首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In many terrestrial ecosystems plant productivity is limited by the availability of mineral nitrogen, which is produced by soil microbial transformations of organic N in soil organic matter (SOM-N). Mineral N availability results from two opposing processes, 1) gross mineral N production (gross ammonification/gross nitrification) and 2) microbial N immobilization. These processes can be influenced by the availability of plant-derived C (PDC) inputs to the microbes, SOM-N pool size, and the size of the microbial community (microbial biomass). We considered how changes in PDC inputs and SOM-N pool size together may alter microbial biomass, mineral N availability, and feedbacks on plant productivity. In areas dominated by one of six tallgrass prairie species along a natural gradient of PDC inputs and SOM-N pool size, we conducted a field survey of microbial biomass and gross ammonification. We also performed greenhouse manipulations of SOM-N pool size and PDC inputs on two species in our study area (Poa pratensis and Schizachyrium scoparium). Structural equation modeling of the field data showed that gross ammonification was both positively and directly related to microbial biomass and SOM-N pool size. Gross ammonification was positively and indirectly related to SOM-N pool size and belowground PDC inputs, via microbial biomass. In the short-term greenhouse study, PDC inputs and SOM-N pool size positively affected gross mineral N production, although only at high SOM-N pool size. If the patterns in the greenhouse can be applied to field conditions, this suggests that SOM-N pool size may constrain plant driven feedbacks on plant productivity by limiting gross mineral N production.  相似文献   

2.
We examined the hypothesis that changes in the quality and/or quantity of soil particulate organic matter (POM) after afforestation of pasture land with Eucalyptus globulus Labill. plantations caused increased nitrogen (N) immobilization and a decline in N availability. The quantity of POM was measured on soils from 10 paired pasture/plantation sites in south-western Australia. Net mineralization of C and N were measured over a 14-day incubation of POM, whole soil, and a mix of POM (33%) and whole soil (67%) at 25 °C and optimal moisture content (matric potential of 25 kPa). There was no significant difference in total organic C between pasture and plantation. However, the POM fraction C was higher in plantation soils (75%) than under pasture (62%), reflecting the coarser nature of organic inputs under plantation. Total soil N concentration was 20% lower under plantation compared to pasture, and the proportion in the POM was higher (74% compared to 57% for pasture soil). The C:N ratios in POM under both pasture and plantation, and in the whole soil under plantation were around 19, but C:N ratios of whole soil under pasture was 17. Average C mineralization was 13% lower in plantation relative to that in pasture soil. The isolated POM fraction had 18% higher C mineralization rate than that in whole soil. The change in net N mineralization with afforestation was marked, with 50% lower net N mineralization in plantation than pasture whole soils. Net N mineralization in the isolated POM fraction was also about 50% of that in the whole soil for both pasture and plantation soils. Although, the pasture and plantation POM had similar C:N ratios, the net N mineralization was 2-fold greater in pasture POM than in plantation POM, suggesting that biochemical characteristics other than the C:N ratio had the main influence on net N mineralization rates. The POM fraction did not significantly immobilize N from the whole soil when placed in a mixture of POM and whole soil, suggesting that N immobilization was not the main mechanism for POM to influence N availability in these soils.  相似文献   

3.
In south-western Australia, plantations of Eucalyptus globulus are being established on land that has previously been used for conventional agriculture. Sustaining the productivity of these tree plantations in second and subsequent rotations will depend partly on maintenance of soil fertility, especially soil nitrogen (N) supply rates. We compared soil N status and supply rates between adjacent pasture and 6-11 year old first-rotation eucalypt plantations at 31 paired sites in south-western Australia. Total soil N varied widely among sites (0.07-0.68% in the fraction <2 mm of the 0-10 cm soil layer), but concentrations averaged over all sites did not differ between land-use types. However, measurements of the indices of mineralization (mineral N produced during incubation of intact cores), potentially available N (from short-term anaerobic incubation) and model-predicted mineralization rates during 28-day aerobic incubations were generally lower in afforested soils than in pasture soils. This finding was supported by in situ field estimates of N mineralization over a full year at two contrasting paired pasture-plantation sites. At each site there was a marked reduction (2-3-fold) in net annual mineral N flux rates in soils under eucalypt plantations. Reduced N mineralization associated with tree plantations was due to both changes in soil organic matter quality and the generally lower soil moisture content under trees in comparison with pasture. These results suggest that N supply rates of pasture soils are likely to decline when the land is planted to successive crops of eucalypts. Eucalypt plantation managers will need to take account of this and implement management strategies to maintain adequate N nutrition to sustain tree growth in future rotations.  相似文献   

