首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
‘Black Splendor’ (BS) and ‘Royal Rosa’ (RR) plums were treated preharvest with methyl jasmonate (MeJA) at three concentrations (0.5, 1.0 and 2.0 mM) along the on-tree fruit development: 63, 77 and 98 days after full blossom (DAFB). Both control and treated fruit were harvested at the commercial ripening stage and stored in two temperature conditions: 9 days at 20 °C or at 2 °C + 1 day at 20 °C for 50 days. Preharvest MeJA at 2.0 mM significantly accelerated whereas 0.5 mM delayed the postharvest ripening process for both cultivars, since ethylene production, respiration rate and softening were reduced significantly at the two storage conditions for 0.5 mM. In these fruit, total phenolics, total antioxidant activity (hydrophilic fraction, HTAA) and the antioxidant enzymes peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were found at higher levels in treated than control plums during postharvest storage, which could account for the delay of the postharvest ripening process and the extension of shelf-life.  相似文献   

2.
Cultivar segregation according to the sensory perception of their organoleptic characteristics was attempted by using trained panel data evaluated by principal component analysis of 12 plum and four pluot cultivars as a part of our program to understand plum minimum quality. The perception of the four sensory attributes (sweetness, sourness, plum flavor intensity, plum aroma intensity) was reduced to three principal components, which accounted for 98.6% of the variation in the sensory attributes of the tested cultivars. Using the Ward separation method and PCA analysis (PC1 = 49.8% and PC2 = 25.6%), plum and pluot cultivars were segregated into groups (tart, plum aroma, and sweet/plum flavor) with similar sensory attributes. Fruit source significantly affected cultivar ripe soluble solids concentration (RSSC) and ripe titratable acidity (RTA), but it did not significantly affect sensory perception of plum flavor intensity, sourness, sweetness, and plum aroma intensity by the trained panel on fruit harvested above their physiological maturity.Based on this information, we recommend that validation of these organoleptic groups should be conducted using “in store” consumer tests prior to development of a minimum quality index within each organoleptic group based on ripe soluble solids concentration (RSSC). This organoleptic cultivar classification will help to match consumer preferences and enhance current promotion and marketing programs.  相似文献   

3.
The effect of γ-irradiation doses (0.3, 0.5, 0.7, 1.0, 6.0, 10.0 kGy) on different physico-chemical and visual properties of two Indian cultivars of mango, cv. ‘Dushehri’ and ‘Fazli’ was observed during storage at 20 °C for the evaluation of delayed ripening and extension of shelf-life. Visually all the irradiated fruit showed greener peel and lighter pulp throughout the storage, however, radiation injuries were present in ‘Dushehri’ treated with 6–10 kGy and in ‘Fazli’ with 1–10 kGy. Loss of fruit due to rotting was less in the irradiated samples, treated up to 1 kGy of both the cultivars. Irradiated fruit of both the cultivars at high doses (6–10 kGy) showed increased sugar content from 0 d, however, all the treated fruit registered a slower rate of increase of sugars with storage compared to the respective controls and those treated with the lower doses of 0.5 and 0.7 kGy attained peak sugar concentration later. Significant (p  0.05) textural deterioration could be detected immediately after irradiation, in ‘Dushehri’ at doses ≥1 kGy and in ‘Fazli’ at doses ≥0.7 kGy. However, low dose treated fruit (0.3–1 kGy) of both the cultivars softened at a considerably slower rate during storage and registered significantly greater fruit firmness (compression strength) throughout the storage period. Similarly, ‘Dushehri’ treated with 0.3–0.7 kGy and Fazli treated with 0.7 kGy registered significantly greater flesh firmness (shear strength). ‘Dushehri’ treated with 0.3–1 kGy and ‘Fazli’ with 0.5–1 kGy also registered significantly harder and tougher peel, as determined by puncture test, throughout the storage. Scanning electron microscopy (SEM) performed on 3rd and 2nd d of storage of ‘Dushehri’ and ‘Fazli’ respectively, revealed microstructural breakdown at and above 1 kGy in both cultivars. Cell separation could be observed in ‘Fazli’ even at 0.7 kGy. SEM also revealed that the control fruit were in a more advanced stage of ripening than the low dose treated fruit. The study showed the feasibility of low dose γ-irradiation on ‘Dushehri’ (0.3–0.7 kGy) and ‘Fazli’ (0.5 and 0.7 kGy) that induced useful delay in ripening and extension of shelf-life by a minimum of 3 and 4 d, respectively.  相似文献   

