首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Imazalil (IMZ) is widely used in citrus packhouses to manage green mould, caused by Penicillium digitatum. The aim of this study was to investigate green mould control efficacy of IMZ applied in a wax coating, and the combination of aqueous dip and coating IMZ applications. Single application of IMZ at 3000 μg mL−1 in carnauba wax coating at rates of 0.6, 1.2 and 1.8 L tonne−1 of fruit gave better protective (mean 13% infection) than curative (mean 70% infection) control of the sensitive isolate. Imazalil residue levels increased (0.85 to 1.75 μg g−1) with increasing coating load. However, the resistant isolate could not be controlled (>74% infection). Dip only treatment (IMZ sulphate at 500 μg mL−1 for 45 s and 90 s) gave good curative control (≈77%) of the sensitive isolate at residue loading of 0.12–0.73 μg g−1. Wax coating only treatment (IMZ at 3000 μg mL−1 at 1.8 L wax tonne−1) gave good protective control and improved sporulation inhibition (≈80%) at residue loading of 1.32–7.09 μg g−1. The MRL of 5 μg g−1 was exceeded at higher wax loads on navels and clementines. Double application with dip (45 s in IMZ sulphate at 500 μg mL−1) followed by 2000 μg mL−1 IMZ in wax coating at 0.6, 1.2 and 1.8 L wax tonne−1 resulted in residue loading of 1.42 to 2.83 μg g−1, increased protective control (≈69%) as well as curative control (≈83%). In all treatments, poor curative and protective control of the resistant isolate was observed (<46% and <55%, respectively). Double application demonstrated superior green mould control by giving good curative and protective control and sporulation inhibition.  相似文献   

2.
Green mould, caused by Penicillium digitatum, is responsible for major postharvest fruit losses on the South African fresh citrus export market. Some of these losses as well as fungicide resistance development can be attributed to sub-optimal imazalil (IMZ) residue loading on citrus fruit (<2 μg g−1), which is commonly the case in South African packhouses. This will result in loss of control and sporulation inhibition on decayed fruit. IMZ formulation [IMZ sulphate and emulsifiable concentrate (EC)], solution pH (IMZ sulphate at 500 μg mL−1 buffered with NaHCO3 or NaOH to pH 6 and 8) and exposure time (15–540 s) were investigated in order to improve IMZ residue loading and the green mould control on Clementine mandarin, ‘Eureka’ lemon, and navel and Valencia orange fruit. Exposure time had no significant effect on residue loading in the unbuffered IMZ sulphate solution (pH 3). No differences were observed between the pH buffers used, but residue loading improved with increase in pH. The maximum residue limit (MRL) of 5.0 μg g−1 was exceeded following dip treatment in the IMZ EC (after 75 s exposure time), and IMZ sulphate at pH 8 using NaHCO3 (77 s) or NaOH (89 s) as buffer. The MRL was exceeded after 161 s in IMZ sulphate solutions buffered at pH 6 with either NaHCO3 or NaOH. An IMZ residue-loading curve was prepared from which residue levels can be predicted for the control of IMZ-sensitive and IMZ-resistant isolates of P. digitatum. From this model the benchmark residue level for 95% control of an IMZ-sensitive isolate and of an IMZ-resistant isolate were predicted to be 0.81 and 2.64 μg g−1, respectively. Residue loading can be improved by adjusting the pH level of an IMZ sulphate solution to 6 or by using the IMZ EC formulation, but exposure time should be restricted to 45 s so as not to exceed the MRL. Conversely, sufficient exposure time of ≈90 s in an unbuffered IMZ sulphate solution (pH 3) will result to improved green mould control, but with residue loading below 2 μg g−1. The resistant isolate could not be controlled adequately with residue levels below the MRL, therewith indicating the practical relevance of IMZ resistance.  相似文献   