4.
Dissolved organic nitrogen (DON) is a significant nitrogen (N) pool in most soils and is considered to be important for N cycling. The present study focused on paired sites of native remnant woodland and managed pasture at three locations in south-eastern Australia. Improved understanding of N cycling is important for assessing the impact of agriculture on soil processes and can guide conservation and restoration soil management strategies to maintain remnant native woodland systems, which currently exist as small pockets of woodland within extensive managed pasture landscapes. Organic and inorganic N pools were quantified, as well as the rates of amino acid and peptide mineralisation in the paired native woodland and managed pasture systems. Soil DON dominated the soil N pool in both land uses, and the proportion of DON to other N pools was greatest at the most N-limited site (up to ∼70% of extractable N). In both land uses soil ammonium and free amino acid concentrations were similar (∼20% of extractable N), and soil nitrate formed the smallest N pool (<∼5% of extractable N). Mineralisation of 14C-labelled amino acid and peptide substrates was rapid (<3 h), and more amino acid was respired than peptide in both the native woodland and managed pasture soils. Soil C:N ratio was important in separating site and land use differences, and contrasting relationships between soil physico-chemical properties and organic N uptake rates were identified across sites and land uses.  相似文献   

5.
The tight coupling between nitrogen (N) and phosphorus (P) suggests that P availability may affect soil microbial N dynamics in terrestrial ecosystems. However, how P addition affects the internal N transformations in P-deficient agricultural soil remains poorly understood. We hypothesized that an increase in gross microbial N rates in P-deficient soil should occur after long-term P inputs in agricultural soils. We thus conducted a 15N pool dilution experiment to quantify the gross microbial N transformation rates after long-term mineral fertilizer applications in an upland fluvo-aquic soil (from Fengqiu with pH 8.55) and upland red soil (from Qiyang with pH 5.49) in China. We found that P addition significantly enhanced the gross N mineralization and immobilization rates when N and K were also applied, probably due to the increased soil total C and N concentrations at both soils. Also, gross nitrification rate was stimulated by P addition, perhaps because of enhanced gross N mineralization rates and associated NH4+ substrate availability. Our results showed that long-term P addition may stimulate soil gross N dynamics and hence increase overall N availability for crops in P-deficient agricultural soils.  相似文献   

6.
Very few studies have been related to soluble organic nitrogen (SON) in forest soils. However, this nitrogen pool could be a sensitive indicator to evaluate the soil nitrogen status. The current study was conducted in temperate forests of Thuringia, Germany, where soils had SON (extracted in 0.5 M K2SO4) varying from 0.3 to 2.2% of total N, which was about one-third of the soil microbial biomass N by CFE. SON in study soils were positively correlated to microbial biomass N and soil total N. Multiple regression analysis also showed that mineral N negatively affected SON pool. The dynamics of the SON was significantly affected by mineralization and immobilization. During the 2 months of aerobic incubation, the SON were significantly correlated with net N mineralization and microbial biomass N. SON extracted by two different salt solution (i.e. 1 M KCl and 0.5 M K2SO4) were highly correlated. In mineral soil, SON concentrations extracted by 1 M KCl and 0.5 M K2SO4 solutions were similar. In contrast, in organic soil layer the amount of KCl-extractable SON was about 1.2-1.4 times higher than the K2SO4-extractable SON. Further studies such as the differences of organic N form and pool size between SON and dissolved organic N (DON) are recommended.  相似文献   

7.
土壤可溶性有机氮及其在氮素供应及转化中的作用   总被引:21,自引:4,他引:21  
可溶性有机氮(SON)是指土壤中可以溶于水或盐溶液的有机态氮,在土壤中的行为既不同于矿质氮,也不同于不溶性有机氮。综述了对这一特殊的氮素组分研究进展,包括不同生态系统土壤SON的含量,SON与土壤氮素供应、转化的关系,SON在土壤氮素损失中的作用等,认为SON是土壤氮素中的重要组分之一,今后应开展土壤SON在不同土壤生态系统中氮素循环中作用的研究工作。  相似文献   