4.
Blueberries are highly perishable and therefore it is necessary to develop strategies to increase their storage life. Two rabbiteye cultivars (‘Centurion’ and ‘Maru’) were stored at 1.5 °C in either regular air or controlled atmosphere (2.5 kPa O2 + 15 kPa CO2) for up to 6 weeks. Measurements of firmness, soluble solids content, titratable acidity, weight loss, shrivel and blemishes were combined with determinations of antioxidant activities and total phenolic content. Weight loss and shrivel were not affected by storage atmosphere or storage duration. After 28 days, controlled atmosphere storage resulted in only half as much blemished fruit compared with storage in regular air. Additionally, fungal development in ‘Maru’ fruit was minimised by controlled atmosphere storage.Water-soluble extracts from ‘Centurion’ fruit had higher antioxidant activities and total phenolic content than those from ‘Maru’ fruit at harvest and after storage in regular air and controlled atmosphere. The highest increases in antioxidant activity and total phenolic content occurred during the additional 6 days of shelf-life at 20 °C.  相似文献   

5.
Separate experiments were conducted with three major commercial avocado (Persea americana Mill.) cultivars grown in Florida: ‘Simmonds’ (early-season, West Indian race); ‘Booth 7’ (mid-season, Guatemalan-West Indian hybrid); and ‘Monroe’ (late-season, Guatemalan-West Indian hybrid). Fruit were harvested at preclimacteric stage and left untreated (Control) or treated 24 h after harvest with aqueous 1-methylcyclopropene (1-MCP) at 1.39 (treatment M1) or 2.77 μmol L−1 a.i. (treatment M2) (75 or 150 μg L−1) for 1 min at 20 °C. Whole fruit ripening was monitored at 20 °C/92% ± 3% R.H. and based on whole fruit firmness, respiration and ethylene evolution. Fruit volatiles were assessed at preclimacteric (24 h after harvest), mid-ripe (half of initial fruit firmness) and ripe maturity stages, from 100 g of chopped pulp using a purge and trap system. Untreated, firmer fruit ‘Monroe’ (268 N at harvest) ripened within 12 d of harvest while softer fruit ‘Simmonds’ (118 N) ripened within only 6 d. 1-MCP treatment extended ripening time from 33% (M1) to 83% (M2). All fruit softened normally, indicating the potential benefits of aqueous 1-MCP as a postharvest treatment for avocado when applied at these concentrations. Volatile profiles differed among the three cultivars with several compounds detected in only one cultivar, results that may contribute to a potential identification of the origin of the cultivar based on fruit volatile composition. The West Indian cultivar ‘Simmonds’ had much higher emission of hexanal (preclimacteric fruit) and cis-3-hexenal and cis-3-hexen-1-ol (ripe fruit) than the Guatemalan-West Indian hybrids ‘Booth 7’ and ‘Monroe’. On the other hand, these latter hybrids had much higher levels of alkanes than ‘Simmonds’. Treatment with 1-MCP increased emissions of alkanes during ripening of ‘Booth 7’ and ‘Monroe’. Total volatiles of avocado decreased during ripening mainly due to the significant reduction of sesquiterpenes, the main group of volatiles in all cultivars at harvest (‘Simmonds’, 53%; ‘Booth 7’, 78%; ‘Monroe’, 66%). β-Caryophyllene was the major compound at harvest, but decreased to less than 2% in ripe fruit, at which point most sesquiterpenes were not detected. Among the 10 sesquiterpenes commonly found in the avocado cultivars in this study, only α-Copaene had significantly higher emissions in mid-ripe fruit treated with the higher concentration of 1-MCP (2.77 μmol L−1 a.i.), suggesting that ethylene participates in the regulation of this sesquiterpene.  相似文献   