3.
Penicillium expansum is one of the most important pathogens that cause blue mold in stored apples. Due to the development of resistance to the postharvest fungicide, thiabendazole (TBZ), an increase in blue mold has been observed in apple storages. The sensitivity of three TBZ-sensitive and three TBZ-resistant isolates of P. expansum to diphenylamine (DPA), scald inhibitor, was tested in vitro. Of the 94 isolates, collected later in the storage season, 41% were found resistant to both DPA and TBZ. To manage the fungicide resistance, a reduced-risk fungicide, fludioxonil, was tested against blue mold caused by TBZ-sensitive and -resistant P. expansum on ‘McIntosh’ apples treated with or without 1000 μg ml−1 of diphenylamine. Fruit were assessed for disease and scald incidence during storage. Diphenylamine controlled scald in treated fruit. Higher disease incidence of blue mold was observed in apples treated with diphenylamine and low concentrations of fludioxonil (3, 5, and 75 μg ml−1). DPA neither positively nor negatively affected the control of blue mold when DPA was applied together with 150, 300 and 600 μg ml−1 of fludioxonil during 12 weeks of storage at 4 °C.  相似文献   

4.
This study was conducted to investigate the effects of preharvest canopy position and bagging treatments on rind physiological and biochemical properties of ‘Nules Clementine’ mandarin (Citrus reticulata Blanco) fruit. Before storage, the respiration rate of unbagged outside fruit was significantly higher (21.6 mL CO2 kg−1 h−1) than of bagged inside fruit (16.3 mL CO2 kg−1 h−1). Unbagged fruit outside the canopy had 1.4-fold higher carbohydrates, and 1.1-fold higher dry matter (DM) content than bagged inside fruit. Bagged fruit inside the canopy had higher (24%) weight loss than outside sun-exposed fruit (14%). This corresponded with a higher rind breakdown (RBD) index for bagged inside fruit, compared to sun-exposed fruit which did not develop the disorder. During postharvest storage, rind fructose levels of bagged fruit inside the canopy increased from 62.4 mg/g DM at harvest to 81.3 mg/g DM after 8 weeks, while those of unbagged outside fruit increased from 97.9 to 108.4 mg/g DM. Concomitant with the increase in fructose, sucrose in rind tissue of bagged inside fruit decreased from 42.6 to 27.7 mg/g DM and from 49.3 to 33.4 mg/g DM for unbagged outside fruit. Rind glucose of unbagged inside fruit decreased from 90.6 to 76.2 mg/g DM. Ascorbic acid concentrations remained almost constant during storage, with levels between 3.3 and 6.7 mg/g DM for inside bagged and unbagged outside fruit, respectively. Hesperidin was the major flavanone detected, with concentrations between 35 and 45 mg/g DM followed by narirutin (1.1–2.8 mg/g DM). At harvest, rind of fruit harvested from outside the canopy had lower hesperidin concentration (38.1 mg/g DM) compared to shaded fruit (44.2 mg/g DM). Overall, the results suggest that variations in microclimatic conditions inside the tree canopy during the growing season affect the biochemical profile of the fruit rind, which in turn influences fruit response to postharvest stresses associated with senescence and susceptibility to RBD.  相似文献   

5.
Explaining yield gaps is crucial to understand the main technical constraints faced by farmers to increase land productivity. The objective of this study is to decompose the yield gap into efficiency, resource and technology yield gaps for irrigated lowland rice-based farming systems in Central Luzon, Philippines, and to explain those yield gaps using data related to crop management, biophysical constraints and available technologies.Stochastic frontier analysis was used to quantify and explain the efficiency and resource yield gaps and a crop growth model (ORYZA v3) was used to compute the technology yield gap. We combined these two methodologies into a theoretical framework to explain rice yield gaps in farmers’ fields included in the Central Luzon Loop Survey, an unbalanced panel dataset of about 100 households, collected every four to five years during the period 1966–2012.The mean yield gap estimated for the period 1979–2012 was 3.2 ton ha−1 in the wet season (WS) and 4.8 ton ha−1 in the dry season (DS). An average efficiency yield gap of 1.3 ton ha−1 was estimated and partly explained by untimely application of mineral fertilizers and biotic control factors. The mean resource yield gap was small in both seasons but somewhat larger in the DS (1.3 ton ha−1) than in the WS (1.0 ton ha−1). This can be partly explained by the greater N, P and K use in the highest yielding fields than in lowest yielding fields which was observed in the DS but not in the WS. The technology yield gap was on average less than 1.0 ton ha−1 during the WS prior to 2003 and ca. 1.6 ton ha−1 from 2003 to 2012 while in the DS it has been consistently large with a mean of 2.2 ton ha−1. Varietal shift and sub-optimal application of inputs (e.g. quantity of irrigation water and N) are the most plausible explanations for this yield gap during the WS and DS, respectively.We conclude that the technology yield gap explains nearly half of the difference between potential and actual yields while the efficiency and resource yield gaps explain each a quarter of that difference in the DS. As for the WS, particular attention should be given to the efficiency yield gap which, although decreasing with time, still accounted for nearly 40% of the overall yield gap.  相似文献   

