首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Carrot sticks are increasingly in demand as ready-to-eat products, with a major quality problem in the development of white discoloration. Modified atmosphere packaging (MAP) and edible coating have been proposed as postharvest treatments to maintain quality and prolong shelf-life. The combined application of an edible coating containing 5 mL L?1 of chitosan under two different MAP conditions (10 kPa O2 + 10 kPa CO2 in Pack A and 2 kPa O2 + 15–25 kPa CO2 in Pack B) over 12 d at 4 °C was studied. Respiration rate, microbial and sensory qualities as well as the contents of vitamin C, carotenoids and phenolics of coated and uncoated carrot sticks were evaluated. The use of the edible coating containing chitosan preserved the overall visual quality and reduced surface whiteness during storage. Microbial populations were very low and not influenced by coating or MAP. Edible coating increased respiration rates of carrot sticks, although this was only noticeable in the package with the less permeable film (Pack B). Vitamin C and carotenoids decreased during storage particularly in coated carrot sticks. In contrast, the content of total phenolics markedly increased in coated carrot sticks stored under moderate O2 and CO2 levels, while it was controlled under low O2 and high CO2 levels. The combined application of edible coating containing chitosan and moderate O2 and CO2 levels maintained quality and enhanced phenolic content in carrot sticks.  相似文献   

2.
Standard quality parameters, consumer acceptability, emission of volatile compounds and ethylene production of ‘Mondial Gala®’ apples (Malus × domestica Borkh.) were determined in relation to storage atmosphere, storage period and shelf-life period. Fruit were harvested at the commercial date and stored in AIR (21 kPa O2:0.03 kPa CO2) or under three different controlled atmospheres (CAs): LO (2 kPa O2:2 kPa CO2), ULO1 (1 kPa O2:1 kPa CO2), or ULO2 (1 kPa O2:2 kPa CO2). Fruit samples were analysed after 12 and 26 weeks of storage plus 1 or 7 d at 20 °C.Apples stored in CA maintained better standard quality parameters than AIR-stored fruit. The volatile compounds that contributed most to the characteristic aroma of ‘Mondial Gala®’ apples after storage were butyl, hexyl and 2-methylbutyl acetate, hexyl propanoate, ethyl butanoate, ethyl hexanoate, ethyl, butyl and hexyl 2-methylbutanoate. Data obtained from fruit analysis were subjected to principal component analysis (PCA). The apples most accepted by consumers showed the highest emission of ethyl 2-methylbutanoate, ethyl hexanoate, tert-butyl propanoate and ethyl acetate, in addition to the highest titratable acidity and firmness values.  相似文献   

3.
The effects of high O2 and high CO2 throughout storage on the microbial and sensory quality of fresh-cut bell peppers from two commercial ‘California’ cultivars grown under different climatic conditions were studied. The ‘Meteor’ cultivar was minimally processed in Leuven (Belgium) and the ‘Requena’ cultivar in Cartagena (Murcia, Spain). The storage conditions were (kPa O2/kPa CO2/kPa N2) 100/0/0, 80/15/5, 60/0/40, 50/15/35, 20/15/65 and 21/0.03/≅79 as control. Bell peppers freshly-cut in cubes were stored at 5 °C up to 9–10 days. Changes in total counts of mesophilic, psychrotrophic, yeasts and mould as well as Enterobacteriaceae were monitored. Individual and total sugars and organic acids contents, visual appearance, color, shriveling, off-aroma, crunchiness, flavor and overall quality were also evaluated. The results in both experiments showed that 80 or 50 kPa O2 combined with 15 kPa CO2 maintained the main sensory quality attributes and inhibited growth of the spoilage microorganisms and Enterobacteriaceae in minimally processed bell peppers.  相似文献   