6.
The underlying causes as well as chemical and biochemical alleviation for CO2-induced browning in apple fruit are poorly understood. Ascorbic acid (AsA) dynamics in ‘Braeburn,’ a susceptible cultivar, and ‘Gala’, a resistant cultivar, were evaluated during on-tree development and storage at 0.5 °C in air or controlled atmospheres (CA) containing 1 kPa O2 and 1, 3 or 5 kPa CO2. ‘Braeburn’ fruit treated with diphenylamine (DPA) was also stored for 1 month to determine effects on browning incidence and AsA concentration. ‘Braeburn’ apples had significantly higher (p  0.05) AsA levels than ‘Gala’ during on-tree development, and storage. No correlation between AsA and maturity/ripening indices for ‘Braeburn’ or ‘Gala’ was apparent. Histochemical localization of fruit AsA showed a staining intensity consistent with the quantity analytically determined, and showed that AsA is diffusely distributed throughout the cortex in both cultivars during on-tree development. During storage, AsA was localized to the periphery of brown tissue in ‘Braeburn’ and to the coreline and cortex proximal to the peel in ‘Braeburn’ and ‘Gala’ tissues. DPA decreased browning development during storage, however, no correlation between DPA treatment and AsA quantity in healthy or brown cortex tissue was observed. The results indicate AsA quantity alone is not an indicator of CO2 sensitivity in these two cultivars.  相似文献   

7.
Four cultivars of tomato fruit (‘Cherry’, ‘Daniela’, ‘Patrona’ and ‘Raf’) were harvested at two ripening stages (S1 and S2), treated with 0.5 μl l−1 of 1-methylcyclopropene (1-MCP) for 24 h and stored at 10 °C for 28 days. For all cultivars, control fruit deteriorated very rapidly (due to weight loss, softening, colour changes and decay) with an estimated shelf life of 7 days (‘Cherry’ and ‘Patrona’) and 14 days (‘Daniela’ and ‘Raf’), independently of the ripening stage at harvest. All quality parameters for all cultivars were delayed and/or inhibited in treated fruit, the efficacy of 1-MCP being higher in tomatoes harvested at the S2 ripening stage. At this stage, the organoleptic properties had already developed in fruit on the plant and tomatoes could thus reach consumers with optimal postharvest quality.  相似文献   

8.
Methyl jasmonate (MeJA) can act as an activator of defense responses in plants against pathogenic infection. However, the mechanisms involved in the postharvest induction of resistance by MeJA in fruit are largely unknown. Thus, we investigated the effect of a postharvest MeJA treatment on disease resistance against Penicillium citrinum infection in Chinese bayberries and the possible mechanisms. The results indicated that treatment with 10 μmol L−1 of MeJA significantly inhibited green mould rot caused by P. citrinum, with the decay incidence being 66.2% lower than that of the control fruit after storage at 1 °C for 8 d. Moreover, it is clear that MeJA triggers a priming mechanism in Chinese bayberries, since only the MeJA-treated fruit showed an enhanced capacity to augment defense responses upon challenge with the pathogen. These augmented responses included an H2O2 burst, enhanced protein levels of phenylalanine ammonia-lyase and chitinase, and accumulation of phenolic compounds, lignin and phytoalexin. Therefore, our results suggest that a postharvest MeJA treatment induces disease resistance against P. citrinum in Chinese bayberries by priming of defense responses.  相似文献   

9.
Factors that affect the efficacy of 1-methycyclopropene (1-MCP) treatment of apples [Malus sylvestris (L.) Mill var. domestica (Borkh.) Mansf.] include cultivar and maturity. In this study, ‘McIntosh’, ‘Cortland’ and ‘Empire’ apples were categorized by internal ethylene concentrations (IECs) at harvest, treated with 1 μL L−1 1-MCP, and the IECs of individual fruit followed at 30 d intervals during air storage at 0.5 °C for 90 d. IECs at harvest ranged from <0.5 μL L−1 to ≥100 μL L−1, 51 < 100 μL L−1, and 10 < 50 μL L−1 for ‘McIntosh’, ‘Cortland’ and ‘Empire’, respectively. 1-MCP treatment resulted in a decrease of IECs in fruit of all cultivars by day 30 after harvest. During subsequent storage IECs remained low in fruit with <1 μL L−1 at harvest, but in ‘McIntosh’, ‘Cortland’ increased in proportion to IECs at harvest, but not in ‘Empire’. The importance of initial IECs in fruit on the persistence of 1-MCP inhibition of ethylene production was confirmed in a further experiment, in which IECs in untreated and 1-MCP treated ‘McIntosh’ and ‘Empire’ apples were measured for up to 194 d. 1-MCP also decreased 1-aminocyclopropene-1-carboxylic acid (ACC) concentrations in fruit. The results of our study are consistent with the hypothesis that IEC modulates the sensitivity of climacteric fruit to 1-MCP.  相似文献   

