首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interest in mixed‐species plantations in the tropics has increased because they appear to provide a wider range of options, such as yield, biodiversity, nutrient cycling, and C sequestration than pure stands. Pure stands of Pinus patula Schlecht. and Charm., Juniperus procera Hochst., and Grevillea robusta A. Cunn., and mixed stands of P. patula/G. robusta, P. patula/J. procera, and P. patula/Podocarpus falcatus R. Br. at Wondo Genet in S Ethiopia were studied to examine (1) the impact of mixed‐species plantations on soil chemical properties, and (2) the impact of mixed‐species plantations on the nutritional status of constituent trees. Soil (0–50 cm depth) and foliage samples were collected from four random plots (100 m2) in each of the pure and mixed‐species plantations. Soil samples were analyzed for organic C, N, and base cations. Foliage samples were analyzed for nutrients (N, P, K, Ca, and Mg). There were little significant differences in soil chemical properties and foliar nutrient concentrations of trees between the pure and mixed stands. Among pure stands, J. procera and G. robusta differed in soil exchangeable Ca++ and K+ at 0–5 cm soil depth and in foliar P and Ca concentration. After 18 and 24 y, mixed stands did not influence soil chemical properties and tree nutrition differently than pure stands. This may be due to additive interaction in mixed‐species stands and the similarity of the constituent tree species in foliar nutrient concentration and their impact on soil chemical properties.  相似文献   

2.
Abstract

Plantation establishment using exotic species on disturbed cultivated and undisturbed primary forest soils is common in Gambo district, southern Ethiopia, but their effects on soil properties are not fully known. This study investigated the effects of plantation species on major soil physical and chemical properties and further evaluated the soil quality under different land uses. Soil samples in triplicates, collected under different plantations, were analysed for their physical and chemical properties. Based on these soil properties, an integrated soil quality index was determined. The soil bulk density (BD) varied from 0.72 to 0.80 cm?3 in plantations established on primary forest land and natural forest and from 0.86 to 1.14 g cm?3 in those plantations established on cultivated soils. Also significantly lower pore volume and infiltration rate were observed under plantations established on cultivated lands than those on primary forest soils. Higher water volume (% at ?1500 kPa matric potential) was obtained in soils under Juniperus procera and natural forest compared with that under the rest of the plantations investigated. The concentration of soil organic carbon (SOC) varied from 3.4 to 10.2%, N from 0.3 to 1.0% and Av.P from 1.5 to 7.0% in soils under plantations and natural forest. Exchangeable cations generally showed a decreasing trend with depth in all land use types with minor exceptions. The concentrations of exchangeable Ca+2 varied from 6.5 to 22.7 cmol kg?1 and were significantly higher under Juniperus procera than under Eucalyptus species. The soil under plantations on previously cultivated lands showed soil quality index below 0.5 (the baseline value), while those established on undisturbed forest soil were generally above that value. The study results suggest that selecting species such as Juniperus procera and prolonging the harvesting period would improve and maintain the quality of soil properties.  相似文献   

3.
不同人工造林树种及其配置方式对土壤理化性质影响分析   总被引:3,自引:0,他引:3  
人工造林是黄土高原改善生态环境,减少水土流失的重要手段。不同树种及其配置方式下地表植被的生长、土壤理化性质的差异影响着生态水文功能的强弱。以长武王东沟流域8种造林树种和不同配置径流小区为研究对象,采用样方法进行造林地及林下地表植被调查,分层采样测定0—40cm土层土壤容重、孔隙度、有机质含量,分析不同人工造林模式下土壤理化性质,并初步分析了植被特征与土壤理化性质间的关系。结果表明:不同造林方式小区内林下草本层虽然覆盖度区别很大,但物种丰富度、多样性、均匀度指数差异不显著。0—20cm表层土壤理化性质变异性小于20—40cm土层。不同人工造林方式间土壤容重差异显著,且对20—40cm层土壤的毛管孔隙度、总孔隙度有显著性影响。不同造林方式下草本层丰富度、多样性指数与林下土壤毛管孔隙度相关性显著。草本层丰富度、多样性与0—20cm表层土壤的保水作用存在良好的对应关系。相比较而言,0—40cm土壤剖面上,草地和侧柏刺槐混交林地下的土壤孔隙度和有机质等理化性质,以及相关的蓄水性和入渗性等生态水文功能要好于其他造林林种。  相似文献   