4.
The effects of controlled atmospheres (CA) on respiration, ethylene production, firmness, weight loss, quality, chilling injury, and decay incidence of three commercially important cultivars of guava fruit were studied during storage in atmospheres containing 2.5, 5, 8, and 10 kPa O2 with 2.5, 5, and 10 kPa CO2 (balance N2) at 8 °C, a temperature normally inducing chilling injury. Mature light green fruit of cultivars, ‘Lucknow-49’, ‘Allahabad Safeda’ and ‘Apple Colour’, were stored for 30 days either in CA or normal air, and transferred to ambient conditions (25–28 °C and 60–70% R.H.) for ripening. CA storage delayed and suppressed respiratory and ethylene peaks during ripening. A greater suppression of respiration and ethylene production was observed in fruit stored in low O2 (≤5 kPa) atmospheres compared to those stored in CA containing 8 or 10 kPa O2 levels. High CO2 (>5 kPa) was not beneficial, causing a reduction in ascorbic acid levels. CA storage was effective in reducing weight loss, and maintaining firmness of fruit. The changes in soluble solids content (SSC), titratable acidity (TA), ascorbic acid, and total phenols were retarded by CA, the extent of which was dependent upon cultivar and atmosphere composition. Higher amounts of fermentative metabolites, ethanol and acetaldehyde, accumulated in fruit held in atmospheres containing 2.5 kPa O2. Chilling injury and decay incidence were reduced during ripening of fruit stored in optimal atmospheres compared to air-stored fruit. In conclusion, guava cultivars, ‘Lucknow-49’, ‘Allahabad Safeda’, and ‘Apple Colour’ may be stored for 30 days at low temperature (8 °C) supplemented with 5 kPa O2 + 2.5 kPa CO2, 5 kPa O2 + 5 kPa CO2, and 8 kPa O2 + 5 kPa CO2, respectively.  相似文献   

5.
The effects of both 1-MCP treatment of pineapples and packaging of their fresh-cut products with an alternative modified atmosphere (MA: 86.13 kPa N2O, 10.13 kPa O2 and 5.07 kPa CO2) on physiological and quality changes of these minimally processed products were investigated. Fresh-cut fruit treated or not with 1-MCP were packed in Air or in MA and were stored at 4 °C for 10 d. The following parameters were monitored during storage: ripening index; O2, CO2 and C2H4 in the package headspace; firmness and colour. Microbial spoilage of MP pineapple samples was also investigated and a mathematical model based on the Zwietering modified Gompertz equation was used to obtain growth parameters of mesophilic bacteria, yeasts and moulds.The results showed that 1-MCP treatment and MAP in a N2O enriched atmosphere had a positive combined effect on the inhibition of respiration and ethylene production of fresh-cut pineapple and on its softening delay, confirming previous findings about 1-MCP and N2O preservative effects on fresh-cut fruit quality. This combined effect was not extended to the ripening index and colour maintenance, as MAP at 86.13 kPa of N2O did not add any benefit to that of the 1-MCP treatment. From a microbiological point of view, N2O MAP extended the shelf-life of the products of 3–4 d by increasing the lag phase of microbial growth.  相似文献   

6.
Emission of aroma volatile compounds and some related enzyme activities (LOX, PDC, ADH, and AAT) were assessed in ‘Fuji’ apples (Malus × domestica Borkh.) during shelf life at 20 °C following cold storage under air or under three different CA conditions (3 kPa O2:2 kPa CO2; 1 kPa O2:1 kPa CO2; or 1 kPa O2:2 kPa CO2). Data were used for principal component analysis (PCA) and partial least-square regression (PLSR) analysis of results. LOX activity was partly inhibited by hypoxic conditions, and thus could have contributed to differentiation between air- and CA-stored fruit. Accordingly, emission of straight-chain esters was also higher in air- than in CA-stored fruit. In contrast, PDC activity was responsible for part of the differences between low (3 kPa) and ultra-low (1 kPa) O2 storage conditions, probably by providing substrates for AAT action. AAT activity afforded no satisfactory differentiation between samples, and therefore it is suggested that substrate availability is a more decisive factor than enzyme activity for volatile production after storage. The PCA and PLSR models developed in this work were not useful for discrimination between the two studied ultra-low O2 conditions.  相似文献   