10.
A simple and rapid method was developed for quantitative determination of juiciness in peach flesh based on the absorption of free juice with ordinary absorbent paper after a flesh sample is squeezed by two metallic rolling cylinders. Juiciness data were compared with trained panel determinations on three peach cultivars kept at 4 °C and 90% RH for 7, 14 and 21 d plus a ripening period at 20 °C and 65% RH until the flesh reached 19.6 ± 9.2 N. There was a high correlation between panel judgment and paper absorption (r2 = 0.75 in ‘Elegant Lady’, 0.77 in ‘O’Henry’ and 0.93 in ‘Ross’). A sub-sample of the juiciest and the mealiest fruit also were sorted after 14 and 21 d in cold storage. ‘Ross’, a non-melting peach cultivar, did not develop flesh mealiness during any evaluation period. During storage, there was a reduction in juiciness reaching 15% less after 21 d. Mealy fruit were exclusively observed with melting cultivars exposed to cold storage. The proposed method for determining juice content is easily executed and shows a high association with human perception of juiciness and mealiness in peach.  相似文献   

11.
The effect of commercial degreening with ethylene gas on fruit susceptibility and quality and development of postharvest green (GM) and blue (BM) molds on early season citrus fruit was investigated. Each cultivar was harvested with different peel color indexes (CI). Fruit were exposed for 3 d to 2 μL L−1 ethylene at 21 °C and 95–100% RH before or after artificial inoculation with Penicillium digitatum or Penicillium italicum. Control fruit were kept at the same environmental conditions without ethylene. Fruit were stored at either 20 °C for 7 d or 5 °C for 14 d and disease incidence (%) and severity (lesion diameter) were assessed. No significant effect of commercial degreening was observed on fruit susceptibility to both GM and BM on citrus cultivars inoculated after degreening. Likewise, no significant effect was observed on disease incidence on citrus cultivars inoculated before degreening and stored at either 20 °C for 7 d or 5 °C for 14 d. In contrast, in cultivars like ‘Clemenules’ mandarins and ‘Navelina’ oranges, degreening significantly increased the severity on fruit with higher initial CI (−3.6 and 1.7, respectively). GM and BM severity on degreened and control ‘Clemenules’ mandarins incubated at 20 °C for 7 d was 146 and 118 mm and 56 and 46 mm, respectively. In general, commercial degreening did not significantly affect external and internal quality attributes of citrus cultivars. Commercial degreening after inoculation of less green (more mature) fruit showed a trend to increase mold severity, presumably through an aging effect (acceleration of peel senescence).  相似文献   

12.
Methods were tested for rapid induction of ripening capacity in ‘Packham's Triumph’ and ‘Gebhard Red D’Anjou’ pears in order to facilitate early marketing. Fruit of each cultivar were harvested at the onset of maturity and conditioned to develop ripening capacity by exposure to 100 μL L−1 ethylene at 20 °C for 0, 24, 48, or 72 h, followed by varying durations of temperature conditioning at −0.5 or 10 °C. Ripening capacity was tested by measuring fruit firmness after 7 d at 20 °C after completion of conditioning treatments. Fruit firmness was also measured after conditioning but before ripening, and was designated “shipping firmness,” indicative of the potential for the fruit to withstand transport conditions without physical injury. With temperature conditioning at −0.5 °C only, ‘Packham's Triumph’ pears needed 45 d to develop ripening capacity, while ‘Gebhard Red D’Anjou’ pears were not capable of fully ripening after 60 d, the longest duration tested. Using ethylene only, 72 h exposure was necessary to develop full ripening capacity in both cultivars, and adequate shipping firmness was maintained. Using temperature conditioning at 10 °C, ripening capacity in ‘Packham's Triumph’ and ‘Gebhard Red D’Anjou’ developed within 10 and 20 d, respectively, but shipping firmness in ‘Gebhard Red D’Anjou’ was compromised at 20 d. In both cultivars, 24 or 48 h in ethylene followed by 5 d at 10 °C induced ripening capacity while maintaining adequate shipping firmness.  相似文献   

