首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The Comoé National Park occupies an area of ca 12, 500 km2. Its main habitat types are, in the west, the Comoé valley, with riparian forest and adjoining floodplain grassland, and, in the east, hill country covered with savanna woodland. In the woody vegetation Leguminous species are dominant, while the tall-grass cover is mainly comprised of Andropogon and Hyparrhenia species. Of the larger animals, Western Hartebeest, Senegal Kob, Grey Duiker, Oribi, and Baboon, are numerous, whereas African Elephant, Buffalo, Roan Antelope, Waterbuck, Warthog, and Hippopotamus, are present only in small numbers. In the south, species characteristic of the high forest occur—especially duikers and primates. The animal biomass of the Comoé valley habitat is estimated at ca 2,550 kg/km2, and that of the savana woodland at ca 500 kg/km2.  相似文献   

2.
Abstract

Two types of soils (Brown Lowland soil and Ando soil), which were artificially enriched with different amounts of Cu, were incubated with or without pulverized orchard grass for 12 weeks at 25°C. For both soils with and without orchard grass amendment, the amount of CO2 evolved over the 12-week period of incubation decreased by the enrichment with Cu at a concentration exceeding 1,000 mg kg?1 soil. The decrease of the mineralization of added orchard grass in the Cu-enriched soil was conspicuous especially during the initial period of incubation. The amount of microbial biomass C at the end of the incubation was significantly reduced by the Cu enrichment regardless of the amendment with orchard grass. The relative decrease of the soil microbial biomass was much greater than that of the soil respiration. The amount of biomass C was negatively correlated with the amount of 0.1 M CaCl2-extractable Cu as a logarithmic function. On the other hand, the β-glucosidase activity at the end of the incubation was not significantly affected by the presence of Cu in the soils without orchard grass amendment and increased with the increase in the amount of enriched Cu in the orchard grass-amended soils.  相似文献   

3.

Purpose

The vegetation of the Campinaranas occurs in humid areas with hydromorphic sandy soils at the Amazon region. Thus, the determination and in situ monitoring of moisture content in Campinarana soils, besides the detection of subsurface layers are key measures for studying these soil–vegetation systems. Also, the application of ground penetrating radar (GPR) in deep sandy sedimentary sequence of Amazonia is a promising tool to enhance the knowledge on depositional and soil formation features.

Materials and methods

We studied representative soils of the Campinaranas at the National Park of Viruá, state of Roraima (Brazilian Amazonia), through the use of geophysical methods (soil moisture sensors and GPR). The study was applied in four sandy soils. Besides chemical and physical analysis of soils, soil moisture sensors were installed for monitoring during an entire hydrological year (2010/2011), and performed the calibration of sensors , coupled with imaging of the soil along transects with GPR.

Results and discussion

As a result of calibration of the soil moisture sensors we obtained a general equation with an R 2 greater than 0.9. There is an influence of soil moisture content and soil temperature in the distribution of vegetation types in Campinaranas. The use of GPR identified some determinants characteristics in these soils for the differentiating the Campinaranas, represented by spodic and C horizons.

Conclusions

The spodic horizons in soils under Forest Campinarana provided potential errors in the determination of soil moisture, requiring calibration data for the precise use of this device. The investigation of the soil through the GPR showed interesting results, which allowed continuous visualization of the main soil horizons along transects in the phytophysiognomies of Campinaranas.  相似文献   

4.
Journal of Soils and Sediments - River infrastructures such as dikes, groynes, and dams are ubiquitous on most large rivers, and although their consequences on the riverbed morphology have often...  相似文献   

