首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reasons for performing study: Hyperintense signal is sometimes observed in ligaments and tendons of the equine foot on standing magnetic resonance examination without associated changes in size and shape. In such cases, the presence of a true lesion or an artifact should be considered. A change in position of a ligament or tendon relative to the magnetic field can induce increased signal intensity due to the magic angle effect. Objectives: To assess if positional rotation of the foot in the solar plane could be responsible for artifactual changes in signal intensity in the collateral ligaments of the distal interphalangeal joint and in the deep digital flexor tendon. Methods: Six isolated equine feet were imaged with a standing equine magnetic resonance system in 9 different positions with different degrees of rotation in the solar plane. Results: Rotation of the limb induced a linear hyperintense signal on all feet at the palmar aspect of one of the lobes of the deep digital flexor tendon and at the dorsal aspect of the other lobe. Changes in signal intensity in the collateral ligaments of the distal interphalangeal joint occurred with rotation of the limb only in those feet where mediolateral hoof imbalance was present. Conclusions: The position and conformation of the foot influence the signal intensity in the deep digital flexor tendon and in the collateral ligaments of the distal interphalangeal joint. Potential relevance: The significance of increased signal intensity in the deep digital flexor tendon and in the collateral ligaments of the distal interphalangeal joint should be interpreted with regard to the position and the conformation of the foot.  相似文献   

2.
Abnormalities of the deep digital flexor tendon, navicular bone, and collateral sesamoidean ligament can be difficult to visualize using magnetic resonance imaging (MRI) if bursal fluid is absent. The use of saline podotrochlear bursography improves podotrochlear apparatus evaluation, however, the technique has disadvantages. The objective of this prospective feasibility study was to describe saline arthrography of the distal interphalangeal joint as an alternative technique for improving MRI visualization of the deep digital flexor tendon, navicular bone, collateral sesamoidean ligament, and podotrochlear bursa, and to compare this technique with saline podotrochlear bursography. Eight paired cadaver forelimbs were sampled. Saline podotrochlear bursography or saline arthrography techniques were randomly assigned to one limb, with the alternate technique performed on the contralateral limb. For precontrast and postcontrast studies using each technique, independent observers scored visualization of the dorsal aspect of the deep digital flexor tendon, palmar aspect of the navicular bone, collateral sesamoidean ligament, and podotrochlear bursa. Both contrast techniques improved visualization of structures over precontrast MR images and visualization scores for both techniques were similar. Findings from this study demonstrated that saline arthrography is feasible and comparable to saline podotrochlear bursography for producing podotrochlear bursa distension and separation of the structures of the podotrochlear apparatus on nonweight bearing limbs evaluated with low‐field MRI. Clinical evaluation of saline arthrography on live animals is needed to determine if this technique is safe and effective as an alternative to saline podotrochlear bursography in horses with suspected pathology of the podotrochlear apparatus.  相似文献   

3.
Increased signal intensity in one of the collateral ligaments of the distal interphalangeal (DIP) joint of sound horses in images acquired using a low-field magnet with vertical orientation of the magnetic field was investigated as a possible manifestation of the magic angle effect. Three isolated equine digits were imaged using the following pulse sequences: (1) spin echo T1, (2) turbo spin echo proton density and T2, and (3) 3D gradient echo T1, in different positions by mildly changing the orientation of the long axis of the digit, in the dorsal plane, relative to the magnetic field. The signal intensity in a ligament was significantly increased when the ligament orientation relative to the magnetic field was 55±10°. The signal intensity was markedly increased in pulse sequences with short echo time (TE) 5.0, 4.9, and 3.9 times increased, respectively, for 3D gradient echo T1, spin echo T1, and turbo spin echo proton density) and to a lesser extent with pulse sequences with a longer TE (1.8 times increased for turbo spin echo T2). These changes are characteristic of the magic angle effect. Because of the anatomic orientation of the collateral ligaments of the DIP joint, a slight deviation of the long axis of the digit in the dorsal plane, from the ideal horizontal position, will induce an increased signal intensity that can be confused with desmitis. Careful positioning of the foot in magnetic resonance imaging systems where B 0 is perpendicular to the long axis of the digit is critical to prevent the occurrence of the magic angle effect.  相似文献   

