首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 764 毫秒
1.
【目的】探索黄淮地区冬小麦适宜水氮管理模式。【方法】通过田间小区试验,研究了不同灌水量(90 mm (W1)、60 mm (W2)、0 mm (W3))和施氮量(300 kg/hm2(N1)、225 kg/hm2(N2)、150 kg/hm2(N3))对冬小麦耗水特性、产量和水分利用效率的影响。【结果】灌水量从0增加到90 mm,冬小麦耗水量增加了67~106 mm,降水和土壤供水量占耗水量的比例降低;随施氮量增加,冬小麦耗水量和土壤供水占耗水量的比例增加,降水所占比例降低。相同灌水条件下,灌水量和降水量占总耗水量比例随施氮量增加而降低;施氮量从150 kg/hm2增加到300 kg/hm2,土壤贮水量消耗占总耗水量的比例从1.6%~4.9%增加到8.3%~9.9%。拔节期灌水、追施氮肥提高了拔节—开花期、开花—成熟期阶段耗水量和平均日耗水强度;与W3N3处理相比,随灌水和施氮量的增加,拔节—成熟期的耗水量增加了7.4%~63.5%;增加灌水量降低了冬小麦水分利用效率、土壤水利用效率和灌溉水利用效率,提高了降水利用效率。在W1条件下,N1、N2处理的水分利用效率、降水利用效率和灌溉水利用效率分别比N3提高了18.18%~22.98%、24.66%~26.32%和24.68%~26.32%;在W2、W3条件下,水分利用效率、降水利用效率、灌溉水利用效率随施氮量的增加逐渐增加,土壤水利用效率随着施氮量增加逐渐减小。【结论】在试验条件下,综合考虑籽粒产量和水分利用效率,拔节期灌水90 mm、施氮225 kg/hm2和拔节期灌水60 mm、施氮300 kg/hm2为产量和水分利用效率兼优的灌溉施肥组合。  相似文献   

2.
【目的】探究不同春灌策略下膜下滴灌棉田生育期适宜灌溉定额。【方法】通过大田小区试验,设计播前滴水春灌(春灌量90 mm)和常规春灌(春灌量180 mm)2种春灌模式,每种模式下在棉花生育期设计3种灌水定额(W1:30 mm、W2:37.5 mm、W3:45 mm)处理,研究春灌模式与灌水定额对膜下滴灌棉田土壤水盐动态变化、棉花生长、干物质积累、产量和水分利用效率的影响。【结果】与常规春灌相比,滴水春灌能够保证棉花苗期出苗所需的土壤水分,且能显著提高生育期0~80 cm土层的土壤含水率;与苗期相比,滴水春灌棉花生育期0~40 cm土层出现积盐区,蕾期和花铃期0~40 cm土层电导率分别增加了7.84%和8.75%,滴水春灌生育期末0~100 cm土层土壤电导率较常规春灌增加8.37%;不同灌水定额下0~100 cm土层土壤电导率均呈增加趋势,但随着灌水定额的增加土壤剖面电导率显著降低,W1、W2、W3处理积盐率分别为30.11%、12.12%和11.11%;随着灌水定额的增加,株高和茎粗显著提升,干物质积累量明显增加,产量增加,而灌溉水利用效率(WUEI)减小,水分利用效率(WUEET)...  相似文献   

3.
【目的】探究冬小麦品种耗水时空差异对产量的影响,为筛选抗旱型品种以提高缺水地区冬小麦产量提供理论依据。【方法】采用双因素裂区设计试验,以沧麦6002(CM6002)和衡麦4399(H4399)2个试验品种作为主处理,每个品种下设3个水分处理:全生育期不灌水(W0处理)、春季灌一水(拔节期灌水,W1处理)及春季灌二水(拔节期和开花期分别灌水,W2处理),研究了不同品种冬小麦耗水时空差异对产量的影响。【结果】CM6002品种总耗水量、土壤贮水消耗量及其占总耗水量的比例和H4399品种差异不显著,但阶段耗水量有较大差异。其中,播种期至拔节期,CM6002品种的土壤贮水消耗量、耗水量均高于H4399品种;拔节—开花期,CM6002品种的土壤贮水消耗量、耗水量显著低于H4399品种;开花期至成熟期,CM6002品种土壤贮水消耗量、耗水量要高于H4399品种,且在W1处理下2个品种的差异达到显著水平。W0处理下,CM6002品种的120~200cm土层贮水的消耗量要显著高于H4399品种。W1、W2处理下,H4399品种在0~40 cm土层土壤贮水消耗量显著高于CM6002品种,但120~160 ...  相似文献   