6.
The antifungal activities of cinnamon extract (CE), piper extract (PE) and garlic extract (GE) were evaluated on banana crown rot fungi (Colletotrichum musae, Fusarium spp. and Lasiodiplodia theobromae) in vitro. The assay was conducted with extracts of CE, PE and GE with concentrations of 0, 0.1, 0.5, 1.0, 5.0, 10.0 and 0.75 g L−1 of carbendazim (CBZ) on potato dextrose agar at room temperature. CE completely inhibited conidial germination and mycelial growth of all fungi at 5.0 g L−1. PE totally suppressed mycelial growth of all fungi at 5.0 g L−1 and conidial germination at 10.0 g L−1 except for Fusarium spp. GE had no significant effects but low concentrations (0.1 and 0.5 g L−1) enhanced germ tube elongation of the three fungi. The ED50 values were higher for mycelial growth than for conidia except for Fusarium spp. Combined treatments were investigated on crown rot development in banana fruit (Musa AAA group ‘Kluai Hom thong’). Treatments included 5.0 g L−1 CE, 1% (w/v) chitosan solution, hot water treatment (HWT, 45 °C for 20 min), CE plus chitosan, CE plus HWT and 0.75 g L−1 of CBZ, applied before and after inoculation of the fruit. Crown rot development was assessed during storage at 13 °C for 7 weeks. Disease development was least (25%) on CE treated fruit after inoculation compared to CBZ but was higher when CE was applied before inoculation. Chitosan significantly delayed ripening as in terms of peel color, firmness, soluble solids and disease severity. CE showed no negative effects on quality of fruit. CE plus HWT caused unacceptable peel browning.  相似文献   

7.
Hexanal vapour and intact tomatoes were used as models to assess the opportunities for control of Botrytis cinerea rots by controlled release of organic vapours. Hexanal vapour concentrations in the ranges 5–270 μL L−1 were applied continuously or as a single dose at the start of storage. The postharvest microbiological, physiological and quality attributes of control and hexanal treated tomatoes were investigated during storage for 7 days at 20 ± 1 °C and ∼99% RH. Continuous hexanal exposure effectively suppressed grey mould with the minimum inhibitory concentration (MIC) being 40–70 μL L−1; the single-dose treatment showed minimal antifungal activity. During continuous exposure at the MIC the fruit respiration rate was increased ∼50% and reddening was slowed. No clear trend was observed in ethylene production and treated fruit did not differ from the controls in firmness or mass loss. The controlled release of low concentrations of hexanal vapour into a packaging headspace appears a feasible mechanism for prolonging tomato storage life.  相似文献   

8.
Postharvest diseases limit the storage period and marketing life of figs. The efficacy of chlorine dioxide by fogging was tested for the control of postharvest diseases of black fig (Ficus carica L. cv. Bursa Siyahi). Fruit were fogged with various concentrations of chlorine dioxide in a cold storage unit for 60 min at room temperature. Treated fruit were stored either in air or modified atmosphere bags for 7 d at 1 °C followed by 2 d shelf-life at 20 °C. Fogging at 300–1000 μL L−1 significantly reduced natural incidence of decay, most of which was gray mold. The efficacies of fogging at 500 and 1000 μL L−1 were at the same level and fogging at 1000 μL L−1 was superior to that at 300 μL L−1 in fruit stored in air. Modified atmosphere packaging did not improve the efficacy of fogging in reducing decay incidence. The epiphytic population on the fruit surface was similarly reduced by chlorine dioxide fogging. All treatments significantly reduced total microorganisms, fungal and bacterial populations in fruit. In addition, microorganisms in the storage atmosphere were significantly reduced. None of the treatments affected the visual quality and taste of fruit.  相似文献   