4.
The anatomic variations and the degenerative changes in the collateral cartilages and middle and distal phalanges in 6 Ardenner colts were characterized by radiography, scintigraphy, and magnetic resonance imaging (MRI). The radiographic changes were assessed between the ages of 16.5 and 25 months. An anatomic variation of the middle and distal phalanges was demonstrated in some of the colts. MRI examination of the 6 colts revealed an association between the deep digital flexor tendon cross-sectional area and body weight as well as foot circumference. Also, a thin collateral sesamoidean (suspensory navicular) ligament was observed subjectively. The presence of an extensive ossification of the collateral cartilages of the foot was found in these young horses. The ossification was characterized by the existence of 2 separate ossification centers, which had a tendency to unite. The radiographic interphalangeal degenerative lesions seen appear as bone remodeling of the dorsal edges of the middle and distal phalanx, on the insertion sites of collateral ligaments of the distal interphalangeal joint, the digital extensor tendon, and the distal interphalangeal joint capsule.  相似文献   

5.
In horses, dorsal subluxation of the proximal interphalangeal joint in the pelvic limb, which realigned when weight was applied to the limb, improved following surgery. Improvement was observed, if not immediately, at least within two weeks after treatment. The severity and duration of the condition appear to be important considerations in predicting the time necessary for resolution of the condition following surgery. Treatment consisted of surgical resection of a small segment of the medial head of the deep digital flexor tendon in the pelvic limb. The section removed was positioned distal to the tarsus, at the level prior to the tendon joining the main portion of the deep digital flexor tendon. Previously, a surgical treatment was described in which a portion of the accessory ligament (distal check ligament) of the deep digital flexor muscle was resected. Because the medial head is much stronger than the accessory ligament, resection of the tendon of the medial head provides more release of tension to allow stretching of the deep digital flexor muscle tendon.  相似文献   

6.
REASONS FOR PERFORMING STUDY: Causes of palmar foot pain and the aetiopathogenesis of navicular disease remain poorly understood, despite the high incidence of foot-related lameness. HYPOTHESES: Abnormalities of the deep digital flexor tendon (DDFT) may contribute to palmar foot pain; ageing degenerative changes may be seen in horses free from lameness; and horses with lameness are likely to have a greater severity of abnormalities than age-matched horses with no history of foot pain. METHODS: Feet were selected from horses with a history of uni- or bilateral forelimb lameness of at least 2 months' duration. Histology of the DDFT from the level of the proximal interphalangeal joint to its insertion were examined and the severity of lesions for each site graded. Associations between lesions of the navicular bone, collateral sesamoidean ligaments (CSL), distal sesamoidean impar ligament, navicular bursa, distal interphalangeal (DIP) joint synovium and collateral ligaments of the DIP joint and DDFT were assessed. RESULTS: There was no relationship between age and grade of histological abnormality of the DDFT. There were significant histological differences between groups for lesions of the dorsal layers of the DDFT, but not for lesions of the palmar aspect. There were significant associations between histological grades for the superficial dorsal layer of the DDFT and flexor aspect of the navicular bone; and between the deep dorsal layer of the DDFT and the proximal border and medulla of the navicular bone. The navicular bursa grade was correlated with grades for the superficial dorsal, deep dorsal and deep palmar layers of the DDFT. The histological grades for the CSL and the superficial dorsal layer of the DDFT were also associated. CONCLUSIONS: Pathological abnormalities in lame horses often involved the DDFT in addition to the navicular bone. Vascular and matrix changes may precede changes in the fibrocartilage of the navicular bone. POTENTIAL RELEVANCE: Identification of factors leading to vascular changes within the interstitium of the DDFT and changes in matrix composition, may help in future management of palmar foot pain.  相似文献   

7.
Ten normal equine isolated limbs were imaged using a knee coil in a 1.5 Tesla magnetic field, with short echo time sequences (TE < 15 ms). Magnetic resonance imaging was performed on each isolated limb in different positions, with and without extension of the metacarpophalangeal joint. Deep digital flexor tendon orientation ranged from 20 to 60 degrees in relation to the static magnetic field. Increased intratendinous signal intensity was observed when the angle between the deep digital flexor tendon and the constant magnetic field approached 55 degrees ("magic angle"). The increased signal intensity was independent from extension of the metacarpophalangeal joint. Recognition of the magic angle phenomenon is essential for proper evaluation of magnetic resonance imaging studies of the equine foot.  相似文献   