4.
【目的】探讨微咸水补灌年限对压砂地土壤水盐分布特征及西瓜产量和品质的影响。【方法】采用田间定位调查方法,研究了微咸水补灌年限为2、4、7、10、14 a的压砂地0~60 cm土壤水盐动态分布及西瓜产量和品质。【结果】西瓜伸蔓期和收获期土壤饱和电导率随微咸水补灌年限增加而增加,荒地土壤20~40 cm土层饱和电导率最高,而压砂地在40~60 cm土层饱和电导率最高;微咸水补灌增加了开花坐瓜期土壤体积含水率,但随微咸水补灌年限增加呈先增加后减小的趋势;压砂地表层(0~10 cm)土壤体积含水率最高,而荒地10~20 cm土层的土壤体积含水率最高;与荒地相比,土表覆砂增加了0~40 cm土层土壤体积质量及0~8 cm土层的土壤紧实度,而8 cm以下土层土壤紧实度小于荒地;西瓜产量和瓜周可溶性固形物量随微咸水补灌年限增加分别呈降低和先增加后降低的趋势。【结论】长期微咸水补灌提高了压砂地上层土壤体积质量和紧实度,同时也增加了土壤含水率和土壤盐分,西瓜产量随微咸水补灌年限增加呈下降趋势,而西瓜品质则有先提高后降低的趋势。  相似文献   

5.
限量单次补灌对套作冬小麦产量的影响   总被引:1,自引:1,他引:0  
在作物生长的不同时期分别对各处理进行了35 mm限量单次滴灌,测定了土壤水分、籽粒产量及产量构成要素千粒重、穗粒重、株高等,并计算了水分利用效率和土壤水势。结果表明,小麦灌浆期限量单次滴灌对套作冬小麦增产效果最好,水分利用效率亦是如此。套作小麦灌水处理大多数产量构成要素及其它经济性状表现出明显差异。回归分析发现,WUE与籽粒产量间的关系可用幂函数来描述:WUE=-12.262+0.276Ye1/2(R2=0.912**,p<0.05)。土壤水势是降雨量和补灌量的函数。灌水后的第2个测定生育期所有套作小麦2个土层土壤水势均高于未灌水处理,且30~60 cm土层土壤水势比0~30 cm土层下降更为剧烈。  相似文献   

6.
【目的】研究不同水温下有机肥替代比例对滴灌骏枣产量和水分利用效率的影响。【方法】通过大田试验,设置常规井水T1((13±1)℃)和增温水T2((21±1)℃)2个水温,全施化肥(CK)、有机肥替代10%(F1)、30%(F3)、50%(F5)、70%(F7)和90%(F9)的化肥6个施肥水平,共12个处理,分析不同滴灌水温下有机肥替代比例对土壤水分、骏枣耗水规律、产量以及水分利用效率的影响。【结果】在相同施肥水平下,T2处理较T1处理各生育期0~100cm土层土壤水分降低,总耗水量增加1.14%~2.83%,骏枣产量和水分利用效率提高7.15%和5.10%。在相同灌溉水温下,随有机肥替代比例的增加,各生育期0~100 cm土层平均土壤含水率和耗水量均逐渐增加;骏枣产量和水分利用效率呈先增加后减少的变化趋势,且均在F5施肥水平下达到最大。与CK相比,在T1、T2处理下,施加有机肥使骏枣产量分别平均增加15.30%、13.14%,水分利用效率平均增加8.35%、5.78%。与T1F5处理相比,T2F5处理的产量和水分利用效率分别提高了10.10%、6.95%。【结论】回归分析表明,井水灌溉...  相似文献   