7.
‘Big Top’ and ‘Venus’ nectarines and ‘Early Rich’ and ‘Sweet Dream’ peaches were picked at commercial maturity and stored for 20 and 40 d at −0.5 °C and 92% RH under either air or one of the three different controlled atmosphere regimes (2 kPa O2/5 kPa CO2, 3 kPa O2/10 kPa CO2 and 6 kPa O2/17 kPa CO2). Physicochemical parameters and volatile compounds emission were instrumentally measured after cold storage plus 0 or 3 d at 20 °C. Eight sensory attributes were assessed after cold storage plus 3 d at 20 °C by a panel of 9 trained judges, in order to determine the relationship between sensory and instrumental parameters and the influence of storage period and cold storage atmosphere composition on this relationship.A principal component analysis (PCA) was undertaken to characterize the samples according to their sensory attributes. PCA results reflected the main characteristics of the cultivars: ‘Big Top’ was the nectarine cultivar with the highest values for sweetness, juiciness and flavor; ‘Sweet Dream’ was the sweetest peach and was characterized by high values for crispness and firmness, while ‘Venus’ and ‘Early Rich’ were characterized by their sourness. To assess the influence of storage period and CA composition on sensory properties, a PLS model of the flavor of the different samples was constructed using standard quality attributes and volatile concentrations as the X-variables. The model with 2 factors accounted for more than 80% of flavor variance. PLS results indicated that the main influence on flavor perception was storage period. Atmosphere composition also had an influence on flavor perception: flavor perception decreased from samples stored in a 2/5 O2/CO2 atmosphere composition to those of 3/10 and 6/17. These results can be qualitatively extended to juiciness and sweetness since all these sensory properties were strongly correlated.  相似文献   

8.
The influences of storage temperature and modified O2 and CO2 concentrations in the atmosphere on the post-cutting life and quality of fresh-cut pineapple (Ananas comosus) were studied. Temperature was the main factor affecting post-cutting life, which ranged from 4 days at 10 °C to over 14 days at 2.2 and 0 °C. The end of post-cutting life was signaled by a sharp increase in CO2 production followed by an increase in ethylene production. The main effect of reduced (8 kPa or lower) O2 levels was better retention of the yellow color of the pulp pieces, as reflected in higher final chroma values, whereas elevated (10 kPa) CO2 levels led to a reduction in browning (higher L values). Modified atmosphere packaging allowed conservation of pulp pieces for over 2 weeks at 5 °C or lower without undesirable changes in quality parameters.  相似文献   

9.
The effect of different O2 levels from 0 to 100 kPa in combination with 0, 10 and 20 kPa CO2 on the respiration metabolism of greenhouse grown fresh-cut butter lettuce was studied. Controlled atmospheres of 20 or 75 kPa O2 with 0 or 10 kPa CO2 showed a constant respiration rate during the first 2–4 days at different temperatures (1, 5 and 9 °C). Therefore, constant respiration rates during a short period of 2–4 days could be considered as valid for a large part of the commercial life of, for instance, a modified atmosphere package development. The fresh-cut lettuce exposed to low O2 levels (2–10 kPa) combined with moderate to high CO2 levels (10 and 20 kPa) had a higher respiration rate than when 20–100 kPa O2 were used. Moderate CO2 levels (10 kPa) reduced the respiration rates of fresh-cut lettuce 20–40% at 9 °C. This effect was less noticed at lower temperatures. Gas composition with high CO2 levels (20 kPa) probably caused a metabolic disorder increasing the respiration rate of fresh-cut butter lettuce. It was concluded that 80 kPa O2 must be used in modified atmosphere packaging (MAP) to avoid fermentation of fresh-cut butter lettuce in combination with 10–20 kPa CO2 for reducing their respiration rate.  相似文献   

10.
‘Pink Lady®’ apples were harvested at commercial maturity, treated with three different agrochemical products, and stored at 1 °C under either air or controlled atmosphere conditions (2 kPa O2 + 2 kPa CO2 and 1 kPa O2 + 1 kPa CO2) for 13 and 27 weeks, followed by 4 weeks storage in air at 1 °C. Diphenylamine, folpet and imazalil contents in both the skin and flesh were simultaneously determined after cold storage plus simulated marketing periods of 1 and 7 d at 20 °C. After 27 weeks plus 7 d, diphenylamine and folpet levels in apple skin were lower for fruit stored in low O2 (2 kPa) or air than for those kept under ultra-low O2 (1 kPa). An additional storage period of 4 weeks in air reduced diphenylamine and folpet contents in whole apples stored for 13 weeks in the low O2 controlled atmosphere. For imazalil, the same result was obtained in apple skins stored for 27 weeks under an ultra-low O2 controlled atmosphere. Differences in diphenylamine and folpet contents were found for skin and flesh samples throughout the simulated marketing period, but there were observable differences in imazalil contents only for flesh samples.  相似文献   