8.
Organic farming is considered an effective means of reducing nitrogen losses compared with more intensive conventional farming systems. However, under certain conditions, organic farming may also be susceptible to large nitrogen (N) losses. This is especially the case for organic dairy farms on sandy soils that use grazed grass–clover in rotation with cereals. A study was conducted on two commercial organic farms on sand and loamy sand soils in Denmark. On each farm, a 3‐year‐old grass–clover field was selected. Half of the field was ploughed the first year and the other half was ploughed the following year. Spring barley (Hordeum vulgare L.) was sown after ploughing in spring. Measurements showed moderate N leaching during the pasture period (9–64 kg N ha?1 year?1) but large amounts of leaching in the first (63–216 kg N ha?1) and second (61–235 kg N ha?1) year after ploughing. There was a small yield response to manure application on the sandy soil in both the first and second year after ploughing. To investigate the underlying processes affecting the residual effects of pasture and N leaching, the dynamic whole farm model farm assessment tool (FASSET) was used to simulate the treatments on both farms. The simulations agreed with the observed barley N‐uptake. However, for the sandy soil, the simulation of nitrate leaching and mineral nitrogen in the soil deviated considerably from the measurements. Three scenarios with changes in model parameters were constructed to investigate this discrepancy. These scenarios suggested that the organic matter turnover model should include an intermediate pool with a half‐life of about 2–3 years. There might also be a need to include effects of soil disturbance (tillage) on the soil organic matter turnover.  相似文献   

9.
Abstract

Nitrogen (N) as a major constituent of all plants is one of the most important nutrients. Minimizing input of mineral nitrogen fertilizer is needed to avoid harm to the environment. Optimal input of mineral nitrogen should take the nitrogen supply of the soil into account. Many different soil tests have been proposed for determining soil nitrogen availability. In this article we present a new approach that is based on the measurement of nitrate, ammonium, and dissolved organic nitrogen (DON) in a 0.01 M CaCl2 soil extract. Eighteen agricultural soils, differing widely in the availability of nitrogen were used, fertilized and unfertilized. It is shown that the nitrogen uptake by maize plants (Zea Mays L.) in both “N‐fertilized” and “N‐unfertilized” soils as measured in a pot experiment can be described with a simple model using the measured nitrogen fractions in the extract. The main source of nitrogen uptake by the plants is the mineralized organic nitrogen during the growing period. It is shown that the initial measured DON fraction is a good indicator of the nitrogen mineralized during plant growth.  相似文献   

10.
An approach for estimating when soils will reach maximum nitrogen storage   总被引:4,自引:0,他引:4  
Abstract. Net accumulation of organic nitrogen in soil is constrained by the amount of organic matter and its minimum C:N ratio. Our objective was to estimate the potential for New Zealand soils to continue accumulating nitrogen within the soil organic pool. We calculated total carbon and nitrogen in the top metre of 138 representative soil profiles from the New Zealand National Soils Database. Carbon in these mainly pasture soils was assumed to be at steady state. The maximum nitrogen storage capacity was estimated by calculating the amount of nitrogen stored under assumed minimum soil C:N ratios of either 9, 10 or 11. The storage capacity remaining was determined as the difference between the amount of nitrogen currently stored and the maximum storage capacity. The length of time before a soil profile will reach the maximum capacity for nitrogen storage was calculated assuming net accumulation of 20, 50 and 100 kg N ha−1 yr−1. A C:N ratio of 9 (giving most storage capacity) and a conservative accumulation rate of 20 kg N ha−1 yr−1 showed that 12% of these soils would be at maximum storage within 40 years. A C:N ratio of 10 and a storage rate of 50 kg N ha−1 yr−1 would result in 54% of the soils reaching maximum storage within the next 40 years. As the capacity for nitrogen storage in soils declines, nitrate leaching is likely to increase with associated risk to the environment.  相似文献   