7.
为确定半湿润易旱区垄沟集雨种植模式下冬小麦拔节期的适宜补灌量及探究不同地膜对土壤蓄水保墒和节水增产效果的差异,设置垄上覆普通地膜(P)和生物降解膜(J) 2种处理,并结合雨养(I0)、拔节期补灌20 mm(I_1),40 mm(I_2),60 mm(I_3),对比分析不同地膜不同补灌量下0~200 cm土层土壤贮水量、冬小麦产量和水分利用效率的变化.结果表明:覆膜可显著提高0~100 cm土壤贮水量,处理J在苗期保墒性与P相当,之后显著低于处理P;覆膜使苗期后100~200 cm土壤贮水量显著低于CK,但P,J间差异不具有统计学意义.补灌能显著增加0~200 cm土壤贮水量,处理I_3的土壤贮水量最高,I_2次之.覆膜处理的产量和水分利用效率均显著大于CK,P略大于J,但差异不具有统计学意义.2种不同膜覆盖下处理I_2的平均籽粒产量比处理I_3低1. 50%,但处理I_2的平均水分利用效率与灌溉水利用效率较I_3分别提高2.4%和37.5%.因此,垄覆生物降解膜,沟内种植,结合冬小麦拔节期补灌40 mm(I_2)是缓解残膜污染、增产节水的最优处理.  相似文献   

8.
【目的】探究提高干旱区荒漠苜蓿农田滴灌水分利用效率的方法,制定适宜的节水灌溉制度。【方法】以苜蓿为研究对象,基于HYDRUS-1D模型设置4种灌溉水平(高强度大灌溉量(LH-I)、中强度大灌溉量(MH-I)、低强度中等灌溉量(SM-I)、无灌溉(CK))和5个0~20 cm土层初始土壤体积含水率梯度(4%、6%、8%、10%、12%,分别表示为S1、S2、S3、S4、S5),分析苜蓿根系土壤体积含水率降至土壤凋萎点的时间、峰值及维持在土壤凋萎点以上的时长,筛选0~20 cm土层不同土壤初始体积含水率下的最优灌溉水平。【结果】0~20 cm土层土壤体积含水率的变化对SM-I、CK灌溉水平具有显著影响;在无灌溉的情况下,体积含水率?10%的0~20 cm土层土壤会补给根系层水分;低含水率的0~20 cm土层土壤更有利于LH-I灌溉水平下的水分在根系层的留存,SM-I水平下根系层水分的留存时长与0~20cm土层土壤体积含水率呈正相关。LH-I灌溉水平下的深层土壤体积含水率峰值相比MH-I、SM-I、CK灌溉水平分别提高10.28%、27.91%、107.93%;MH-I灌溉水平下根系层土壤体...  相似文献   

9.
【目的】研究新型灌溉模式对农田水氮及小麦产量的影响。【方法】选用鲁麦21为试验对象进行大田试验,采用二因素裂区设计,灌水量为主区,设拔节期和扬花期均测墒补灌至田间持水率的65%(W65)、75%(W75)、85%(W85)3个水平;灌溉方式为副区,设滴灌(D)、微喷灌(WP)和拔节期微喷灌扬花期滴灌(WP+D)共3种灌溉方式,研究灌水量和灌溉方式对土壤水氮分布、小麦产量、水分利用效率及经济效益的影响。【结果】低于田间持水率的灌溉只对0~40 cm土层产生影响,小麦全生育期内40~100 cm土层土壤含水率没有波动,即0~40 cm土层为主要的供水层及持水层,土壤含水率表现为W85处理>W75处理>W65处理;0~60cm土层土壤硝态氮量在W65、W75灌水量及微喷灌模式下较高,且随着灌水量增多硝态氮淋溶风险增大;成熟期,灌水量、灌溉方式及二者交互作用对40~100 cm土层土壤硝态氮量产生了极显著影响...  相似文献   