4.
In recent decades, conversion of agricultural land to short‐rotation (5–10 years) Eucalyptus plantations has become a common practice in the highlands of Ethiopia. Yet, we have a poor understanding of the effect of these land conversions on soil quality attributes under acidic soil conditions. Previous studies along the same line but based merely on physico‐chemical properties of soils were inconsistent and contradictory. We compared soil physical, chemical and biological properties under 5‐ and 10‐year‐old Eucalyptus plantations with adjacent grassland soils. Results revealed that soil bulk density of adjacent grassland was significantly smaller than in the two Eucalyptus plantations. Although land‐use change from grassland to short‐rotation Eucalyptus did not affect soil texture significantly, values of soil pH, organic carbon, total nitrogen, calcium and cation exchange capacity (CEC) values in adjacent grassland were greater at both 0–10 cm and 10–20 cm depths compared with 5‐ and 10‐year‐old Eucalyptus plantations. Available phosphorus, exchangeable potassium and magnesium were not significantly affected under the three land‐use systems. Generally, no differences were observed in available phosphorus, potassium, calcium and magnesium concentrations or in CEC between the two sampling depths (0–10 cm and 10–20 cm). The microbial biomass carbon and microbial biomass nitrogen recorded in 5‐ and 10‐year‐old Eucalyptus plantations were comparable but significantly smaller than in adjacent grasslands. Kinetics parameters calculated using a first‐order equation (Ct = Co (1?e?kt)) showed potentially mineralizable carbon (Co) was significantly larger (P < 0.001) under grassland compared with 5‐ and 10‐year‐old Eucalyptus plantations. Conversion of grassland to 5‐year‐old and 10‐year‐old Eucalyptus reduced the values of Co by 21 and 43%, respectively. However, soil physical and chemical properties were not adversely affected by age of Eucalyptus over a 5‐year period. It is concluded that Eucalyptus plantations degrade soil ecosystem functioning and environmental sustainability compared with grassland.  相似文献   

5.
黄土高原地区是我国水土流失和环境问题严重的地区之一,人工植被恢复可以有效改善土壤性质,提高土壤质量,明确长期人工植被恢复后土壤水分和养分性质的响应差异,有利于进一步有效改善生态环境。选取晋西黄土区自然恢复的次生林地、人工刺槐林地、人工油松林地3种典型植被恢复类型为研究对象,通过测定土壤物理性质以及有机碳、氮磷钾元素含量等土壤养分,对比分析长期不同人工林恢复条件下的差异。结果表明:(1)次生林地、刺槐林地和油松林地在0-20 cm浅层土壤的容重分别1.15,1.04,1.06 g/cm3,次生林地的容重最大,土壤容重随着土层深度的增加而增大;(2)次生林地在浅层的土壤水分状况优于刺槐林地和油松林地,土壤水分消耗期(生长季开始前)过渡到积累期(生长期开始)时,次生林土壤水分动态变化更剧烈;(3)次生林地土壤碳储量较高,油松林地土壤氮、磷储量较高。3种林地土壤养分垂直变化差异显著,且均具有明显的表聚性,有机碳、全氮、全磷、速效氮和速效钾含量均随着土层深度的增加而减少,而速效磷含量随着土层深度的变化表现为先增大再减小。以水养条件为依据,建议在植被恢复过程中多以保育次生林为主来达到较好的水碳储量等生态效益,有利于优化晋西黄土区的林分管理,促进植被恢复和生态建设。  相似文献   