11.
Microbial immobilization/mineralization and mineral fixation/release of ammonium are important for N retention and supply. However, the rates of such processes vary among different fertility soils and fertilization management practices. Three long-term different fertilized soils were used to simulate a range in soil fertility level and incubated with different N amendments for 144 days. The dynamics of 15N derived from ammonium sulfate (AS) or straw in different soil N pools and the ammonium sulfate-N or straw-N retention and supply were studied. In the absence of straw, the amount of ammonium sulfate-N present as fixed ammonium was 1.1–3.5-fold higher than that present as soil microbial biomass N (SMBN), although ammonium sulfate-derived SMBN and its mineralization increased by increasing soil fertility level. Straw addition significantly (P < 0.05) enhanced the relative importance of the SMBN pool on ammonium sulfate-N retention and supply compared with the fixed ammonium-N pool, and the former exceeded the latter in higher fertility soils. Regardless of soil fertility levels, straw addition significantly blocked the release of ammonium sulfate-N from the fixed ammonium-N pool. The SMBN pool was more important in straw-N retention and supply than the fixed ammonium-N pool, confirming that straw-N cycling depended more on biotic processes. The percentage of mineralized ammonium sulfate-N or straw-N from SMBN was higher than that released from fixed ammonium, indicating the higher availability of SMBN. Generally, the mineral fixation/release of ammonium was the main process for mineral fertilizer N retention and supply in the low fertility soil with or without straw addition, whereas microbial immobilization/mineralization became the main process in the high fertility soil with straw addition. Our results gave insights on the ammonium sulfate-N or straw-N retention and supply in different fertility soils, providing suggestions for optimizing straw management and synchronizing N supply with crop demand.  相似文献   

12.
Soluble organic nitrogen in agricultural soils   总被引:36,自引:0,他引:36  
 The existence of soluble organic forms of N in rain and drainage waters has been known for many years, but these have not been generally regarded as significant pools of N in agricultural soils. We review the size and function of both soluble organic N extracted from soils (SON) and dissolved organic N present in soil solution and drainage waters (DON) in arable agricultural soils. SON is of the same order of magnitude as mineral N and of equal size in many cases; 20–30 kg SON-N ha–1 is present in a wide range of arable agricultural soils from England. Its dynamics are affected by mineralisation, immobilisation, leaching and plant uptake in the same way as those of mineral N, but its pool size is more constant than that of mineral N. DON can be sampled from soil solution using suction cups and collected in drainage waters. Significant amounts of DON are leached, but this comprises only about one-tenth of the SON extracted from the same soil. Leached DON may take with it nutrients, chelated or complexed metals and pesticides. SON/DON is clearly an important pool in N transformations and plant uptake, but there are still many gaps in our understanding. Received: 10 June 1999  相似文献   

13.
Denitrification represents one of the main microbial processes producing the primary and secondary greenhouse gases nitrous oxide (N2O) and nitric oxide (NO) in soils. It is well established that abiotic factors like the soil water content and the availability of nitrogen (N) are key parameters determining the activity of denitrifiers in soils. However, soils differing regarding their characteristics such as the content of Corg, the soil texture or the pH value may respond in specific manners to equivalent changes in soil moisture and N input. Thus, short-term incubation experiments were performed to test and compare the capacity of two contrasting Austrian forest soils to respond to mineral N application at increased soil water contents. Soils from the pristine Rothwald forest (rich in Corg) and the more acidic Schottenwald forest (poor in Corg) were amended with either NH 4 + -N or NO 3 ? -N and were incubated at 40% and 70% water-filled pore space for 4 days. Changes in mineral N pools, nitrite reductase activity and NO and N2O emission rates were measured, and the abundance and structural community composition of the functional group involved in nitrite reduction were analysed via quantitative real-time polymerase chain reaction and terminal restriction fragment length polymorphism analysis of the nirK gene. Rapid and distinct activity responses to increased soil moisture and altered mineral nitrogen availability were observed in two contrasting forest soils. In both soils, nitrogen oxide emission rates were stimulated by N inputs and, depending on the soil moisture status, either NO or N2O emission was prevailing. However, different N cycling processes appeared to predominate in either soil under equivalent treatment. Nitrogen oxide emissions peaked following NO 3 ? application in Schottenwald soils but were the highest after NH 4 + application in Rothwald soils. Denitrifying (nirK) communities differed significantly in Rothwald and Schottenwald soils; however, changes in the community structure were marginal during the short-term incubation. Abundances of nirK genes remained unaffected by N application in either soil. The soil water content affected nirK gene abundances only in Rothwald soil, indicating a distinct reaction of nitrite reducing communities in the two soils.  相似文献   