10.
【目的】探究冬小麦适宜的计划湿润层深度和土壤含水率控制下限的组合模式,为冬小麦田间用水管理及自动灌溉控制决策提供理论依据。【方法】以冬小麦为研究对象,采用大田试验,设置3个土壤含水率控制下限(L:40%,M:50%,H:60%)和3个计划湿润层深度(60、80、100 cm),共9个处理(T60L、T60M、T60H、T80L、T80M、T80H、T100L、T100M、T100H),研究了不同计划湿润层深度与土壤含水率控制下限对华北地区冬小麦生长发育和水分利用的影响。【结果】计划湿润层深度及土壤含水率控制下限的不同改变了处理间灌水定额及灌水次数,计划湿润层深度过高或土壤含水率控制下限过低均不利于冬小麦植株的生长发育。随着计划湿润层深度(60~100 cm)和土壤含水率控制下限(40%~60%)的增大,冬小麦花前及花后的干物质累积量呈先增大后减小的趋势。产量随土壤含水率控制下限增高呈增加趋势,当计划湿润层深度为80 cm时,产量相对最高,同时耗水量也越多,而计划湿润层深度为60 cm时耗水量最少。计划湿润层深度越低,土壤含水率控制下限越高,冬小麦水分利用效率则越高。T60H处理的水分利用效率最大,为19.96 kg/(hm2·mm),比最小值T100L大21.0%。【结论】本试验条件下,计划湿润层深度为60 cm,土壤含水率控制下限设置为土壤有效含水率的60%时,冬小麦节水高产效果相对最优。  相似文献   

11.
于2013—2017年冬小麦生长季,选用节水高产小麦品种衡4399,开展麦田分期定量(75 mm)灌溉(春灌一水,设置拔节后0 d、拔节后5 d、拔节后10 d、拔节后15 d、拔节后20 d、拔节后30 d灌溉6个处理,记为AJ0、AJ5、AJ10、AJ15、AJ20、AJ30),进行单因素试验。结果表明:不同灌水处理麦田蒸散量范围为361. 1~505. 8 mm;随灌水时间推移,麦田蒸散量呈先增加后减小的趋势,以AJ15或AJ20最高。扬花前营养器官同化物运转量、运转率及对籽粒贡献率均随灌水时间的推移而呈先增加后减小的变化趋势,以拔节后5~15 d灌水处理的较高。扬花后输入籽粒的生物产量,以AJ10和AJ15较高,AJ0最低。各处理小麦扬花后同化物运转量对籽粒的贡献率均高于60%,是籽粒产量的主要构成部分。小麦籽粒产量范围为6 620. 4~8 650. 5 kg/hm~2,以拔节后5~15 d灌水处理较高。籽粒产量水分利用效率为1. 32~2. 54 kg/m~3,除2017年外,以AJ0处理为最优。产量与灌前土壤含水率、土壤供水量及蒸散量正相关。在本研究生产条件下,小麦拔节后10~15 d灌水,既能够充分利用土壤蓄水,也有利于提高产量和水分利用效率。  相似文献   

12.
水分调亏对地下滴灌夏玉米田水热动态的影响   总被引:1,自引:0,他引:1  
通过北京地区地下滴灌夏玉米田间试验,研究了前期不同程度水分亏缺对土壤水热和夏玉米冠层温度、株高、叶面积指数及产量的影响。结果表明:在20~60 cm土层,除重度亏水处理外,其他处理的土壤含水率均在高位平稳变化;在60~100 cm土层,丰水处理的土壤含水率最大;对不同深度的土层,轻度与中度亏水处理两者间的土壤含水率差异较小。受作物覆盖度和亏水程度的影响,拔节期各处理间土壤温度和冠层温度有明显差异;在较浅土层(距地表30 cm和50 cm处)中,拔节期之前丰水处理的土壤温度较低,拔节期之后各处理间差异逐渐减小;在较深土层(距地表80 cm处)中,水分亏缺程度越大,土壤温度越高。轻度亏水处理能获得较高的产量,中度亏水处理能提高水分利用效率。  相似文献   