9.
This study investigated the effects of brief hot water and thiabendazole (TBZ) postharvest dip treatments on ultrastructural changes of fruit epicuticular wax (ECW), TBZ residues, decay development and quality traits of ‘Tarocco’ oranges [Citrus sinensis (L.) Osbek] subjected to cold quarantine, subsequent simulated transport and shelf-life. Commercially mature fruit were submerged in water at 20 °C (control fruit) or TBZ at 1000 mg/L and 20 °C for 60 s, or in hot water without or with TBZ at 300 mg/L and 53, 56, or 59 °C for 60, 30, and 15 s respectively. Following treatments, fruit were stored for 3 weeks at 1 °C (simulated quarantine conditions for fruit disinfestations against Mediterranean fruit fly, Medfly), followed by 4 days at 3 °C (simulated long distance transport), and finally kept at 20 °C for 3 days (shelf-life, SL). Scanning electron microscopy (SEM) analysis of ‘Tarocco’ orange surface showed that the typical wax platelets, lifting around edges of wax plates and areas free of epicuticular wax (ECW), that disappeared after hot water dips at 53–59 °C for 60–15 s, become visible again after storage for 21 days at 1 °C (quarantine conditions), and changes involving the appearance of rough ultrastructure, presence large curled plates, fissured wax crusts, and areas with ECW deficiencies, became much more pronounced after shelf-life. These occurrences were related to the transient effect of hot water treatment in decay control. Conversely, treatments with 300 mg/L TBZ 53 °C for 60 s or 56 °C for 30 s effectively reduced decay after quarantine. These treatments were as effective as standard treatment with 1000 mg/L TBZ at 20 °C and produced similar TBZ residue levels in fruit, without impairing fruit quality traits such as visual appearance, weight loss, compression test, sensory attributes, juice color parameters (a*, b*, h, L*, and Chroma), and juice chemical characteristics (soluble solids content, titratable acidity, ascorbic acid, glucose, sucrose, citric acid, total phenols, total anthocyanins, and total antioxidant activity).  相似文献   

10.
Our previous studies demonstrated that tomato fruit (breaker or pink) exposed at the midclimacteric stage to hypobaric hypoxia for 6 h exhibited transient increased sensitivity to subsaturating levels of 1-methylcyclopene (1-MCP). In the present study, we examined the effect of gaseous 1-MCP (500 nL L−1, 20.8 μmol m−3) applied to mid-climacteric (>60% peak ethylene production) tomato fruit under hypobaric hypoxia (10 kPa, 2.1 kPa O2,) for 1 h. Application of 500 nL L−1 1-MCP under atmospheric conditions had little effect on softening and timing and magnitude of peak ethylene production, and moderate effects on respiration and lycopene and PG accumulation. By contrast, midclimacteric fruit exposed to 500 nL L−1 gaseous 1-MCP under hypobaric hypoxia for 1 h showed acute disturbance of ripening. Firmness and hue angle declines were delayed for ten days and peak ethylene production for eleven days compared with trends for the other treatments. Maximum ethylene production did not exceed 50% of maxima for the other treatments and a definitive respiratory climacteric was not observed. Accumulation of internal gaseous 1-MCP was enhanced under hypobaric hypoxia. Internal 1-MCP in fruit exposed to 20 μL L−1 1-MCP (831 μmol m−3) under hypobaric hypoxia for 2 or 10 min averaged 7.5 ± 0.5 and 8.7 ± 1.4 μL L−1, respectively, compared with 0.8 ± 0.3 and 3.9 ± 0.7 μL L−1 in fruit exposed under atmospheric conditions. After 1 h exposure, internal 1-MCP averaged 10.8 ± 2.2 μL L−1 under hypobaric hypoxia compared with 5.3 ± 1.4 μL L−1 under atmospheric conditions. The results indicate that high efficacy of 1-MCP applied under hypobaric hypoxia is due to rapid ingress and accumulation of internal gaseous 1-MCP.  相似文献   