5.
6.
The green cracked "seasoned" Manzanilla-Alore?a table olive is a specialty with a high demand when prepared from fresh fruits; however, when stored fruits are used, the product loses its green color, presents a brownish tone, and loses demand. Different alternative storage systems for preventing such changes and preserving the freshness of the fruits were studied, and their effects on sugar, polyphenol, color, and microbiological changes were analyzed. The application of two washing waters in the presence of different compounds before brining markedly decreased the sugar and polyphenol contents in the flesh, without negatively influencing the color; it also caused the inhibition of yeasts and lactic acid bacteria (except in treatments using sodium metabisulfite and saturated carbon dioxide (CO(2)) in the storage olive brines. Salicylic acid inhibited microbial growth during washings and storage. The best long-term color was achieved in the presence of sodium metabisulfite. A combination of two washing waters (containing 5% sodium chloride (NaCl) and 0.1% sodium metabisulfite or saturated CO(2)), followed by immersion of the fruits in 15% NaCl brine with 0.1% sodium metabisulfite or brine under saturated CO(2) added, led to the best storage conditions.  相似文献   

7.
《Biological conservation》1986,36(2):169-180
The Humboldt penguin Spheniscus humboldti is endemic to the Peruvian Current which flows northward along the coast of Chile and Peru. This species has greatly diminished from its former abundance.The coast of Peru is characterised by high biological productivity which concentrates fish such as the anchovy Engraulis ringens, the main prey item of marine predators including seabirds. In years of the abnormal oceanographic conditions of El Nino, the schools of anchovies become unavailable to the seabirds and they disperse in search of food. Massive mortality, especially of juveniles, results and there is nest desertation and lack of reproduction.This paper describes the effects of the 1982–1983 El Nino on Humboldt penguin colonies in Peru. There has been an overall population decline of 65% and the surviving population in 1984 was estimated to be between 2100 and 3000 adults. Although El Nino is a periodic event and the Humboldt penguin has evolved to adapt to such unpredictable changes, the environment has now been altered by man. Under these circumstances, the 1982–1983 El Nino has contributed to placing this species in a critical position.  相似文献   

8.
Fumigation of field soil with chloropicrin alone or followed by methyl bromide, each at 220Kg·ha?1, released 20–30 parts/106 NH+4-N which persisted for 75 days; such fumigation also doubled the amount of bicarbonate-extractable phosphate 28 days after fumigation. Soil fumigation increased both the vegetative and grain yields as well as increasing the content of N in the grain and the content of K and Cl in the tops at ear emergence. Root growth and the phosphate uptake activity of the roots were increased by soil fumigation.  相似文献   

9.
10.
Denitrification rates under various tillage systems were determined in the corn (Zea mays L.) cycle of a corn‐oats (Avena sativa L.) rotation. Denitrification was measured directly with an in‐situ soil cover method which supplied the soil with acetylene (C2H2) and evacuated the nitrous oxide (N2O) produced. Denitrification rates were measured in both a field or non‐wheel track (NWT) area and in a compacted wheel track (WT) area for the no‐till (NT), chisel plow (CH), moldboard plow (MP) tillage systems after nitrogen (N) was applied by broadcast/incorporation with 112 kg N/ha as ammonium nitrate. Nitrogen was also applied to the NT treatment by injection with modified anhydrous ammonia knives prior to planting. Most of the cumulative N loss occurred over a 22 day period following heavy rainfall in June. Denitrification was greatest on days after rainfall events for the NT systems. Cumulative N loss was estimated at 25, 16, and 11 kg N/ha from May 29‐September 8 for NT, CH, and MP treatments, respectively, for the broadcast/incorporated N application. Mean denitrification rates from WT areas were about 1.6 times greater than the NWT areas.  相似文献   

11.
This paper presents the results of determining the pseudo-total concentration of five heavy metals in the soil on which the destruction of ammunition, mines, and explosive devices is carried out by the method of open detonation. In the analyzed area, the concentrations of cadmium, lead, nickel, copper, and zinc were determined, while from the physical properties of the soil were determined the granulometric composition and the pH. The aim of the study is to determine the origin and total load on heavy metals and, based on that, to assess the dangers and impact of the site in terms of the soil pollution by heavy metals. In accordance with the regulations of Bosnia and Herzegovina, the results of the soil testing showed a significant load of copper (up to seven times) and cadmium (up to six times), and exceeding the allowed values for nickel and zinc in some places. Lead was the only metal whose concentration was within the maximum allowed and according to that the soil was classified as unpolluted. A sample of soil from the edge of the pit is the only sample in which all heavy metals, except Ni, were within the maximum allowable concentration. In regard to the concentration of the examined metals, the soil of the pit is classified as medium polluted from the aspect of copper, cadmium, and nickel and highly contaminated with zinc. The concentrations of copper and zinc in the examination area correspond to contaminated soil that represents ecological risk, which requires soil remediation.  相似文献   