8.
Desmitis of the collateral ligament of the distal interphalangeal joint is a cause of lameness in performance horses. The objective of this prospective, experimental, ex vivo feasibility study was to evaluate the success of ultrasound‐guided injection of the collateral ligaments of the distal interphalangeal joint in the equine forelimb. Seventy‐six ultrasound‐guided dye injections of the collateral ligament of the distal interphalangeal joint were performed on horses’ cadaver limbs. The hooves were sectioned transversely to verify the location of the dye relative to the collateral ligaments and surrounding structures. Evaluations of transverse sections were performed independently by two experienced observers. A scoring system was used to assess injection of the collateral ligament of the distal interphalangeal joint at the proximal, middle, and distal aspect over the length of the ligament. The collateral ligament was injected at any point in 97.4% of cases. The ligament was injected over the entire scored length in 43.2% of cases (32/74), over two scored length areas in 45.9% of cases (34/74), and in one area in 10.8% of cases (8/74). The distal interphalangeal joint and the common digital extensor tendon were also injected in 81.6% (62/76) and 43.4% (33/76) of the cases, respectively. Use of the ultrasound had a positive and negative predictive value of 98% and 9%, respectively. In this study, ultrasound guidance was useful for confirming injection of the collateral ligament of the distal interphalangeal joint but did not prevent injecting the distal interphalangeal joint and the common digital extensor tendon.  相似文献   

9.
REASONS FOR PERFORMING STUDY: Causes of palmar foot pain and the aetiopathogenesis of navicular disease remain poorly understood, despite the high incidence of foot-related lameness. HYPOTHESES: Abnormalities of the collateral sesamoidean ligaments (CSLs), distal sesamoidean impar ligament (DSIL), deep digital flexor tendon (DDFT), navicular bone, navicular bursa, distal interphalangeal (DIP) joint or collateral ligaments (CLs) of the DIP joint may contribute to palmar foot pain. METHODS: Feet were selected from horses with a history of unilateral or bilateral forelimb lameness of at least 2 months' duration that was improved by perineural analgesia of the palmar digital nerves, immediately proximal to the cartilages of the foot (Group 1, n = 32); or from age-matched control horses (Group 2, n = 19) that were humanely destroyed for other reasons and had no history of forelimb foot pain. Eight units of tissue were collected for histology: the palmar half of the articular surface of the distal phalanx, including the insertions of the DDFT and DSIL; navicular bone and insertion of the CSLs; DDFT from the level of the proximal interphalangeal (PIP) joint to 5 mm proximal to its insertion; synovial membrane from the palmar pouch of the DIP joint and the navicular bursa; CLs of the DIP joint and DSIL. The severity of histological lesions for each site were graded. Results were compared between Groups 1 and 2. RESULTS: There was no relationship between age and grade of histological abnormality. There were significant histological differences between groups for lesions of the flexor aspect, proximal and distal borders, and medulla of the navicular bone; the DSIL and its insertion and the navicular bursa; but not for lesions of the CSLs, the dorsal aspect of the navicular bone, distal phalanx and articular cartilage, synovium or CLs of the DIP joint. CONCLUSIONS: Pathological abnormalities in lame horses often involved not only the navicular bone, but also the DSIL and navicular bursa. Abnormalities of the navicular bone medulla were generally only seen dorsal to lesions of the FFC. POTENTIAL RELEVANCE: Adaptive and reactive change may be occurring in the navicular apparatus in all horses to variable degrees and determination of the pathogenesis of lesions that lead to pain and biomechanical dysfunction should assist specific preventative or treatment protocols.  相似文献   