11.
Anthracnose caused by Colletotrichum gloeosporioides is a major postharvest disease in avocados that causes significant losses during transportation and storage. Complete inhibition of the radial mycelia growth of C. gloeosporioides in vitro was observed with citronella or peppermint oils at 8 μL plate−1 and thyme oil at 5 μL plate−1. Thyme oil at 66.7 μL L−1 significantly reduced anthracnose from 100% (untreated control) to 8.3% after 4 days, and to 13.9% after 6 days in artificially wounded and inoculated ‘Fuerte’ and ‘Hass’ fruit with C. gloeosporioides. GC/MS analysis revealed thymol (53.19% RA), menthol (41.62% RA) and citronellal (23.54% RA) as the dominant compounds in thyme, peppermint and citronella oils respectively. The activities of defence enzymes including chitinase, 1, 3-β-glucanase, phenylalanine ammonia-lyase and peroxidase were enhanced by thyme oil (66.7 μL L−1) treatment and the level of total phenolics in thyme oil treated fruit was higher than that in untreated (control) fruit. In addition, the thyme oil (66.7 μL L−1) treatment enhanced the antioxidant enzymes such as superoxide dismutase and catalase. These observations suggest that the effects of thyme oil on anthracnose in the avocado fruit are due to the elicitation of biochemical defence responses in the fruit and inducing the activities of antioxidant enzymes. Thus postharvest thyme oil treatment has positive effects on reducing anthracnose in avocados.  相似文献   

12.
Gaseous 1-methylcyclopropene (1-MCP) has been widely employed for delaying ripening and senescence of harvested fruit and vegetables; however, details on ingress of gaseous1-MCP in plant tissues, which might contribute to differences in responsiveness of different horticultural commodities to 1-MCP, have not been reported. In this study, we used spinach and bok choi leaves, disks from tomato epidermis, stem-scar and avocado-exocarp tissues, and whole tomato fruit to examine ingress of gaseous 1-MCP. Using a dual-flask system, equilibration of 20 μL L−1 (831 μmol m−3) 1-MCP through leaf tissue was reached within 1–2 h, and paralleled 1-MCP transfer through glass-fiber filter paper. For disks derived from fruit tissues, changes in 1-MCP concentrations in the dual-flask system showed anomalous patterns, declining as much as 70% in source flasks with negligible accumulation in sink flasks. The pattern of 1-MCP distribution was markedly different from that of ethylene, which approached equal distribution with tomato stem-scar and avocado exocarp but not tomato epidermis tissues. 1-MCP ingress was further addressed by exposing whole tomato fruit to 20 μL L−1 1-MCP followed by sampling of internal fruit atmosphere. Tomato fruit accumulated internal gaseous 1-MCP rapidly, reaching approximately 8–9 μL L−1 within 3–6 h at 20 °C. Internal 1-MCP concentration ([1-MCP]) declined around 74 and 94% at 1 and 3 h after exposure, respectively. Ingress was similar at all ripening stages and reduced by 45% in fruit coated with commercial wax. Blocking 1-MCP ingress through stem- and blossom-scar tissues reduced accumulation by around 60%, indicating that ingress also occurs through epidermal tissue. Fruit preloaded with 1-MCP and immersed in water for 2 h retained about 45% of post-exposure gaseous [1-MCP], indicating that 1-MCP is not rapidly sorbed or metabolized by whole tomato fruit. Rapid ingress of gaseous 1-MCP was also observed in tomato fruit exposed to aqueous 1-MCP. Both accumulation and post-exposure decline in internal gaseous [1-MCP] are likely to vary among different fruit and vegetables in accordance with inherent sorption-capacity, surface properties (e.g., waxes, stoma), volume and continuity of gas-filled intercellular spaces, and tissue hydration.  相似文献   

13.
‘Galia’ (Cucumis melo var. reticulatus L. Naud. cv. Galia) fruit were harvested at the three-quarter slip stage and treated with 1 μL L−1 1-methylcyclopropene (1-MCP) at 20 °C for 24 h. The fruit were processed and stored as fresh-cut cubes and intact fruit for 10 d at 5 °C. Ethylene production of fresh-cut cubes was approximately 4–5-fold higher than intact fruit at day 1. Afterward, the ethylene production of fresh-cut cubes declined significantly whereas that of intact fruit remained relatively constant at about 0.69–1.04 ng kg−1 s−1. 1-MCP delayed mesocarp softening in both fresh-cut and intact fruit and the symptoms of watersoaking in fresh-cut fruit. Continuously stored fresh-cut cubes and cubes derived from intact fruit not treated with the ethylene antagonist softened 27% and 25.6%, respectively, during 10 d storage at 5 °C while cubes derived from 1-MCP-treated fruit softened 9% and 17%, respectively. Fresh-cut tissue from 1-MCP-treated fruit exhibited slightly reduced populations of both total aerobic organisms and Enterobacterium, although the differences did not appear to be sufficient to explain the differences in keeping quality between 1-MCP-treated and control fruit. Based primarily on firmness retention and reduced watersoaking, 1-MCP treatment deferred loss of physical deterioration of fresh-cut ‘Galia’ cubes at 5 °C by 2–3 d compared with controls.  相似文献   