13.
不同水肥措施下的冬小麦水氮利用和生物效应研究   总被引:7,自引:1,他引:6  
【目的】寻找合适的冬小麦水肥方案。【方法】采用田间试验方法,在传统畦灌和水肥一体化微喷灌下分别设置不同施氮肥处理,研究了小麦干物质积累、产量、水氮利用和土壤贮水量。【结果】与传统畦灌比,微喷灌各处理灌水量减少50%,干物质积累量、产量、氮肥生产效率、水分利用效率分别增加28.2%~41.1%、0.2%~27.3%、0.8%~76.6%和23.3%~61.7%。其中传统畦灌下,推荐施氮肥与不施氮肥、农民习惯施氮肥和推荐施氮肥减氮20%处理比较,小麦干物质积累量、产量、氮肥生产效率、水分利用效率分别增加4.0%~11.4%、1.8%~26.9%、32.1%~75.3%、0.8%~28.2%。微喷灌下,与推荐施氮肥比,推荐施氮肥减氮20%的小麦干物质积累量、产量、氮肥生产效率、水分利用效率分别提高6.4%、4.5%、0.8%、2.3%。【结论】综合比较,水肥一体化微喷灌下推荐施氮肥减氮20%表现最优,提高冬小麦水氮利用效率,稳定产量,是节水减肥可推荐的有效途径。  相似文献   

14.
不同产量水平下冬小麦生长发育和耗水特性研究   总被引:1,自引:0,他引:1  
【目的】通过控制施肥量来模拟冬小麦不同产量水平,进而了解不同产量下冬小麦生长状况及耗水特性变化,为田间用水管理、区域农业高效用水发展战略的制定提供理论依据。【方法】试验设置4个产量水平7 500 kg/hm~2(C0),8 250 kg/hm~2(C5),9 000 kg/hm~2(C10),9 750 kg/hm~2(C15),以不施肥(CK)为对照,研究不同产量下冬小麦叶面积指数、干物质积累、耗水特性及水分利用效率差异变化。【结果】随目标产量的增加,冬小麦叶面积指数、花前及花后干物质累积量、生物量逐渐增加,干物质转移量、干物质转移率和转移干物质对籽粒的贡献率逐渐减少,产量结果基本达到预期目标。与CK相比,C15处理冬小麦叶面积指数、花前及花后干物质累积量、生物量分别平均增加52.6%、25.9%、112.6%、51.2%,而干物质转移量平均减少44.7%,说明冬小麦后期干物质的合成对籽粒高产的形成起主要作用。随目标产量的增加,冬小麦耗水量增加,土壤含水量减少,2016—2017年C0、C5、C10、C15处理冬小麦水分利用效率无显著差异,2017—2018年各处理冬小麦水分利用效率均有显著性差异,与CK相比,C15处理冬小麦耗水量和水分利用效率分别平均增加29.7%、28.5%。【结论】冬小麦随产量提升的叶面积指数、干物质累积量和耗水量显著增加,其中后期干物质的合成是产量形成的主要原因,同时高产条件下冬小麦水分利用效率显著提高。  相似文献   

15.
地膜覆盖对河套灌区春玉米耗水结构及水分利用的影响   总被引:1,自引:0,他引:1  
【目的】探究不同颜色地膜覆盖对春玉米农田蒸散量及蒸散结构的影响。【方法】在内蒙古河套灌区开展了黑色地膜覆盖(M2)、透明地膜覆盖(M1)和不覆膜(M0)春玉米试验,采用微型棵间蒸渗仪法、水量平衡法,在玉米生育期内测定并计算土壤含水率、农田蒸散量、棵间蒸发量及其占比,分析了不同覆盖处理下农田水量平衡、作物产量及水分利用效率。【结果】在土壤剖面0~120cm土层内,覆膜处理土壤含水率显著高于不覆膜处理,M1、M2处理的土壤贮水能力优于M0处理,同时覆膜处理显著降低了春玉米农田蒸散量,与M0处理相比分别降低了6.10%、8.18%;主要原因在于覆膜降低了土壤棵间蒸发,与M0处理相比,M1、M2处理分别降低了28.43%、33.20%的土壤蒸发量,改善了农田的耗水结构,从而导致更多的无效水分消耗转化为作物可利用的水分,进而提高春玉米产量与水分利用效率;与M0处理相比,M1、M2处理的产量分别增大22.83%、10.31%;水分利用效率分别增加了30.79%、20.12%。此外,在河套灌区常见透明地膜与黑色地膜覆盖条件下,透明地膜消耗了更多的水分,但同时透明地膜处理可以在后期利用更多的毛管上升水且具有更高的产量与水分利用效率。【结论】在河套灌区利用覆膜技术,可以有效地改善春玉米农田的耗水结构,提高春玉米产量与水分利用效率;相比于黑色地膜,透明地膜是最适宜河套灌区的农艺措施。  相似文献   