14.
土壤微生物量氮的动态及其生物有效性研究   总被引:38,自引:6,他引:38  
采用盆栽试验和15N示踪技术对玉米生长期间不同施肥处理黑土土壤微生物量氮的动态变化及其与土壤氮素组分、玉米吸氮量之间的关系进行研究。结果表明,在玉米生长期间,施肥并没有影响土壤微生物量氮的变化趋势,但不同施肥处理土壤微生物量氮的含量明显不同。玉米植株残体的加入,增加了土壤微生物量氮的数量,降低了土壤微生物对肥料15N的释放率。土壤微生物量氮与土壤全氮含量呈极显著的正相关(r=0.727**),与土壤碱解氮及玉米吸氮量之间均呈显著正相关(相关系数分别为0.528* 和0.536*)。土壤微生物量氮和土壤氮素组分对作物吸氮量的通径分析表明,土壤微生物量氮的有效性近于土壤矿质态氮、高于土壤酸解有机氮和非酸解氮。土壤微生物量氮是作物吸收氮素的有效来源。  相似文献   

15.
15N标记秸秆在太湖地区水稻土上的氮素矿化特征研究   总被引:4,自引:0,他引:4  
采用室内恒温培养试验研究了在太湖地区乌栅土和黄泥土上添加15N标记秸秆后,秸秆15N在矿质氮、微生物氮和不同粒径土壤组分中的分配情况,并应用氮同位素库稀释法测定了秸秆在两种土壤上的氮总矿化速率。结果表明:两种土壤添加秸秆后,土壤矿质氮量在7~28 d之间迅速下降,微生物氮在前7 d逐渐升高,随后维持稳定。随着秸秆的分解,秸秆15N进入矿质氮库和微生物氮库,矿质15N在第7天时最高,占添加秸秆15N的9.24%~12.3%,微生物15N在第14天时最高,占添加秸秆15N的21.3%~40.5%,随后矿质15N和微生物15N量均下降。在培养的第7~28天之间,矿质15N和微生物15N出现下降,可能存在秸秆氮的损失。培养56 d时,10.5%~13.3%的秸秆15N进入土壤53μm~2 mm组分,24.5%~26.5%进入2~53μm组分,30%进入<2μm组分,有5.7%~14.9%的秸秆氮损失掉,仍有15.4%~29.1%的秸秆未分解,秸秆在乌栅土上分解的更多,但损失也更多。添加秸秆后0.5 d时,秸秆在乌栅土和黄泥土上的氮总矿化速率分别为1.61 mg kg-1d-1和1.48 mg kg-1d-1;56 d时,秸秆在乌栅土和黄泥土上的氮总矿化速率分别为0.26 mg kg-1 d-1和0.36 mg kg-1 d-1。  相似文献   

16.
Abstract. Nitrate leaching and soil mineral N status under grassland were measured on three contrasting soils, spanning winters 1995/96, 1996/97 and 1997/98, in Western England. The soils investigated were a freely draining silty clay loam (Rosemaund), a well drained loam (IGER 1) and a poorly drained clay loam (IGER 2). The effects of reseeding (ploughing and resowing grass) at IGER 1 and IGER 2 in autumn 1995 or 1996 were compared with undisturbed pasture. Reseeding at Rosemaund, in autumns 1995 or 1996, or spring 1996 was compared with undisturbed pasture of 3 sward ages (2, 5, >50 years).
Nitrate-N leaching losses during the winter immediately following autumn reseeding ranged between 60 and 350 kg N ha–1 in 1995/96, depending on soil type, sward management history and rainfall. Losses were much less in the following winter when treatments were repeated (10–107 kg N ha–1).
Reseeding in spring had little effect on soil mineral N content or leaching losses in the following autumn, compared with undisturbed pasture. Similarly, leaching losses from autumn reseeds in the second winter after cultivation were the same as undisturbed pasture (1-19 kg N ha–1). The effect of ploughing grassland for reseeding was relatively short-term, in contrast to the effect of repeated annual cultivation associated with arable rotations.  相似文献   