6.
Changes in land use can significantly affect soil properties. This study was conducted in the Taleghan watershed of Tehran Province, Iran, to determine the effects of land use changes on soil organic matter (SOM) and soil physical properties including soil aggregate stability, saturated hydraulic conductivity, infiltration rate, available water content, total porosity and bulk density (BD). In the present study, two sites contained adjacent land uses of natural pasture and dryland farming were selected. Soil samples were taken from depths of 0–15 and 15–30 cm for each land use. The results indicated that the conversion of natural pasture to dryland farming led to a significant decrease in SOM at 0–30 cm in the first and second sites (24.7 and 44.2%, respectively). In addition, a significant increase in BD was observed at a depth of 0–30 cm in dryland farm soils (1.39 g cm–3) compared to pastureland (1.20 g cm–3) at the first site. An increase in BD was also observed at the same depth of dryland farm soils (1.46 g cm–3) and pastureland soils (1.42 g cm–3) at the second site. In addition, total porosity, mean‐weight diameter of aggregates, saturated hydraulic conductivity, available water content and estimated final infiltration rate showed significant differences between land uses. The results showed that the conversion of natural pasture to dryland farming alters soil properties that negatively affect soil productivity and erodibility. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The distribution and growing conditions of Cupressus chengiana forests along with the physical and chemical properties of soils in Northwest Sichuan were studied in 2002 to investigate the conditions and characteristics of soil fertility of C. chengiana and to compare and investigate differences of soil fertility for six C. chengiana populations and their relationships with vegetation, climate and disturbance. The results of the study at 0-20 cm soil depth showed that 1) significant differences (P〈0.05) existed among populations for soil bulk density, soil total porosity, capillary porosity, maximum water-holding capacity, capillary water-holding capacity and topsoil natural water content; 2) chemical characteristics of soil organic matter, total N, total P, alkali-hydrolyzable N, available P, available K and cation exchange capacity were significantly different among the populations; and 3) based on the significant effect of soil fertility factors on forest growth, soil physical and chemical characteristics could be selected as an integrated fertility index (IFI) for evaluation of different C. chengiana populations. Principal component and cluster analyses showed significant differences probably due to the difference of vegetation conditions, management measurements, human-induced disturbances and environmental factors. In order to protect the soil ecological functions in fragile ecological regions, C. chengiana could be used in programs enclosing the hill for natural afforestation, natural forest protection programs, and programs replacing agriculture with afforestation measures.  相似文献   

8.
Abstract

The goal of this study to was compare soils of natural forests converted to teak (Tectona grandis Linn. F) plantations (21.3±5.1 years) in the Offinso and Juaso Forest Districts in the Ashanti region, Ghana. Sites selected for this study were in the moist semi‐deciduous forest zone and had nearly identical physiographic characteristics. In each of three natural forest stands and three teak plantations, 16 soil pits were examined and soil samples from the 0–20 (major rooting zone) and 20–40 cm depths were analyzed for selected chemical and physical properties. In the 0–20 cm depths bulk density significantly increased (1.17 to 1.30 g cm‐3), but soil organic matter (OM) content (13 to 11%), total nitrogen (0.3 to 0.2 %), available phosphorus (4.2 to 1.2 mg kg‐1), and exchangeable potassium (0.4 to 0.3 cmol(+)kg‐1), calcium (17.0 to 12.4 cmol(+)kg‐1), and magnesium (3.8 to 3.2 cmol(+)kg‐1) significantly decreased in soils where natural forests were replaced with teak plantations. Similar results also were found for the 20–40 cm soil depths. The higher nutrient contents in soils under the natural forest may have been due to more litter contributions from understorey vegetation observed there. In the teak plantations nutrient leaching losses may have accelerated due to increased mineralization and the inability of teak to use the increase in available nutrient.  相似文献   

9.
In arid and semiarid Mediterranean areas, Pinus halepensis Mill. is one of the dominant forest species and is widely used in restoration programmes. We collected samples and investigated the understory plant species in an age sequence of 0‐, 5‐, 9‐, and 13‐year‐old P. halepensis plantations to assess the effect of the tree on soil properties and development of plant community. Soil samples were taken from two depths (0–10 and 10–30 cm) under tree canopy and in the associated open spaces. Results showed that tree establishment and development enhanced organic C, total N, and available P accumulation, and improved soil moisture content which increased significantly with increasing plantation age. At the same time, P. halepensis facilitated the colonization and development of understory vegetation. Indeed, the number of plant species, the total plant cover, and the perennial species density were more important under tree canopy and increased with increasing plantation age. The soil dynamic under 13‐year‐old P. halepensis plantations reflected two phase restoration sequence, characterized by nominal changes during tree establishment (0–5 years) and marked and rapid changes associated with the start of canopy closure (5–13 years). Our results provide that the introduction of P. halepensis with afforestation could be an effective and applicable measure to restore arid degraded areas. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
[目的]研究南方红壤侵蚀地不同恢复年限植被生态系统碳库储量,为该地区马尾松人工林制定合理的森林经营方式提供理论支持。[方法]以福建省长汀县河田镇裸地、不同恢复年限(10,20,30a生)马尾松人工林和天然次生林为研究对象,测定不同恢复阶段林地植被和土壤碳库储量。[结果]马尾松人工林植被恢复能够显著提高植被和土壤碳库储量。10a,20a,30a生马尾松人工林与裸地相比生态系统碳库储量分别增加2.80,3.54,8.56倍,但依然低于天然次生林;马尾松人工林植被恢复能够显著提高表层(0—10cm)土壤碳库储量,而对深层土壤碳库储量影响不显著;不同恢复阶段植被和土壤碳库增加速率不同,呈现非线性增加。[结论]南方红壤严重侵蚀地植被恢复能够增加生态系统碳库储量,但该地区土壤碳库的恢复是长期的缓慢过程。今后应加强南方红壤地区森林植被的保护,避免植被过度干扰和破坏而引起严重土壤侵蚀。  相似文献   