16.
【目的】探究引黄泥沙对黏质盐土的改良效果及对冬小麦产量的影响,找出适宜的引黄泥沙用量。【方法】在黄河三角洲地区进行大田试验,研究不同引黄泥沙用量(0、5、10、15、20、25、30、35kg/m2)对黏质盐土的体积质量、饱和导水率、含水率变化、含盐量以及冬小麦产量的影响。【结果】引黄泥沙降低了土壤体积质量,且土壤体积质量随着引黄泥沙用量的增加而降低;引黄泥沙提高了土壤饱和导水率,且土壤饱和导水率随着引黄泥沙用量的增加呈指数型增加;引黄泥沙降低了0~20cm和20~40cm土层的土壤含水率和含盐量,其中引黄泥沙用量为15 kg/m2时,与不使用引黄泥沙相比0~20 cm土层的土壤含水率和含盐量分别降低了16.61%、22.89%,20~40 cm土层的土壤含水率和含盐量分别降低了12.86%、22.44%。引黄泥沙提高了冬小麦产量,且冬小麦产量随着引黄泥沙用量的增加呈先增加后减少的趋势。其中引黄泥沙用量为15 kg/m2时冬小麦产量最高,为7 530.98 kg/hm2,与不使用引黄泥沙相比提高了3...  相似文献   

17.
微润灌水头压力对温室番茄生长及水分利用效率的影响   总被引:2,自引:1,他引:1  
【目的】探明微润灌条件下温室番茄适宜的水头压力,提高水分利用效率。【方法】以滴灌灌溉为对照(CK),设置水头压力1 m(T_1)、1.5 m(T_2)、2 m(T_3)、2.5 m(T_4)4种试验处理,研究了微润灌条件下不同水头压力对土壤水分分布、番茄生长、耗水规律、产量及水分利用效率的影响。【结果】微润灌水头压力显著影响土壤含水率和湿润区范围,与滴灌处理相比,微润灌处理土壤含水率始终处于较高状态,形成持续稳定的水分环境;T_1、T_2、T_3、T_4处理定植100 d的土壤含水率较定植20 d的下降24.9%、21.54%、19.18%和16.93%,水头压力越高,下降幅度越小,土壤水分环境越稳定;定植初期,滴灌土壤水分环境对植株生长有利,番茄生长较好,随着生育期的延长,微润灌地埋优势充分发挥,后期微润灌番茄生长明显优于滴灌处理;在整个生育期内,番茄株高及茎粗的生长量、生长速率均随着水头压力的提高逐渐增大;番茄在开花坐果期和结果盛期耗水量较大,苗期和结果末期耗水量相对较低,全生育期T_1、T_2、T_3、T_4处理耗水量分别为192.3、216.4、235.8、262.3 mm,水头压力越高,耗水量越大;各处理水分利用效率表现为CK相似文献   

18.
为解析春限一水条件下盐碱地改良措施对小麦耗水和产量调控作用,于2015—2018年连续3个冬小麦生长季,设置耕层掺黄河泥沙(SS)、配施生物有机肥(FF)和掺黄河泥沙配施生物有机肥(SF) 3个处理,以不作处理为对照(CK),研究不同处理下农田土壤水分变化和冬小麦干物质积累规律。结果表明:连续3年产量水平为3 317. 77~5 449. 52 kg/hm~2,各处理间以SF处理的籽粒产量最高,该处理与CK相比,籽粒产量提高35%~51%;总耗水量变幅为352. 85~394. 89 mm,不同处理间总耗水量均以CK最低,以SF处理最高(361. 81~394. 89 mm);农田水分利用效率变幅为9. 01~13. 96 kg/(hm~2·mm),以SF处理最高(12. 02~13. 96 kg/(hm~2·mm)),比CK高33%~48%,其次为FF处理和SS处理,分别比CK高9%~32%、9%~18%。SS或FF处理可增加冬小麦拔节前0~200 cm土层贮水量,增大拔节至成熟阶段的耗水量及其占总耗水量的比例,促进冬小麦对土壤贮水和深层土壤水分的利用,最终提高冬小麦的生物量和籽粒产量。冬小麦籽粒产量与干物质积累量、总穗粒数呈显著正相关;水分利用效率与冬小麦耗水量、产量呈二次曲线关系。在本研究条件下,随着籽粒产量提高,水分利用效率快速增加;而随耗水量增加,各处理间水分利用效率增减表现不同。综合考虑产量、收获指数和水分利用效率,确定掺黄河泥沙配施生物有机肥处理(SF)是本研究条件下的最佳处理。  相似文献   