12.
In recent years alternative farming practices have received considerable attention from Canadian producers as a means to improve their net return from grain and oilseed production. Enhancing the efficiency of nitrogen fertilizer use, including a pulse crop in the rotation, reducing tillage and pesticide use are seen as viable options to reduce reliance on fossil fuel, lower input costs and decrease the risk of soil, air and water degradation. The objective of this study was to determine the effects of 16 alternative management practices for a 2-year spring wheat (Triticum aestivum L.)–field pea (Pisum sativum L.) rotation on economic returns, non-renewable energy use efficiency, and greenhouse gas emissions. The alternative management methods for wheat consisted of a factorial combination of high vs. low soil disturbance one pass seeding, four nitrogen (N) fertilizer rates (20 kg N ha?1, 40 kg N ha?1, 60 kg N ha?1 and 80 kg N ha?1), and recommended vs. reduced rates of in-crop herbicide application. Alternative management practices for field pea were high vs. low soil disturbance one pass seeding. The resulting 16 cropping systems were evaluated at the whole farm level based on 4 years (two rotation cycles) of data from field experiments conducted on two Orthic Black Chernozem soils (clay loam and loam textures) in Manitoba, Canada. The highest net returns on the clay loam soil were for the high disturbance system with 60 kg N ha?1 applied to wheat and the recommended rates of in-crop herbicides. The lowest application rate of N, together with low disturbance seeding, provided the highest economic returns on the loam soil. Energy use efficiency was highest for the lowest rate of N application for both tillage systems. The highest rate of N fertilizer and recommended rates of in-crop herbicide produced little additional yield response, lower net returns, and higher GHG emissions. An increase in N fertilizer application from 20 kg ha?1 to 80 kg ha?1 increased whole farm energy requirements by about 40%, while reducing herbicide rates had negligible effects on grain yields and total energy input. Overall, as N fertilizer rate increased, the associated GHG emissions were not offset by an increase in carbon retained in the above-ground crop biomass. Moderate to high soil test NO3-N levels at experimental sites reduced the potential for positive yield responses to N fertilizer in this study, thus minimizing the economic benefits derived from N fertilizer application.  相似文献   

13.
In the province of Entre Ríos (Argentina), land-use changes have been noticeable in recent years, because the portion of land devoted to pasture decreased whereas the proportion and length of crops in the rotation increased. We evaluated soil-use intensity effects on selected physical and chemical properties of a Mollisol in a crop–pasture rotation experiment located in Entre Rios. Treatments included (1) continuous cropping, (2) crop–pasture rotation, (3) pasture, and (4) natural (never-cultivated) land as a reference. Soil samples were analyzed for chemical (pH, carbon and nitrogen contents, extractable phosphorus, cation exchange capacity) and physical (aggregate stability, percolation index, bulk density, pore-size distribution, and specific surface area) properties. Clearing of the native vegetation resulted in a significant reduction of soil organic carbon content and losses of structure stability and soil porosity. No differences were seen in cation exchange capacity between native forest and cultivated land, whereas specific surface area increased with decreased levels of organic carbon content following agricultural use. Although the studied soil properties showed no significant differences when crop–pasture rotation and continuous cropping were compared, the former soil management system is recommended to maintain or promote sustainability.  相似文献   