13.
The effects of controlled atmospheres (CA) on respiration, ethylene production, firmness, weight loss, quality, chilling injury, and decay incidence of three commercially important cultivars of guava fruit were studied during storage in atmospheres containing 2.5, 5, 8, and 10 kPa O2 with 2.5, 5, and 10 kPa CO2 (balance N2) at 8 °C, a temperature normally inducing chilling injury. Mature light green fruit of cultivars, ‘Lucknow-49’, ‘Allahabad Safeda’ and ‘Apple Colour’, were stored for 30 days either in CA or normal air, and transferred to ambient conditions (25–28 °C and 60–70% R.H.) for ripening. CA storage delayed and suppressed respiratory and ethylene peaks during ripening. A greater suppression of respiration and ethylene production was observed in fruit stored in low O2 (≤5 kPa) atmospheres compared to those stored in CA containing 8 or 10 kPa O2 levels. High CO2 (>5 kPa) was not beneficial, causing a reduction in ascorbic acid levels. CA storage was effective in reducing weight loss, and maintaining firmness of fruit. The changes in soluble solids content (SSC), titratable acidity (TA), ascorbic acid, and total phenols were retarded by CA, the extent of which was dependent upon cultivar and atmosphere composition. Higher amounts of fermentative metabolites, ethanol and acetaldehyde, accumulated in fruit held in atmospheres containing 2.5 kPa O2. Chilling injury and decay incidence were reduced during ripening of fruit stored in optimal atmospheres compared to air-stored fruit. In conclusion, guava cultivars, ‘Lucknow-49’, ‘Allahabad Safeda’, and ‘Apple Colour’ may be stored for 30 days at low temperature (8 °C) supplemented with 5 kPa O2 + 2.5 kPa CO2, 5 kPa O2 + 5 kPa CO2, and 8 kPa O2 + 5 kPa CO2, respectively.  相似文献   

14.
Postharvest 1-MCP can maintain fruit quality and inhibit development of superficial scald, a physiological storage disorder found in apple fruit, but the extent of the inhibition can vary by cultivar. In this study, we investigated whether multiple applications of 1-MCP, which are now permitted by a label modification of the commercial 1-MCP product, SmartFresh™, might improve scald control. ‘Cortland’ and ‘Delicious’ apples were untreated, treated on the day of harvest with the antioxidant inhibitor of scald, diphenylamine (DPA), or with 1 μL L−1 1-MCP at different intervals after harvest. Treatment times (days) were 1, 4, 7, 1 + 4, 4 + 7, 1 + 4 + 7, 7 + 14, 7 + 28, 7 + 42, and 7 + 84. Internal ethylene concentrations (IECs), flesh firmness, and accumulations of α-farnesene and conjugated trienols (CTols) were measured at harvest, at the time of treatment, and at intervals during air storage at 0.5 °C for up to 36 weeks. Scald was completely inhibited by DPA and all 1-MCP treatments in ‘Delicious’. However, effective control of scald in ‘Cortland’ was obtained with 1-MCP treatments within the first 4 days of harvest, either alone or in combination. Scald control with delayed 1-MCP treatments resulted in poorer scald control that was comparable to that obtained with DPA. IECs and α-farnesene accumulation were similar in untreated and DPA treated fruit, but inhibited by 1-MCP. However, differences among 1-MCP treatments became more evident with increasing storage periods. Inhibition of IECs and α-farnesene accumulation was greater in fruit treated on days 1, 4, 1 + 4, 4 + 7, 1 + 4 + 7, than on day 7 alone. A second application of 1-MCP on day 14 to fruit treated on day 7 increased inhibition of IECs, α-farnesene and CTol accumulations, but increasing delays before the second 1-MCP treatment resulted in progressively less inhibition of these factors. Similar effects of treatment on IECs, α-farnesene and CTol accumulations were found for both cultivars, even though no scald was detected in treated ‘Delicious’ apples. The results indicate that initial 1-MCP treatments should be applied to faster ripening cultivars such as ‘Cortland’ within a few days of harvest.  相似文献   