19.
【目的】缓解华北平原淡水资源匮乏与冬小麦高耗水的矛盾,解决当地水资源利用率低的问题。【方法】以济麦22为试验材料,在条带种植微喷带灌溉设置了4个灌水量处理:在小麦拔节期、灌浆初期、灌浆中期(灌浆期5月下旬)3个生育时期设灌水15 mm(W1)、22.5 mm(W2)、30 mm(W3)、37.5 mm(W4),以等行距种植常规地面畦灌在拔节期和灌浆初期各灌60mm为对照(CK),分析了不同灌溉处理的耗水特性、籽粒产量及水分利用特征。【结果】小麦生育期内总耗水量在306.46~399.4 mm,W1、W2、W3、W4处理和CK土壤水占总耗水的比例分别为44.2%、42.97%、41.24%、40.15%和38.41%;随着灌水量的增加,灌溉水占总耗水的比例增加;冬小麦拔节至灌浆初期耗水量最大,占全生育期的45.33%~53.68%,条带种植模式各处理在播种至灌浆初期耗水所占比重较大,CK则在灌浆初期至成熟期较大。微喷带灌溉条件下冬小麦籽粒产量随着灌水量的增加而增加,W4处理产量最高达9 682.66 kg/hm2;W3处理的水分利用率最高,比CK提高了7.54%。【结论】微喷带灌溉灌水量在135~157.5mm,耗水量在367.5~400 mm时,冬小麦能获得最高的产量和水分利用效率。  相似文献   

20.
【目的】实现小麦农田土壤含水率大面积快速监测。【方法】以冬小麦冠层高光谱数据为基础,计算得到8种植被指数,通过对关键生育时期(拔节期、抽穗期、灌浆期)不同水分处理下冬小麦不同土层(0~20、20~40、40~60 cm)土壤含水率与植被指数拟合状况进行分析和筛选,分别构建了基于植被指数的不同土层土壤含水率反演模型,并对模型进行检验。【结果】①各时期植被指数拟合效果有所差异,拔节期0~20 cm土层以植被指数VOG1拟合效果较好,相关系数为0.88,20~40 cm土层以植被指数mNDVI705拟合效果较好,相关系数为0.75,40~60 cm土层以植被指数VOG3拟合效果较好,相关系数为0.59;抽穗期0~20 cm土层以植被指数mNDVI705拟合效果较好,相关系数为0.70,20~40 cm土层以植被指数mNDVI705拟合效果较好,相关系数为0.72,40~60 cm土层以植被指数mSR705拟合效果较好,相关系数为0.57;灌浆期0~20 cm土层以植被指数mNDVI705拟合效果较好,相关系数为0.88,20~40 cm土层以植被指数SARVI拟合效果较好,相关系数为0.68,40~60 cm土层以植被指数SARVI拟合效果较好,相关系数为0.71;②各土层土壤含水率与植被指数拟合效果有所差异,其中利用VOG1和mNDVI705组合构建的模型反演0~20 cm土层,决定系数R2为0.743,利用mNDVI705和SARVI组合构建的模型反演20~40 cm土层,决定系数R2为0.707,利用VOG3、mSR705和SARVI组合构建的模型反演40~60 cm土层,决定系数R2为0.484;③通过建立植被指数对土壤含水率的反演模型,0~20 cm土层含水率反演效果好于20~40 cm和40~60 cm。【结论】高光谱植被指数反演模型中,以0~20 cm土层的估算模型最佳,植被指数组合为VOG1和mNDVI705。综上可知,该研究方法进行土壤含水率的反演是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号