11.
Gas exchange rates and softening of kiwifruit (Actinidia deliciosa (A Chev) Liang et Ferguson cv Hayward) were measured during two seasons under a range of modified atmosphere (MA) conditions (0–21 kPa O2, 0–5 kPa CO2) at 0–10 °C to characterise their functional relationship. The kinetics of gas exchange and softening were the same for the two seasons studied.CO2 partial pressures delayed softening but did not inhibit the rate of gas exchange. Lowering the O2 levels to near 0 kPa did not inhibit softening completely, suggesting that the rate of softening was driven by energy provided by both oxidative and fermentative processes.An integrated modelling approach was used to link the rate of softening to the rate of gas exchange explaining 88% of the effect of MA on both the rate of gas exchange and fruit softening. Shelf life simulations showed that during storage at 0 °C, lowering O2 or raising CO2 gave a substantial benefit towards extending shelf life. At temperatures higher than 3 °C, the additional effect of MA was already limited.  相似文献   

12.
A major problem associated with minimally processed baby spinach (Spinacia oleracea L.) is strong off-odours when stored under modified atmosphere packaging (MAP) with low O2 and high CO2. Although the influence of O2 and CO2 levels on the quality and shelf-life of baby spinach has been extensively studied, results have been inconsistent and the benefits and disadvantages are not well understood. In this study, the effects of 3 different MAP conditions with low O2 with CO2 (stabilizing near 1% O2 + 11% CO2), low O2 alone (stabilizing near 1% O2, CO2 scrubber) and moderate O2 with CO2 (stabilizing near 10% O2 + 9% CO2) were studied during storage at 7 °C for 12 days. Different parameters related to physiology, tissue structure, microbial population and metabolite production were evaluated. Samples exposed to low O2 with CO2 had the lowest quality at the end of storage due to high development of off-odours, while off-odours of spinach in low O2 alone were intermediate but higher than in moderate O2 with CO2. Increasing CO2 concentration significantly increased tissue damage with ammonia release and decreased protein content. Decreasing O2 concentration significantly reduced the development of aerobic psychrophilic bacteria and Pseudomonas. Senescence occurred more rapidly in baby spinach held in moderate O2 with CO2. Baby spinach quality remained acceptable during 7 days of storage at 7 °C, independent of MAP conditions tested. Appropriate MAP for baby spinach must be associated with maintenance of quality and extension of shelf-life.  相似文献   

13.
Fungal decay is a major cause of postharvest losses in strawberries. The traditional approach for controlling fungal decay is the use of fungicides. However, the use of fungicides has been questioned as a sustainable and safe method, and is also prohibited in many countries. One potential physical method for reducing fungal decay is application of a short-term hypobaric treatment prior to storage. In this study efficacy of postharvest hypobaric treatments to control natural rot development in strawberries was evaluated. Strawberries were treated with hypobaric pressures (25 kPaa, 50 kPaa and 75 kPaa) for 4 h at 20 °C and subsequently stored at 20 °C or 5 °C. A 50 kPaa treatment consistently delayed rot development in samples stored at either temperature confirming that the technique has potential as a non-chemical treatment. Moreover 50 kPaa treatments did not affect weight loss and firmness at either 20 °C or 5 °C. An initial increase in respiration rate was observed in 50 kPaa treated samples potentially indicating mild stress due to hypobaric treatment. An in vitro fungal study found that 50 kPaa treatment for 4 h did not affect the rate of radial growth of colonies of Botrytis cinerea and Rhizopus stolonifer, providing further evidence that the potential mechanism of hypobaric treatment is induction of the defence system within the fruit rather than a direct effect on fungal viability. Further molecular and biochemical research is required to evaluate the possible stimulation of resistance in fruit through short-term hypobaric treatments.  相似文献   

14.
‘Golden Delicious’ apples were wound-inoculated with Penicillium expansum and treated with various combinations of sodium bicarbonate and two antagonists (Metschnikowia pulcherrima, Cryptococcus laurentii), and then stored in air or controlled atmosphere (CA = 1.4 kPa O2 and 3 kPa CO2) for 2 or 4 months at 1 °C. The antagonists survived and their populations increased during both air and CA storage. The antagonists alone reduced blue mold but were more effective when combined. Sodium bicarbonate tended to reduce lesion size when used with these antagonist, either when they were used alone or combined. Storage under CA conditions also increased the effectiveness of both antagonist, when used alone or in combination. The only treatment that completely eliminated P. expansum-incited decay was the combination of the two antagonists and sodium bicarbonate on fruit stored under CA conditions. The proper combination of alternative control measures can provide commercially acceptable long-term control of fruit decay and could help reduce our dependency on fungicides.  相似文献   