11.
刘克宏  王立  马维伟  王琪  石小伟 《土壤》2016,48(4):813-818
由于恶劣的气候条件和过度的放牧、修建公路等因素,尕海泥炭湿地退化严重,泥炭地质量和生态作用持续下降。本研究采用空间分布代替时间序列的方法,对该区域4种不同退化程度下泥炭湿地土壤渗透性能的变化进行分析研究,从而进一步评价与揭示退化过程中泥炭地的生态功能。结果表明:在前35 min,泥炭地土壤入渗速率曲线在各土壤分层中的变化情况不一;0~10 cm和20~40 cm土层土壤入渗速率曲线变化稳定且都表现为未退化的优于退化土壤;而10~20 cm土层土壤入渗速率曲线变化复杂多变,无明显规律。0~40 cm泥炭土中,植被退化对各层土壤渗透特征的影响不一,在0~10 cm土层,植被未退化土壤的初渗率、稳渗率、平均渗透速率、渗透系数和渗透总量与其他退化土壤渗透特征差异性显著;10~20 cm土层,未退化的土壤稳渗率、渗透速率、渗透系数与渗透量随着植被的退化程度呈“∽”形态波动变化;0~40 cm土层,土壤稳渗率、平均渗透速率、渗透系数和渗透总量均随着植被的退化,呈现出逐级递减的规律。土壤平均渗透速率与土壤孔隙度呈一定的正显著相关,而与土壤初始含水量之间无明显的相关性。保护高寒泥炭地生态系统,对于尕海畜牧业可持续发展和我国陆地生态系统碳库具有极重要的意义。  相似文献   

12.
为研究坝上地区人工林土壤水势动态,以结缕草(Zoysia japonica)为对照,选取坝上地区典型人工林小叶杨(Populus simonii Carr.)和樟子松(Pinus sylvestris var. mongolica),研究其生长季不同时间、空间土壤水势和变异系数及晴天和降雨下土壤水势变化。结果表明:(1)人工林和草地土壤水势变化趋势相同,在生长季前期和后期土壤水势较高,中期土壤水势进入波动下降期,但不同植被进入波动期时间不同,樟子松晚于小叶杨和结缕草。小叶杨、樟子松、结缕草土壤水势最低值分别出现在70,10,30 cm处,最低值分别为-1 257.24,-747.97,-830.11 kPa。小叶杨、樟子松和结缕草土壤水势变异系数最大值分别在9月10 cm、7月10 cm、7月30 cm处,其值分别为-155.9%,-208.0%,-183.6%。总体上,变异系数生长季中期大于前期和后期,表层大于深层。(2)晴天人工林和草地土壤水势差的最大值与日均温度之间存在显著的相关关系,随着日均温度升高,水势差最大值也增大。典型晴天大气温度在日内上下波动,土壤水势呈现滞后波动,在生长季浅层土壤最为明显。(3)不同降雨量与土壤水势差呈现相关关系,随着降雨量升高,土壤水势差也随之升高。典型降雨事件下,中雨和大雨剖面土壤水势迅速上升,小雨事件下主要呈现波动变化。从不同植被来看,草地土壤水势较人工林波动更为剧烈。综上,生长季樟子松土壤水势进入波动期最晚,波动幅度最大。而土壤水势对于大气温度和降雨的响应方面,结缕草最为敏感。研究结果对于指导当地人工林建设与水资源高效管理具有重要意义。  相似文献   

13.
以黄土丘陵区3种典型植被群落(白羊草、铁杆蒿和杠柳)为研究对象,并以退耕1年的撂荒地作为对照(CK),采用原位染色示踪和实验室分析相结合,对比分析不同植被群落斑块格局下的土壤优先流特征,探究植物根系、土壤理化性质对优先流的影响。结果表明:相较CK,植被恢复提高了优先流发育程度;对于各植被斑块,铁杆蒿植被斑块具有最高的染色面积比(45.62%)、最大染色深度(30.30 cm)、优先流比(39.76%)和长度指数(475.90%),杠柳次之,白羊草最小;而对于同一植被群落,除白羊草群落外,其他群落优先流发育程度表现为植被斑块大于裸地斑块;通过结构方程模型发现,优先流染色面积比主要受到土壤总孔隙度、团聚体稳定性、根系生物量密度和有机质含量的直接影响,解释方差可达70%。因此,植被的自然恢复通过其根系发育影响土壤性质,进而改善土壤优先流发育程度,提高土壤入渗能力。  相似文献   

