有机质含量,这可能是增加土壤磷活性的原因之一。再生水灌溉对提高土壤磷素利用率有促进作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号