10.
Analgesia usually occurs within 5 min after administration of local anaesthetic solution into joints or around nerves in the distal portion of the limb. Gait should be assessed within 10 min after diagnostic regional analgesia of the distal portion of the limb because rapid diffusion of anaesthetic solution can result in anaesthesia of other nerve branches, thus confusing results of the examination. A palmar digital nerve block (PDNB) anaesthetises most of the foot, including the distal interphalangeal (DIP) joint (coffin joint), rather than just the palmar half of the foot, as was once commonly believed. To avoid partially anaesthetising the proximal interphalangeal joint (pastern joint), the palmar digital nerves should be anaesthetised near or distal to the proximal margin of the collateral cartilages. Clinicians should be aware that an abaxial sesamoid nerve block (ASNB) may ameliorate or abolish pain within the metacarpo/metatarso‐phalangeal joint (fetlock joint). Mepivacaine administered into the DIP joint desensitises the DIP joint and probably the palmar digital nerves to also cause anaesthesia of the navicular bursa, the navicular bone, the toe region of the sole, the digital portion of the deep digital flexor tendon (DDFT) and the distal portions of the collateral ligaments of the DIP joint. When a large volume of mepivacaine HCl (e.g. 10 ml) is administered, the heel region of the sole may also be desensitised. Only a small percentage of horses with disease of the collateral ligament(s) of the DIP joint show a significant improvement in lameness after intra‐articular analgesia of the DIP joint, and no horse is likely to improve after intrabursal analgesia of the navicular bursa. A PDNB, however, improves lameness substantially in most horses that are lame because of disease of the collateral ligament(s) of the DIP joint, and all affected horses are likely to become sound after an abaxial sesamoid nerve block. The degree of improvement in lameness associated with injury to one or both collateral ligaments of the DIP joint after PDNB is determined by the extent of the injury and the level at which the palmar digital nerves are anaesthetised. The further proximal the level of the injury within the collateral ligament, the less likely that lameness is ameliorated by analgesia of the DIP joint or a PDNB. Verschooten's technique appears to be the most accurate technique for centesis of the navicular bursa. Even though analgesia of the DIP joint results in analgesia of the navicular bursa, analgesia of the navicular bursa does not result in analgesia of the DIP joint. Pain arising from the DIP joint can probably be excluded as a cause of lameness when lameness is attenuated by analgesia of the navicular bursa. Analgesia of the digital flexor tendon sheath (DFTS) is likely to desensitise only structures that are contained within or border on the sheath itself (i.e. the superficial and deep digital flexor tendons, the straight and oblique distal sesamoidean ligaments, the annular ligaments of the fetlock and pastern, and the portion of the DDFT that lies within the foot). Because lameness caused by disease of the DDFT within the foot may fail to improve appreciably after analgesia of the palmar digital nerves, the DIP joint, or the navicular bursa, a portion of the DDFT within the foot and distal to the DFTS probably receives its sensory supply from more proximal deep branches of the medial and lateral palmar digital nerves that enter the DFTS. Performing intrathecal analgesia of the DFTS on horses with lameness that is unchanged after anaesthesia of the palmar digital nerves but resolves after an ASNB, may be useful in localising lameness to that portion of the DDFT that lies within the foot. Resolution of lameness after intrathecal analgesia of the DFTS justifies suspicion of a lesion within the digital portion of the DDFT or within structures contained within the DFTS. The belief that concurrent or sequential intra‐articular administration of medication substantially increases the risk of joint infection or that inflammation caused by the local anaesthetic solution may dampen the therapeutic response to intra‐articular medication appears to be unfounded.  相似文献   

11.
12.
The purpose of this study was to describe the frequency of occurrence of severe ossification of the collateral cartilages (sidebone) coexistent with collateral desmitis of the distal interphalangeal joint (DIPJ) in lame horses. Sidebone was diagnosed and graded on standard radiographs and soft tissue injuries of the foot were diagnosed using standing low‐field magnetic resonance imaging (MRI). Of 15 horses with forelimb lameness and severe sidebone, 9 had evidence of concurrent collateral desmitis of the DIPJ. All 15 horses had damage to other structures (including the deep digital flexor tendon, distal sesamoidean impar ligament, collateral sesamoidean ligament, navicular bone and distal phalanx) within the affected feet as identified on MRI. The clinical and pathophysiological significance of concurrent collateral desmitis of the DIPJ and sidebone is currently uncertain. However, this study shows that injuries to multiple structures within the foot are common and that collateral desmitis of the distal interphalangeal joint is frequently seen in lame horses in conjunction with severe ossification of the collateral cartilages.  相似文献   

13.
A cadaver limb from an eight-year-old horse with right forelimb lameness that was relieved with an intra-articular distal interphalangeal joint block was imaged with radiographs, spiral computed tomography (CT) and magnetic resonance imaging (MRI). Spiral CT demonstrated several lucencies within the deep digital flexor tendon immediately proximal to the navicular bone. On MRI these areas had increased signal and there was enlargement of the tendon at this site. Effusion in the proximal interphalangeal joint and navicular bursa and thinning of the fibrocartilage of the navicular bone were also observed on MRI images. These changes were not detected on radiographs. Histopathology confirmed that there were focal areas of collagen necrosis within the deep digital flexor tendon with thinning and degenerative changes in the fibrocartilage of the navicular bone.  相似文献   