15.
Physiological responses and fruit quality of ‘d’Anjou’ pear fruit from five orchard lots were evaluated after cold storage in air or controlled atmospheres (CA) with the O2 concentration based on assessment of fruit chlorophyll fluorescence (CF) or standard conditions (1.5 kPa O2). The pCO2 for all CA fruit was 0.5 kPa. Softening, acid loss, and peel degreening of all lots were delayed at one or more evaluation dates (2, 4, 6, 8 months) by previous storage at the CF pO2 compared with fruit stored in 1.5 kPa O2 or in air. Superficial scald developed on fruit previously stored in air but not on fruit stored in a CA. Pithy brown core developed on fruit from all lots stored at the CF pO2 and on fruit stored at 1.5 kPa in 3 of the 5 lots. Pithy brown core incidence decreased with advanced harvest maturity. Post-storage ethylene and CO2 production were in most instances lowest for fruit stored at the CF pO2. A significant relationship between fruit ethanol content and pithy brown core incidence was observed. Results indicate low pO2 storage based on CF monitoring slows fruit ripening relative to fruit stored at 1.5 kPa O2, prevents superficial scald development compared with fruit stored in air, however, development of pithy brown core in fruit stored at the CF pO2 was not accompanied by a change in CF.  相似文献   

16.
Modified atmosphere packaging (MAP) has the potential to extend the shelf-life of fresh-cut lettuce mainly by limiting the oxidation processes. However, exposure to light conditions has been described as causing browning and quality loss. The influence of O2 partial pressures (pO2) and light exposure during storage on the shelf-life of fresh-cut Romaine lettuce was studied. Fresh-cut lettuce was exposed daily during storage to different light conditions: light (24 h), darkness (24 h) and photoperiod (12 h light + 12 h darkness). Changes in respiration rate, headspace gas composition, sensory quality, colour, electrolyte leakage, stomatal opening, water loss, texture and compositional constituents related to browning such as vitamin C and individual and total phenolic compounds were evaluated. Different weight samples (75–275 g), packaged with an initial pO2 of 0.5–2.0 kPa balanced with N2, reached pO2 from 0.1 to 1.5 at the steady-state. Atmospheres with low pO2 (0.2–0.5) at the steady-state preserved lettuce quality by the control of browning and the prevention of off-odours and off-flavours. Light exposure during storage positively influenced the number of open stomata (74% in light vs 24% in darkness) which contributed slightly to weight loss. Consumption of O2 in samples exposed to light differed significantly from those stored in photoperiod or darkness (10.6 ± 7.0, 18.3 ± 3.5 and 25.8 ± 8.6 nmol O2 kg?1 s?1, respectively). Packages exposed to light showed higher pO2 compared with packages stored in darkness while those exposed to photoperiod had intermediate values. Moreover, location of the packages in the shelves affected package headspace gas composition and thus, packages near the front of the shelves showed higher pO2 than those at the back. The different light conditions did not influence the content of vitamin C or the individual and total phenolic compounds. This study shows that under light conditions respiration activity was compensated by photosynthesis resulting in a higher pO2. Thus, browning of fresh-cut Romaine lettuce can be promoted by light exposure during storage as it increases headspace pO2.  相似文献   

17.
The effect of MAP on extending storage life and maintaining fruit quality was studied in ‘Doyenne du Comice’ (Pyrus communis L.) pears at Hood River and Medford, Oregon. Control fruit packed in standard perforated polyethylene liners started to show senescent core breakdown and lost the capacity to ripen at 20 °C after 4–5 months of cold storage in Hood River and after 5.25–6 months in Medford. LifeSpan® L257 MAP achieved steady-state atmospheres of 15.8% O2 + 3.7% CO2 in Hood River and 15.7–17.5% O2 + 3.8–5.7% CO2 in Medford. MAP inhibited ethylene production, ascorbic acid degradation and malondialdehyde accumulation, and extended storage life for up to 6 months with maintenance of fruit flesh firmness (FF) and skin color without commercially unacceptable level of physiological disorders. After 4, 5 and 6 months at −1 °C, MAP fruit exhibited climacteric-like patterns of ethylene production and softened to proper texture with desirable eating quality on day 5 during ripening at 20 °C. After 6 months at −1 °C plus 2 weeks of simulated transit conditions, MAP fruit maintained FF and skin color and had good eating quality at transit temperatures of 2 and 4.5 °C (10.1–11.5% O2 + 4.8–5.2% CO2), but reduced FF substantially and developed internal browning disorder at 7.5 and 20 °C (3.2–7.2% O2 + 7.9–9.5% CO2). The storage life of ‘Doyenne du Comice’ pears with high eating quality could be increased by up to 2 months when packed in MAP as compared with fruit packed in standard perforated polyethylene liners.  相似文献   

