共查询到19条相似文献,搜索用时 93 毫秒
1.
高温高压制备微晶纤维素工艺与传统的制备工艺的反应机理相近,随着处理液pH值、时间、温度、压力等反应相关因素的调整,其反应进程发生重大变化,并且产生与传统工艺截然不同的结果。实验结果表明,制备过程因素影响关系为:酸浓度<处理时间<水解温度;从得率对比情况看,高温高压制备微晶纤维素的工艺水解反应时间过长,则纤维素反应物明显减少,其得率明显偏低,合理控制处理时间是保证有效得率的重要环节。从不同工艺条件下微晶纤维素得率角度,高温高压制备微晶纤维素的最佳工艺为:盐酸浓度取2.5%、处理时间为180 min、水解温度为130℃;但以表面膨胀体积为参照系时,高温高压制备微晶纤维素的最佳工艺为:此时盐酸浓度应取1.0%、处理时间为120 min、水解温度为150℃。 相似文献
2.
3.
4.
改性微晶纤维素凝胶流变性的研究 总被引:5,自引:0,他引:5
研究了一种新型食品添加剂-改性微晶纤维素凝胶的流变性质,并与其它产品进行对比,同时还对影响改性凝胶应用的因素加以分析。结果表明,此类改性凝胶符合Ostwade幂方程的触变性流体,表现出良好的稳定性,坑酸碱性,更适用于液体食品的生产。 相似文献
5.
采用红外、紫外和重量分析法对合成聚合消毒剂──卡达波尔在微晶纤维素上的吸附和解吸进行研究.卡达波尔与微晶纤维素间的作用包括物理吸附和化学吸附,这种作用的可逆性扩大了卡达波尔的应用范围. 相似文献
6.
属于长纤原料的福建杉木小径材化学浆,制备微晶纤维素工艺与传统的加工工艺的反应机理基本一致,只是反应的时间、温度、压力需加以调整,才能保证反应完备。在HCl浓度1.5%条件下,只有增高制备温度到130℃和压力加大到0.2MPa,才能获得纯净的微晶纤维素产品。该纤维素具有容重轻、白度高、光泽强、体积膨松等特性。 相似文献
7.
8.
采用反相悬浮聚合法制备微晶纤维素丙烯酸酯复合微球,在油水比(O/W,质量比)为2.4:1.烷基酚聚氧乙烯醚(OP)与十二烷基硫酸钠(SLS)质量比为4:1,甲基丙烯酸甲酯(MMA)、丙烯酸正丁酯(BA)与N-羟甲基丙烯酰胺(NMA)为35:15:3和搅拌速率为200-400 r/min条件下,可以得到微晶纤维素丙烯酸酯复合微球.而且对微球的内部结构、性能和微晶纤维素反应前后结晶度进行了分析.结果表明,微晶纤维素参与了交联并被包埋在聚丙烯酸酯内部.将粒径为85 nm左右的复合微球与聚甲基丙烯酸甲酯(PMMA)共混制备膜塑料,可以得到弯曲性能优异、吸水率低的黄色半透明的模塑料. 相似文献
9.
水热炭化微晶纤维素制备炭球-活性炭复合材料 总被引:1,自引:0,他引:1
以微晶纤维素(MC)为原料,柠檬酸为催化剂,活性炭为载体,经水热炭化法形成炭球并负载于活性炭的表面和孔内合成含氧官能团丰富的炭球-活性炭复合材料。用扫描电镜(SEM)、低温液氮吸附(N2/77K)、傅里叶红外(FT-IR)和水相三价铬吸附实验对炭球-活性炭复合材料的表面负载炭球形貌、孔隙结构、含氧官能团种类和重金属离子的吸附性能进行表征。研究表明:MC在柠檬酸的催化作用下,在水热条件下可以形成形貌良好、结构规整的炭球,炭球负载于活性炭表面和孔内部。炭化温度、炭化时间和MC质量浓度,均能影响炭球的粒径和数量。炭球-活性炭复合材料的表面富含—OH、COOH、C=O等含氧官能团;当MC质量浓度为2.0 g/L时,复合材料对Cr3+的单位质量吸附量最大为0.356 mg/g,是活性炭的5.65倍。 相似文献
10.
K-卡拉胶和纳米微晶纤维素(CNC)共混时可以得到凝胶多糖。多糖总质量分数为1%,K-卡拉胶与纳米微晶纤维素的比例为9∶1时,可达到协同相互作用的最大值。研究了pH值和体系盐离子浓度对凝胶强度的影响,并通过FT-IR光谱和Raman光谱对这两种多糖之间的相互作用机理进行了初步的探讨。 相似文献
11.