14.
Distal forelimb specimens of eight skeletally mature horses were imaged using proton density turbo spin echo, T1-weighted spoiled gradient echo, T2*-weighted gradient echo, short tau inversion recovery and T2-weighted fast spin echo sequences with the limb parallel to the main magnetic field, and with angulation of the limb relative to the main magnetic field. The magic angle effect can be identified in the collateral ligaments of the distal interphalangeal joint when imaged in a high-field magnetic resonance (MR) imaging system with a horizontally oriented main magnetic field. This effect has previously been described in the collateral ligaments of the distal interphalangeal joint in a low-field system with a vertically oriented main magnetic field. The curvature of the ligaments places the fibers at the magic angle in both horizontally and vertically orientated main magnetic fields. This effect can be identified on short time of echo sequences and impacts the signal pattern of the ligaments at the level of the middle phalanx with the limb in a neutral position and with angulation of the limb. Magic angle effect should be considered as a possible cause of an asymmetrical signal pattern, depending on the positioning of the limb and the sequences used for imaging, when evaluating the collateral ligaments of the distal interphalangeal joint on images acquired with a high-field MR imaging system that has a horizontally oriented main magnetic field.  相似文献   

15.
16.
The distal interphalangeal joint was successfully arthrodesed in two horses using three parallel 5.5-mm cortical screws and an autogenous cancellous bone graft. The screws were directed from the palmar proximal border of the second phalanx dorso-distally across the joint space and into the third phalanx. The technique was first developed on a normal horse. The second horse, a clinical case, ruptured its deep digital flexor tendon with complete luxation of the distal interphalangeal joint. Bony fusion of the distal interphalangeal joint occurred in both horses, but both also had residual lameness at a walk. Twenty-one months after the arthrodesis procedure, the clinical patient died from complications related to a subsolar abscess in the operated limb.  相似文献   

17.
Mature horses that present with flexural deformity of the distal interphalangeal joint and lameness isolated to the foot may obtain long‐term benefits from desmotomy of the accessory ligament of the deep digital flexor tendon (ALDDFT). This retrospective analysis of medical records and radiographs included 13 horses, aged ≥2 years, presented for lameness isolated to the hoof region and diagnosed with flexural deformity of the distal interphalangeal joint. Radiographic angles of the hoof and distal interphalangeal joint and lameness scores were compared before and after desmotomy of the ALDDFT. Follow‐up data including the ability to perform the intended use were obtained at least one year after surgery. There was improvement in the angle between the dorsal aspect of the third phalanx and the weightbearing surface of the hoof, improved alignment between the dorsal hoof wall and dorsal aspect of the third phalanx, and improved alignment of the distal interphalangeal joint. Lameness was decreased in 9/13 horses and 10/13 horses were performing at their level of intended use. Evidence of improved hoof conformation and lameness following desmotomy of the ALDDFT in lame horses with flexural deformity of the distal interphalangeal joint would indicate this procedure should be considered in mature horses.  相似文献   

18.
Radiographic contrast studies were used in 50 forelimbs from 13 live horses and 12 fresh adult cadavers to determine the frequency of communication between the navicular bursa and the distal interphalangeal joint. Injections of contrast medium were made into the dorsal aspect of the distal interphalangeal joint of one limb and into the navicular bursa of the other forelimb of each horse. In 25 limbs in which contrast medium was injected into the distal interphalangeal joint, no communication was demonstrated between the joint and the navicular bursa. In 20 of the 25 limbs in which injection was made into the navicular bursa, no communication between joint and bursa was seen. In five horses, contrast medium was visible in both the distal interphalangeal joint and the navicular bursa. However, in four of five horses the communication was clearly iatrogenic. In both limbs of one horse, contrast medium was seen to enter the digital flexor tendon sheath after injection into the navicular bursa.
There is probably no naturally occurring communication between the navicular bursa and distal interphalangeal joint in the horse.  相似文献   