17.
作物残体去向与利用及对土壤氮素转化的影响   总被引:4,自引:0,他引:4  
近年来,作物残体还田受到了很大的关注,一方面它可以改进土壤氮素的动态变化,减少硝态氮淋失;另一方面可作为提高耕地土壤作为潜在氮储库的一种手段。作物残体是碳、氮的重要源和库,因此还田后会影响土壤中的氮素循环。本文综述了作物残体还田后对土壤氮素转化的影响及残体氮素的利用与去向问题。具体阐述了以下几个方面内容:作物残体的降解过程及影响因素,残体氮素的利用率及去向问题,以及作物残体对土壤无机氮库、有机氮库、微生物特征的影响。  相似文献   

18.
Management options such as the intensity of tillage are known to influence the turnover dynamics of soil organic matter. However, less information is available about the influence of the tillage intensity on individual soil organic matter pools with different turnover dynamics in surface as compared with sub‐surface soils. This study aimed to analyse the impact of no tillage (NT), reduced tillage (RT) and conventional tillage (CT) on labile, intermediate and stable carbon (C) and nitrogen (N) pools in surface and sub‐surface soils. We took surface and sub‐surface soil samples from the three tillage systems in three long‐term field experiments in Germany. The labile, intermediate and stable C and N pool sizes were determined by using the combined application of a decomposition experiment and a physical‐chemical separation procedure. For the surface soils, we found larger stocks of the labile C and N pool under NT and RT (C, 1.7 and 1.3 t ha?1; N, 180 and 160 kg ha?1) than with CT (C, 0.5 t ha?1; N, 60 kg ha?1). In contrast, we found significantly larger stocks of the labile C pool under CT (2.7 t ha?1) than with NT and RT (2 t ha?1) for the sub‐surface soils. The intermediate pool accounted for 75–84% of the soil organic C and total N stocks. However, the stocks of the intermediate N and C pools were only distinctly larger for NT than for CT in the surface soils. The stocks of the stable C and N pools were not affected by the tillage intensity but were positively correlated with the stocks of the clay‐size fraction and oxalate soluble aluminum, indicating a strong influence of site‐specific mineral characteristics on the size of these pools. Our results indicate soil depth‐specific variations in the response of organic matter pools to tillage of different intensity. This means that the potential benefits of decreasing tillage intensity with respect to soil functions that are closely related to organic matter dynamics have to be evaluated separately for surface and sub‐surface soils.  相似文献   

19.
Soil texture is an important influence on nutrient cycling in upland soils, with documented relationships between mineral particle size distribution and organic matter retention, nitrogen (N) mineralization, microbial biomass and other soil properties. However, little is known of the role of mineral particle size in riparian soils, where fluvial sorting creates strong spatial contrasts in the size distribution of sediments in sedimentary landforms. We studied total organic carbon (TOC) and total N (TN) storage and net N mineralization relative to soil texture and landform in soils of a riparian toposequence along the Phugwane River in Kruger National Park, South Africa. TOC, TN and potential N mineralization related strongly to particle size distribution in all soils along the toposequence. TOC and TN were positively correlated with silt and clay concentration (r2 =0.78). In long-term laboratory incubations, N mineralization was greatest in fine-textured, N-rich soils, although the proportions of soil N mineralized were inversely related to fine particle concentrations (r2=0.61). There were differences in TOC, TN and potential N mineralization among landform types, but none of these soil properties were statistically significant after accounting for the effect of particle size. These results demonstrate the influence of particle size in mediating N retention and mineralization in these soils. Predictable differences in soil texture across alluvial landforms contribute to corresponding contrasts in soil conditions, and may play an important role in structuring riparian soil and plant communities.  相似文献   

20.
Organic nitrogen (DON) was extracted from two improved pasture soils, one of which had been re-colonized by acid heath vegetation, and a blanket peat. Although the quantities extracted in H2O, 10 mM CaCl2, 500 mM K2SO4 and 50 mM Na2HPO4 were not consistent, mean extractable DON as a proportion of total N was greater in the two grazed pastures (0.4%) than in the peat (0.2%). Averaged over the four extractants, free α-amino N was greater in the peat and least in the improved pasture soil and accounted for 26% of DON in the peat and less than 5% in the mineral soil. Amino N increased after 6 M HCl hydrolysis, and this combined N contributed 56% to DON in extracts of the mineral soil compared with only 36% in the peat This variation in the relative contributions of free and combined amino N to DON indicated qualitative differences in the composition of DON between the three soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号