14.
We investigated the potential of three methods of quantifying microbial biomass carbon (MBC), viz., chloroform fumigation-extraction (CFE) following organic C estimation through Vance method (CFE-V) and Snyder–Trofymow method (CFE-ST), and substrate-induced respiration (SIR) method in soils under various temperate fruit crops along with a control (no plantation) at 0–20 and 21–40 cm soil depths. CFE methods have shown significant (< 0.05) increase in chloroform labile C in all orchards over the control in surface soil. The interaction between the fruit crops and methods, although significant (< 0.01), indicated that CFE-ST and SIR methods were statistically at par with each other within the same fruit crop, except peach plantation (CEF-ST significantly lower than SIR) in 0–20 cm soil depth. The coefficient of variation recorded for chloroform labile organic C estimates by CFE-ST method makes it more precise than CFE-V method, especially in 0–20 cm soil depth. The very close agreement between the methods suggests that over this narrower range (i.e., smaller geographical area) all methods are appropriate for assessing MBC. However, SIR, being most sensitive to orchard plantations and strongly correlated with various soil chemical properties, could preferably be recommended for estimation of MBC in such soils. As an alternative to CFE-V method, CFE-ST may also be used for estimation of chloroform labile organic C in these soils.  相似文献   

15.
Changes in vegetation and soil properties because of agricultural abandonment may affect soil nitrogen (N) and associated processes. We investigated soil N (total N: TN, inorganic N: NH4–N and NO3–N) and denitrification potential in cropland, pine plantations and abandoned agricultural land along a secondary succession sequence (grassland→shrubland→secondary forest) in a headwater catchment in the Qinling Mountains, northwest China. The results show that the soil denitrification potential differed significantly among the five land‐use types with the highest potential in the secondary forest, followed by grassland, shrubland, cropland and plantations. The denitrification potential of the 20‐ to 40‐cm layer was significantly lower compared with the topsoil (0–20 cm) across all land‐use types. TN, soil organic matter (SOM) and NH4–N increased significantly with stand age, whereas there was an opposite trend in soil pH. However, the denitrification potential did not relate to stand age in a linear manner. We conclude that changes in soil TN, SOM and pH during vegetation succession following agricultural abandonment are critical controls on the denitrification potential.  相似文献   

16.
桉树造林的土壤物理性质及其水文效应   总被引:1,自引:0,他引:1  
为探讨广西主要长周期人工林改为短周期桉树人工林后林地土壤水文功能变化,采用野外采样与室内测试分析相结合的方法,分别研究了1,3,5年生桉树人工林及与之对应的桉树造林前米老排林、杉木林和马尾松林土壤基本物理性质与水分调蓄功能的差异。结果表明:桉树造林后与造林前的长周期人工林相比,土壤蓄水能力的变化主要表现为20—40 cm土层土壤水库容和剩余蓄水空间增加。随着土层深度的增加,土壤容重逐渐增大,饱和持水量、总孔隙度逐渐减小,同时,土壤水库容和剩余蓄水空间也呈现逐渐减小的趋势。桉树造林对土壤物理性质的影响主要集中在土壤的20—40 cm土层,而桉树林对土壤的蓄水能力存在的影响与轮伐周期较长的人工林相比,主要表现为20—40 cm土层土壤水库容和剩余蓄水空间增加,1,3,5年生桉树人工林的土壤水库容分别比对应的长周期人工林高11.25%,19.14%,14.33%;剩余蓄水空间则分别比对应长周期人工林高9.16%,113.01%,23.62%。而40 cm以下土层的土壤蓄水能力却下降。研究结果可为桉树造林的土壤效应评价提供理论依据。  相似文献   