15.
A number of studies have shown that responses of apple fruit to 1-methylcyclopropene (1-MCP) vary considerably among cultivars. This study was designed to determine if cultivars show differences in accumulation of gaseous 1-MCP. Apple fruit were placed in 1.76 L jars that were sealed and injected with 20 μL L−1 1-MCP. After 12 h, samples of intercellular atmosphere were removed and analyzed for 1-MCP concentration. Accumulation of internal gaseous 1-MCP varied markedly among cultivars, ranging from 0.14 ± 0.06, 0.22 ± 0.03, and 0.77 ± 0.30 in ‘Redcort’, ‘McIntosh’, and ‘Empire’, respectively, to 2.10 ± 0.28, 3.33 ± 0.13, and 6.93 ± 0.35 μL L−1 in ‘Gala’, ‘Cameo’, and ‘Honeycrisp’, respectively. Accumulation of gaseous 1-MCP was reduced an average of 51% in fruit treated with Sta-Fresh 8711 fruit wax. The role of the epidermis in modulating 1-MCP ingress was determined by measuring gaseous 1-MCP accumulation in fresh-cut tissue. Fresh-cut cortical tissue rapidly depleted headspace 1-MCP (>95%) over a 1-h exposure yet accumulated negligible quantities of internal gaseous 1-MCP. By contrast, cortical tissue treated with ascorbic acid or hypotaurine, or aged for several hours prior to exposure to 1-MCP, showed reduced consumption of headspace 1-MCP and high accumulation of internal gaseous 1-MCP. Levels of internal 1-MCP in cortical tissue from the cultivars generally paralleled those for intact fruit, ranging from 0.23 ± 0.07, 0.37 ± 0.18 and 1.09 ± 0.14 μL L−1 in ‘Empire’, ‘McIntosh’ and ‘Redcort’, respectively, to 2.40 ± 0.71, 4.55 ± 0.15, and 6.24 ± 0.85 in Gala’, ‘Cameo’, and ‘Honeycrisp’, respectively. Although commercial fruit wax influences gaseous 1-MCP accumulation, the comparable accumulation patterns in unwaxed whole and fresh-cut apple fruit suggest that epidermal tissue/native waxes alone do not account for cultivar differences.  相似文献   

16.
The physical qualities and antioxidant components of ‘Jewel’ strawberry fruit stored in 75, 85 or 95% relative humidity (RH) at 0.5, 10 and 20 °C for 4 days were studied. Overall fruit quality declined more rapidly at 20 °C, especially at 95% RH. Weight loss of fruit was negligible for 2 days at all temperatures but it increased at 10 °C in the lowest RH and increased rapidly from day 3 at 20 °C especially with lower RH. Firmness was maintained, or even increased, at 0.5 or 10 °C, while soluble solids concentrations (SSC) decreased at higher storage temperatures. Red color, assessed using chroma, hue and lightness, and anthocyanin concentrations were relatively unchanged at 0.5 or 10 °C but increased rapidly at 20 °C as fruit ripened. Firmness, SSC and color were not affected by RH. Total phenolic compounds were slightly higher at 20 °C than at other temperatures at all RHs. Total ascorbic acid concentrations of the fruit remained similar for the first 2 days of storage, then declined in fruit stored at 0.5 and 20 °C, but remained unchanged at 10 °C at all RHs. Total flavonoid content of fruit did not change over time at all temperatures. The total antioxidant activity of fruit was higher at 10 °C than at 0.5 and 20 °C on day 3, and no effect of RH was detected. In conclusion, while the best temperature for long-term storage is 0.5 °C, quality could be maintained at 10 °C for acceptable periods of time for marketing and may be associated with better nutritional quality.  相似文献   

17.
To maintain peach and nectarine quality after harvest, low temperature storage is used. Low temperatures induce physiological disorders in peach, but the effect of cold storage on the sensory quality of the fruit before it is damaged by chilling injury syndrome remains unclear. To evaluate the cold storage effect on the sensory quality two peach cultivars (’Royal Glory’ and ‘Elegant Lady’) and two nectarines (’Ruby Diamond’ and ‘Venus’) were harvested at a standardized firmness level and subjected to quality evaluations and sensory analysis at harvest and after storage at 0 °C for 35 d. For both time points, a supplementary ripening followed such that homogeneous flesh firmness and suitability for consumption was achieved.The fruit segregation through the Durofel firmness (DF), evaluated using a non-destructively method (Durofel device), allowed the formation of a uniform group of fruit in terms of flesh firmness (FF), showing scores between 45.1 and 55.9 N. The average FF in fruit ripened immediately after harvest was 22.9 N and 25.6 N in fruit ripened after cold storage for 35 d.The “acceptability” of fruit is highly correlated with “aroma”, “sweetness”, “juiciness”, “texture” and “flavor”. Only the “acid taste” parameter had no significant correlation with “acceptability” or with the other parameters evaluated.It is possible to conclude that the sensory quality and acceptability of peach and nectarine are characteristic of each cultivar and change, depending on the time elapsed after harvest. In general, it was confirmed that nectarine cultivars have a more consistent quality than peach cultivars.  相似文献   