19.
The purpose of this study was to describe the normal magnetic resonance (MR) imaging characteristics of the palmar structures of the equine podotrochlear apparatus by means of retrospective evaluation of MR imaging studies of 16 cadaver limbs. The articular aspect of the distal sesamoid bone was not evaluated in this study. Equine digits were imaged with a human knee radiofrequency coil in a 1.5 T magnetic field, using spin echo (SE) T1-weighted, turbo spin echo proton density (TSE PD)-weighted with and without fat saturation (FS), and FS TSE T2-weighted sequences. The limbs were dissected after imaging to validate the absence of gross abnormalities of the flexor aspect of the distal sesamoid bone, of the deep digital flexor tendon, and the distal impar sesamoidean ligament. Seven deep digital flexor tendons were subjected to histologic examination to exclude any microscopic tendon pathology. The anatomic structures of the podotrochlear apparatus were easily identified on MR images. Compact bone of the flexor cortex of the distal sesamoid bone had low intensity signal on all sequences. In 11 digits an increased signal was seen within the thickness of the sagittal eminence of the flexor cortex in SE T1-weighted images and in TSE PD-weighted images without FS. Trabecular bone had a granular appearance and high signal in SE T1-weighted sequences and TSE images without FS. The deep digital flexor tendon had low signal on FS T2-weighted images, while on short echo time sequences (T1- and PD-weighted sequences), the tendon signal varied depending on the relative orientation between its fibers and the static magnetic field. Seven tendons had stippled appearance due to small intratendonous foci of slightly increased signal on transverse T1-weighted images. MR imaging provides a thorough evaluation of the anatomical structure of the podotrochlear apparatus: A good knowledge of the MR imaging appearance and anatomy and an awareness of potential pitfalls will improve diagnostic specificity for the detection of pathologic changes.  相似文献   

20.
Magnetic resonance (MR) imaging is increasingly used in the diagnosis of equine foot pain, but improved understanding of how MR images represent tissue-level changes in the equine foot is required. We hypothesized that alterations in signal intensity and tissue contour would represent changes in tissue structure detected using histologic evaluation. The study objectives were to determine the significance of MR signal alterations in feet from horses with and without lameness, by comparison with histopathologic changes. Fifty-one cadaver feet from horses with a history of lameness improved by palmar digital analgesia (n = 32) or age-matched control horses with no history of lameness (n = 19) were stored frozen before undergoing MR imaging and subsequent histopathological examination at standard sites (deep digital flexor tendon, navicular bone, distal sesamoidean impar ligament, collateral sesamoidean ligament, and navicular bursa). Using MR images, signal intensity and homogeneity, size, definition of anatomic margins, and relationships with other structures were described. Alterations were graded as mild, moderate, or severe for each structure. For each anatomic site examined histologically the structures were described and scored as no changes, mild, moderate, or severe abnormalities, also taking into account adhesion formation within the navicular bursa detected on macroscopic examination. Alterations in MR signal intensity were related to changes at the tissue level detected by histologic examination. A sensitivity and specificity comparison of MR imaging with histologic examination was used to evaluate the significance of MR signal alterations for detection of moderate-to-severe lesions of the deep digital flexor tendon (DDFT), navicular bone, distal sesamoidean impar ligament (DSIL), collateral sesamoidean ligament (CSL) and navicular bursa. Agreement between the MR and histologic grading was assessed for each structure using a weighted kappa agreement. Direct comparison between histology and MR imaging for individual limbs revealed that signal alterations on MR imaging did represent tissue-level changes. These included structural damage, fibroplasia, fibrocartilaginous metaplasia, and hemosiderosis in ligaments and tendons; trabecular damage, osteonecrosis, fibroplasia, cortical defects, and increased vascularity in bone; and fibrocartilage defects. MR imaging had a high sensitivity and specificity for most structures. MR imaging had high specificity for lesions of the DDFT, CSL and navicular bursa, quite high specificity for lesions of the medulla of the navicular bone and its proximal aspect, with moderate specificity for the DSIL, and distal, dorsal and palmar aspects of the navicular bone, and was sensitive for detection of abnormalities in all structures except the dorsal aspect of the navicular bone. When MR and histologic grades alone were compared, there was good agreement between MR and histologic grades for the navicular bursa, DDFT, navicular bone medulla and CSL; moderate-to-good agreement in grades of the distal and palmar aspects of the navicular bone; fair to moderate in grades of the DSIL, and poor agreement for the dorsal and proximal aspects of the navicular bone. The results of this study support our hypothesis and indicate the potential use and limitations of MR imaging for visualization of structural changes within osseous and soft tissue structures of the equine foot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号