通过微晶纤维素的氰乙基化试验,研究了反应温度和反应时间对氰乙基化产物取代度(DS)的影响,表明在50℃以下,微晶纤维素的氰乙基化取代度随反应温度的升高和反应时间的延长而增加。傅里叶红外光谱分析显示微晶纤维素氰乙基化后羟基峰明显减弱,并形成了新的碳氮三键吸收峰,证明纤维素中的部分羟基氢被氰乙基所取代。X射线衍射分析显示微晶纤维素中原有的结晶结构被破坏。X4显微熔融温度测定仪、维卡软化点测定仪等的分析表明微晶纤维素氰乙基化产物的热塑性先随取代度的升高而提高,取代度超过1.43后,产物的热塑性又随取代度的升高而下降。确定了微晶纤维素氰乙基化在不同温度(30、35、40和45℃)下的反应速率常数(分别为1.30、1.61、1.94和2.26 s-1),计算出了微晶纤维素氰乙基化反应的表观活化能为29.8 kJ/mol。 相似文献
12.
不同活化方法对微晶纤维素结构和氧化反应性能的影响 总被引:10,自引:1,他引:9
分别采用超声波与碱润胀对微晶纤维素进行活化,比较了两种方法对微晶纤维素(MCC)超分子结构和物理特性的影响,并通过与高碘酸钠的反应分析了不同活化方法对微晶纤维素选择性氧化性能的影响,初步探讨了其作用机理。结果表明,超声波作用后微晶纤维素的晶型没有发生改变,晶粒尺寸基本不变,但是超声波能使纤维素分子中的氢键受到破坏,结晶度下降,结构变得疏松,表面和内部结构受到一定的损伤,比表面积和可及度增大,反应活性提高;碱润胀后,微晶纤维素的晶型发生了改变,为纤维素Ⅰ型和Ⅱ型的混合体,但碱润胀有消晶的作用,使晶区发生破裂,晶粒尺寸大幅度下降,比表面积显著增加。两种活化方法都能显著提高纤维素的选择性氧化性能,超声波和碱润胀活化后氧化纤维素(DAC)的醛基含量分别由未活化时的71.3 %提高到85.0 %和88.8 %。 相似文献
13.
纤维素与半纤维素热解过程的相互影响 总被引:2,自引:0,他引:2
以微晶纤维素为纤维素模型物,以木聚糖为半纤维素模型物,采用同步热分析仪(STA)及热重和傅立叶红外光谱仪联用技术(TG-FT-IR)对微晶纤维素、木聚糖以及两种成分不同比例的混合组分进行了研究,以考察纤维素和半纤维素在热解过程中的相互影响。结果表明微晶纤维素和木聚糖均有一狭窄的快速热解温度区间,而且两者热解区间不重合。在微商热失重(DTG)峰对应温度区间微晶纤维素热解有一明显的吸热峰,吸热量为547.98 J/g,木聚糖热解则有一个比DTG峰较晚出现的小吸热峰,吸热量为45.01 J/g。木聚糖与微晶纤维素的混合组分的热解研究中发现,在DTG曲线上有两个分别由它们热解引起的失重峰,随着组分中比例的变化两个热失重峰此消彼长。微晶纤维素的热解失重峰不仅往高温区移动,而且热解速率减缓,热失重范围变宽。在DSC曲线上有两个分别由木聚糖和微晶纤维素热解所引起的吸热峰,木聚糖的吸热峰受组分中比例的变化影响较小,而微晶纤维素吸热峰随着纤维素比例的下降而明显减小。FT-IR检测到的主要有气体产物为H2O、CH4、CO2和CO。木聚糖与微晶纤维素的混合组分热解产物析出规律总体上是两者热解产物析出的叠加,与单独热解相比组分的混合有利于CH4、CO的生成,而CO2的产量则有较大幅度的下降。 相似文献
14.
15.
以微晶纤维素为原料,在1 g/L的FeCl3存在下和2%的盐酸溶液体系中进行水解,根据水解属于串联反应的特点,研究了微晶纤维素在H+和Fe3+共同作用下的水解动力学规律。研究采用目标物产率与模型函数值残差(S)为最小确定模型函数,对实验数据进行了处理。结果表明:H+和Fe3+共同作用能显著降低纤维素水解和葡萄糖降解的活化能。其中,纤维素水解成为葡萄糖的活化能为81.70 kJ/mol,葡萄糖降解成为小分子的活化能为43.85 kJ/mol,在温度为130、140和150℃时,纤维素水解速率常数分别为0.041 4、0.073 2和0.115 3 h-1,相应温度下葡萄糖降解速率常数分别为0.205 3、0.242 4和0.356 5 h-1。 相似文献
16.
17.
18.
19.
采用过氧化氢作为主漂白剂,常温下对桉树单板进行漂白试验。以各组成药剂质量分数和漂白工艺为试验因素,以白度值为评价指标对漂白效果进行评价,并对比3种不同后处理方式对漂白效果的影响。结果表明,在常温下,桉树单板的最佳漂白工艺为浴比20∶1,氢氧化钠质量分数0.3%,双氧水质量分数5%,漂白时间10 h。3种干燥方式均可使漂白单板保持较高的白度值,生产中可任意选择或组合使用。 相似文献