17.
This work evaluated how pine plantations established on old fields and degraded lands influence soil properties in comparison with adjacent unplanted areas that undergo into secondary succession, and native forests, analysing the effects of abiotic variables and stand characteristics in the afforestation process. Thirty‐two paired sites (pine plantations versus unplanted areas) and 10 native forests were selected in the SE Spain. In total, 74 soil profiles were studied, and 222 composite soil samples were collected at three different depths. Soil organic carbon, cation exchange capacity, and C : N ratio showed significantly greater values in pine plantations in relation to the unplanted areas (0–5 cm), and the mean values of soil organic carbon, nitrogen (N), C : N ratio, and cation exchange capacity in these pine plantations were similar to those found under native forests. Only K+ concentrations were clearly higher in the native forests than in the other land uses for all depths analysed. Pine plantations in the drier and warmer areas showed lower soil quality in relation to the paired unplanted areas, as well as the younger and denser ones; it may be because under these situations, more time is needed to produce an improvement. In fact, the paired net variations increased with the stand age and/or tree size. In conclusion, pine plantations were in general more efficient in improving parameters related to soil quality, especially in locations with high soil water retention capacity, which in our study area were found at higher and cooler elevations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Amelioration of a highly alkaline soil by trees in northern India   总被引:2,自引:0,他引:2  
Abstract. A study was carried out to compare the impact of 6-year-old plantations of Prosopis juliflora (Swartz) D.C., Dalbergia sissoo Roxb. Ex. D.C. and Eucalyptus tereticornis Sm. on the physical and chemical properties of sodic soil in the Indo-Gangetic alluvial plains of Uttar Pradesh, India. Soil properties under the three tree species showed significant improvement through a reduction in the pH, electrical conductivity, exchangeable sodium percentage, CaCO3 and gypsum requirement, and by increase in organic C, total N, and available P and K. The six years of reclamation had achieved a marked reduction in exchangeable sodium (from 11.5 to 4.5 cmolc kg−1) to a depth of 1.5 m in the soil profile, whereas the levels of exchangeable calcium, magnesium and potassium had increased. There was also a significant reduction in soil bulk density (from 1.66 to 1.24 g cm−3) and increases in porosity, water holding capacity, field capacity, permeability and infiltration rate. The equilibrium infiltration rate after 455 min increased from 0.03 cm h−1 in the control to 0.13 cm h−1 under P juliflora and D. sissoo and 0.10 cm h−1 under E. tereticornis . It is concluded that salt-tolerant tree species have a significant impact on soil properties, which could help to rehabilitate the sodic wastelands in the region.  相似文献   

19.
植被恢复是既能保持磷矿开采同时又能有效扼制矿区生态环境的退化,并逐步恢复已退化的矿区生态系统最有效的生物措施。为揭示植被恢复对昆阳磷矿土壤有机碳和碳素积累的影响,研究探讨了昆阳磷矿不同恢复林地的土壤有机碳储量变化。结果表明:(1)不同恢复林地的土壤有机碳含量存在显著差异(p < 0.05),7种不同植被恢复人工林土壤平均有机碳含量分别是废弃地的14.29倍、11.83倍、11.40倍、5.89倍、15.48倍、15.59倍、18.53倍。(2)土壤有机碳在剖面的含量表现出明显的“表聚作用”,均以表土层(0—20 cm)最大,且随土层厚度的增加,呈下降趋势。(3)不同恢复林地的土壤有机碳密度差别较大,变化趋势和土壤有机碳含量的变化趋势一致,且在同一林分土壤中,单位深度土壤各土层平均有机碳密度均以表层最大,随土层的增加而降低。(4)土壤有机碳主要存储于0—20 cm土层中,平均含量为53.60%,随着土层的加深,土壤有机碳所占比重急剧下降,经过植被恢复,7种人工林土壤有机碳储量较废弃地0—20 cm土壤有机碳储量提高了26.53%,20.39%,34.48%,10.81%,28.62%,39.52%,36.71%,说明目前矿区通过植被恢复后的土壤状况显著优于未进行恢复措施的废弃地。  相似文献   

20.
Abstract. Changes in soil physical and chemical properties associated with different land uses including natural savannah were compared in Nigeria. The study was conducted on large unreplicated sites. There was a significant coarsening of texture, depletion of organic matter and nutrients and increase in bulk density under Eucalyptus camaldulensis and Mangifera indica (mango) plantations, and also under arable and fallow conditions compared with under natural vegetation. The soil conditions were slightly better under Mangifera than under Eucalyptus , and in the fallow land than the arable land and tree plantations, but the differences were mostly non-significant. The land uses studied were less efficient than the natural savannah in protecting the soil from loss of organic matter and nutrients by offtake or surface washing. The options open to Nigerian smallholder fanners are discussed in relation to sustaining soil fertility and productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号