14.
Abstract

A study was undertaken to determine the effects of different concentrations of arsenic (As) in irrigation water on Boro (dry‐season) rice (Oryza sativa) and their residual effects on the following Aman (wet‐season) rice. There were six treatments, with 0, 0.1, 0.25, 0.5, 1, and 2 mg As L?1 applied as disodium hydrogen arsenate. All the growth and yield parameters of Boro rice responded positively at lower concentrations of up to 0.25 mg As L?1 in irrigation water but decreased sharply at concentrations more than 0.5 mg As L?1. Arsenic concentrations in grain and straw of Boro rice increased significantly with increasing concentration of As in irrigation water. The grain As concentration was in the range of 0.25 to 0.97 µg g?1 and its concentration in rice straw varied from 2.4 to 9.6 µg g?1 over the treatments. Residual As from previous Boro rice showed a very similar pattern in the following Aman rice, although As concentration in Aman rice grain and straw over the treatments was almost half of the As levels in Boro rice grain. Arsenic concentrations in both grain and straw of Boro and Aman rice were found to correlate with iron and be antagonistic with phosphorus.  相似文献   

15.
Wang Genxu  Li Yuanshou  Wang Yibo  Wu Qingbo 《Geoderma》2008,143(1-2):143-152
Bearing a total organic carbon (TOC) content of 9.3–10.7 kg C/m2, alpine grassland soils of the Qinghai–Tibet plateau's permafrost region bear a greater organic carbon pool than do grassland soils in other regions of China or than tropical savannah soils. The easily released light fraction organic carbon (LFOC) accounts for 34–54% of the TOC and is particularly enriched in the topsoil (0–0.10 m). The LFOC in the organic carbon pool of alpine cold meadow and alpine cold steppe soils decreased at exponential and quadratic rates, respectively, as the vegetative cover decreased. When the vegetative cover of alpine cold meadows decreased from > 80 dm2/m2 to 60 dm2/m2, the topsoil TOC and LFOC dropped by 20.4% and 38.4%, respectively. Similarly, when the vegetative cover of alpine cold meadow decreased from 50 dm2/m2 to 30 dm2/m2 and < 15 dm2/m2, the topsoil LFOC content dropped by 60% and 86.7%, respectively. Under climatic warming, the degradation of permafrost and vegetation have resulted in serious soil organic carbon (SOC) loss from the carbon pool. Land cover changes that occurred between 1986 and 2000 are estimated to have resulted in a 1.8 Gg C (120 Mg C/yr) loss in SOC, and a concomitant 65% decrease in the LFOC, in the 0–0.30 m soil layer in the Qinghai–Tibet plateau's permafrost regions. Since the region's ecosystems are quite sensitive to global climate changes, if global warming persists, alpine cold grassland ecosystems are expected to further degrade. Hence, the influence of global climatic change on soil carbon emissions from alpine grasslands should receive more attention.  相似文献   

16.
17.

Purpose

The objective of this study was to determine the impact of restoration processes on the selected soil properties and organic matter transformation of mountain fens under the Caltho-Alnetum community in the Babiogórski National Park in Outer Flysch Carpathians.

Materials and methods

Restoration processes were conducted on three degraded mountain fens in the Babiogórski National Park in Outer Flysch Carpathians, Poland. The degradation degree of soils was the criterion for the selection of habitats for further studies. To determine the influence of restoration processes on mountain fen soil properties and organic matter transformation, samples were collected in 2011 and 2013. The soil samples were assayed for pH, base cation concentration, hydrolytic acidity, organic carbon and total nitrogen content, total exchangeable base cation concentration, cation exchange capacity, and base saturation. Organic matter fractions were extracted by IHSS method. Quantitative and qualitative study of organic matter was based on fraction composition analysis and the ratio of humic acid carbon to fulvic acid carbon. The research results were statistically verified.

Results and discussion

Based on morphological and chemical properties, the studied mountain fen soils can be classified as Sapric Dranic Eutric Histosols and Sapric Dranic Dystric Histosols according to WRB guidelines (2015). Before restoration processes, the mountain fen soils subjected to a different water regime showed various contents of total nitrogen and organic carbon. The decreasing of the groundwater level was reflected in pH, calcium ion content, exchangeable base cation concentration, and base saturation. The increase of the groundwater level had influence on chemical properties of mountain fen soils such as pH, total exchangeable base cation concentration, hydrolytic acidity, cation exchange capacity, and base saturation. Three-year restoration processes did not cause significant changes in the composition of humic substance fractions.