18.
This study addressed the influence of high carbon dioxide and low oxygen levels on Pleurotus eryngii samples, stored at 20–25 °C and 90–95% RH for 5 d. Evaluations of sensory characteristics, malondialdehyde (MDA) content, superoxide anion (O2) production rate and the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and cytochrome c oxidase (CCO) were made in the mushrooms in response to high carbon dioxide and low oxygen treatments. The results showed that 2% O2 + 30% CO2 significantly prolonged mushroom shelf-life when compared to the control. The 2% O2 + 30% CO2 mixture was better suited to maintaining mushroom sensory characteristics and delaying the MDA increase and O2 production rate during storage. The activities of SOD, POD, and CAT in 2% O2 + 30% CO2-treated mushrooms were significantly higher than those of the control. However, the CCO activity was not affected by the atmospheric treatment (2% O2 + 30% CO2). These results indicated that the 2% O2 + 30% CO2 treatment could alleviate lipid peroxidation and enhance antioxidant enzyme activities, but it exerted little influence on the CCO activity of Pleurotus eryngii.  相似文献   

19.
Controlled atmosphere (CA) treatments with ultralow oxygen (ULO) alone and in combinations with 50% carbon dioxide were studied to control grape mealybug, Pseudococcus maritimus (Ehrhorn) on harvested table grapes. Two ultralow oxygen levels, 30 and <0.01 μL L−1, were tested in both ULO and ULO + 50% CO2 treatments. The ULO treatments with the lower oxygen level were more effective than the ULO treatments at the higher oxygen level. The ULO + 50% CO2 treatments were more effective than the ULO treatments. Grape mealybug eggs were significantly more tolerant of ULO and ULO + CO2 treatments than nymphs and adults. A 14 day ULO treatment with 30 μL L−1 O2 at 2 °C did not achieve 100% mortalities of any life stage. In the presence of 50% CO2, the 14 d treatment achieved complete mortality of all life stages of the grape mealybug. A 3 d ULO treatment with <0.01 μL L−1 O2 at 2 °C resulted in 93.3% mortality of nymphs and adults. The 3 d ULO treatment in combination with 50% CO2 treatments, however, achieved complete control of grape mealybug nymphs and adults and caused 70.5% relative egg mortality. Complete egg mortality was achieved in a 10 d ULO + 50% CO2 treatment with <0.01 μL L−1 O2 at 2 °C. Both the 14 d CA treatment with 30 μL L−1 O2 and 50% CO2 and the 10 d CA treatment with <0.01 μL L−1 O2 and 50% CO2 were tested on table grapes and grape quality was evaluated after two weeks of post-treatment storage. The CA treatments did not have a significant negative impact on grape quality and were safe for table grapes. The study indicated that CA treatments have potential to be developed for postharvest control of grape mealybug on harvested table grapes.  相似文献   

20.
Southern hemisphere blueberry producers often export their products through extended supply chains to Northern hemisphere consumers. During extended storage, small variations in temperature or atmosphere concentrations may generate significant differences in final product quality. In addition, relatively short delays in establishing cool storage temperatures may contribute to quality loss. In these experiments a full factorial analysis was done of the effects of three cooling delays (0, 12 or 24 h at 10 °C), three atmosphere concentrations (air, 10% CO2 + 2.5% O2 and 10% CO2 + 20% O2) and two storage temperatures (0 °C and 4 °C) which were assessed for their impact on final quality, measured as weight loss, firmness and rot incidence. Two blueberry cultivars were studied: ‘Brigitta’, a highbush cultivar, and ‘Maru’, a rabbiteye. Delays in cooling had a small effect on final product weight, whereas variation in storage temperature and atmosphere during simulated transport influenced both firmness and rot incidence. Atmospheres with 10% CO2 reduced decay incidence, particularly at low oxygen concentration (2.5% O2), although the latter conditions tended to soften fruit. In order to achieve optimal postharvest storage for blueberries, minimising temperature variability in the supply chain is important, as is finding the potentially cultivar-specific optimal combination of high CO2 and low O2 concentration that results in simultaneously minimising rot incidence and induced softening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号