18.
The objective of this study was to evaluate the preventive activity of methyl jasmonate (MeJA) alone and in combination with antagonistic yeast in suppressing green mold decay in citrus fruit, and to explore the mechanisms involved. At 100 μmol/L, MeJA inhibited disease incidence and lesion diameter of mold decay compared with the control (P < 0.05) The preventive application of Cryptococcus laurentii at 1 × 108 cells/mL combined with 100 μmol/L MeJA reduced green mold incidence compared to the control and the other treatment groups (P < 0.05) when tested in wounded citrus fruit inoculated with Penicillium digitatum. MeJA and C. laurentii induced higher activity of polyphenol oxidase, peroxidase and catalase than control. Moreover, treatment with MeJA and C. laurentii induced a rise in the mRNA expression level of PR5 (pathogenesis-related protein family 5), which was stronger than in the single-treatment groups and the control. In addition, 100 μmol/L MeJA improved the rapid proliferation of C. laurentii in citrus fruit wounds. This combined treatment can induce natural resistance and stimulate the proliferation of antagonistic yeast on the fruit surface.  相似文献   

19.
The purpose of this work was to study the effect of equilibrium modified atmosphere packaging on the stability of ‘San Antonio’ and ‘Banane’ breba fruit during postharvest cold storage by the use of three different microperforated films (1/50 mm, 1/30 mm, and 1/10 mm; ø = 100 μm). Gas composition in the wraps, weight loss, % disorder, and microbial counts were monitored during cold storage for 21 days. The tested microperforated films allowed the extension of cold storage time for brebas, minimizing weight loss and delaying the disorders due to fungal proliferation, especially M50 (1/50 mm). Total soluble solids (TSS), titratable acidity (TA), pH, firmness, and sensory quality were also evaluated. Among the tested microperforated films, M50 showed the best performance in terms of delaying physicochemical senescence processes of fruit. The breba cultivar had an important impact on the extension of cold storage. For ‘San Antonio’ and ‘Banane’ cultivars packaged with microperforated M50, the optimal time of cold storage was 14 and 21 days, respectively.  相似文献   

20.
Investigations were carried out to verify the potential of putrescine and spermidine as a postharvest dip treatment for maintaining quality and extending storage life of table grapes (Vitis vinifera L.) cv. Flame Seedless during the 2012 and 2013 seasons. Grape clusters were manually harvested at the commercial mature stage and were dipped in different concentrations (0.0, 0.5, 1.0 and 1.5 mM) of putrescine and spermidine, and then stored at 3–4 °C, and 90–95% RH. Evaluation of physico-chemical parameters and other fruit quality attributes were made at 0 day (before treatment) and at 30, 45, 60 and 75 days of storage. Putrescine and spermidine at the lowest dose (0.5 mM) effectively maintained berry firmness, peel colour (L*, C*, h°) and stabilized anthocyanins as well as suppressing the activity of pectin methylesterase and reducing the rate of electrolyte leakage. The polyamines also retarded the degradation of TSS and TA while maintaining higher total phenol content and reduced decay incidence. Putrescine and spermidine at 1.0 mM exhibited almost similar effects with a 0.5 mM dose. The highest doses (1.5 mM) of both polyamines showed detrimental effects, especially on weight loss, decay incidence, rachis browning and organoleptic properties, as found in the control group, which was commercially acceptable only up to 45 days. Furthermore, analysis of linear regressions and correlations showed that many quality parameters were interdependent. The postharvest dip treatment of spermidine or putrescine at a dose of 0.5 mM for 5 min could be an effective means for prolonging storage and increasing shelf-life of ‘Flame Seedless’ grapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号