Conclusions

Mountain fens under Caltho-Alnetum community are priority habitats in Babiogórski National Park in Outer Flysch Carpathians, Poland. These habitats responded to restoration processes in varying degrees depending on the extent of their degradation. The least degraded mountain fen was characterized by a short response time on the restoration processes. The reaction of higher degraded habitats was weaker.
  相似文献   

18.
Abstract

Thermal power plants increase local pollution through SOx, NOx, volatile organic compounds (VOCs), and oils containing primarily particulates (including heavy metals) and increase global pollution through CO2, the greenhouse gas that causes global warming. These strong pollutants have harmful effects on living organisms and the entire ecosystem. In this study, we analysized the heavy metals iron (Fe), cadmium (Cd), chromium (Cr), copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), and sulfur (S) induced by sulfur dioxide found in the both washed and unwashed leaves of Salix alba L. tree, grown in six distinct localities in the vicinity of the Seyitömer thermal power plant, to assess the environmental impact. All parameters were examined in the surface soils (0–30 cm), and the most intense concentration of the pollutants in both soils and leaves was observed to be in the direction of the prevailing wind.  相似文献   

19.
Abstract

In countries with suitable conditions for growing winter wheat, there are millions of tons of poor‐baking‐quality wheat harvested every year. In this investigation, representative samples of low‐quality‐wheat lots were analyzed. The baking quality properties, protein, ash, and macro‐ and microelement concentrations were determined for different particle‐size fractions of flour. Flour fractions of different particle sizes sieved from the same flour samples yielded significantly different analyses for protein, ash, and macro‐ and microelements. It was determined that the particle fraction of 125–63 µm had better baking parameters than the original flour sample, and it constituted 32.5% of the total mass of the original amount of flour. In addition, the mineral‐element concentration was also found to be much higher than that of the original flour, which means that besides its better baking quality, it also had a higher nutritional value. The single, unmixed utilization of the 125‐ to 63‐µm flour fraction would mean more economic production for the baking industry and a higher value end product for the consumer. Based on our findings, we also recommend that in the chapters on materials and methods of the articles dealing with different kinds of flour, the authors should indicate the particle sizes of the flour samples analyzed because these may result in more objective evaluations of the readings.  相似文献   

20.
To reveal the influence of freeze–thaw cycles (FTCs) on soil carbon and nitrogen changes, six typical soils in Northeast China were selected as the research objects to conduct a FTC simulation test in an artificial climate chamber. Three soil volumetric water contents (10%, 20%, 30%) and eight FTCs (0, 2, 4, 6, 8, 10, 15, 20) were set. The results showed that the soil organic carbon (SOC) and microbial biomass carbon (MBC) contents of different soil types under the FTCs initially exhibited a downward and then an upward trend, while the dissolved organic carbon (DOC) content exhibited an upward and then a downward trend. Otherwise, the fourth and sixth FTCs were the key points of change. The SOC, MBC and DOC contents in paddy fields were higher than those in dry fields, showing upward and then downward trends spatially from northeast to southwest. The SOC and MBC contents in each soil type were the highest at the 20% water content, and the DOC content gradually increased with increasing water content. The ammonium nitrogen (NH4+-N) content in different soil types at different water contents under the FTCs showed an upward trend first, then a downward trend and finally an upward trend. The NH4+-N content in paddy fields was higher than that in dry fields. The nitrate nitrogen (NO3-N) content showed a downward trend first, then an upward trend and finally a downward trend. The NO3-N content in dry fields was higher than that in paddy fields. The NH4+-N contents in the three soil types on the Sanjiang Plain were significantly higher than those on the Songnen Plain. The NH4+-N and NO3-N contents showed upward trends with increasing water content, but the differences were not significant. The results have implications for the study of different types of soils and provide references for research on the mechanism of soil carbon and nitrogen transformation in typical farming areas in Northeast China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号