14.
Papaya fruit ripening processes involve the coordinated action of several hydrolases that causes cell wall degradation. Endoxylanase participates in xylan or arabinoxylan modifications and its importance has been related to papaya softening. However, endoxylanase has been not fully characterized biochemically and kinetically. Semipurified endoxylanase from ripe ‘Maradol’ papaya fruit had an optimal temperature from 45 °C to 50 °C, a pH optimum of 5.5 against Remazol brilliant blue-xylan (RBB-Xylan) and enzymatic activity remained stable during 36 h at 45 °C. The activation energy of the enzyme was 25.5 kJ mol−1, and the Vmax at 32, 37 and 42 °C was 788.9, 888.9 and 1085.6 μg kg−1 s−1, respectively. The Km did not change as a function of temperature and was measured as 1.8 g L−1 and was within the range reported for other xylanases. Total proteins were extracted from color-break, half-ripe and ripe fruit. A pre-endoxylanase at 63.9 kDa was identified in the color-break fruit and an active endoxylanase at 32.5 kDa that was only found in ripe fruit, when the highest enzymatic activity was obtained. Immunodetection on two-dimensional gel electrophoresis (2DE) protein blots showed three isoforms of the pre-endoxylanase at color-break and ripe stages and, four isoforms in ripe fruit that were absent in color-break fruit. The biochemical and kinetic characteristics of the endoxylanase are crucial to our understanding papaya fruit softening.  相似文献   

15.
The feasibility of optical coherence tomography (OCT) for imaging histological changes associated with the development of a progressive rind breakdown (RBD) disorder of ‘Nules Clementine’ mandarin (Citrus reticulate Blanco.) was investigated. The investigation utilised fruit with different levels of the disorder, carefully selected from a batch of fruit stored for eight weeks at 8 ± 0.5 °C. Images of healthy and RBD-affected intact mandarin fruit were acquired using a Thorlabs OCT system based on a broadband 930 nm source. OCT provided high resolution 2D images of fruit rind to a depth of about 1.1 mm. Immediate and non-destructive acquisition of images showing histological and microstructural features in intact rind tissues was demonstrated. The oil glands stayed intact in unaffected fruit and gradually collapsed in RBD affected fruit. At advanced stages of the disorder, the collapsed oil glands became increasingly deformed and flattened. The study showed that OCT is a promising technique for immediate, real-time and non-destructive acquisition of images showing histological and microstructural rind features of ‘Nules Clementine’ mandarin fruit.  相似文献   

16.
‘Raf’ tomato fruit were harvested at the mature-green stage and treated with 1-methylcyclopropene (1-MCP) at 0.5 (for 3, 6, 12 or 24 h) or 1 μl l−1 for 3 or 6 h. Fruit were stored at 10 °C for 7 days and a further 4 days at 20 °C for a shelf life period. All 1-MCP treatments reduced both ethylene production and respiration rate and in turn retarded the changes in parameters related to fruit ripening, such as fruit softening, colour (a*) change, and increase in ripening index (TSS/TA ratio). These effects were significantly higher when 1-MCP was applied at 0.5 μl l−1 for 24 h. In order to obtain the maximum benefit from 1-MCP, this treatment would be the most suitable for commercial purposes.  相似文献   

17.
Tomatoes, strawberries, table grapes and plums were inoculated with Botrytis cinerea (grey mould), transferred to chilled storage (13 °C) and exposed to ‘clean air’ or low-level ozone-enrichment (0.1 μmol mol−1). Ozone-enrichment resulted in a substantial decline in spore production as well as visible lesion development in all treated fruit. Exposure-response studies performed specifically on tomato fruit (exposed to concentrations ranging between 0.005 and 5.0 μmol mol−1 ozone) revealed lesion development and spore production/viability to be markedly reduced in produce exposed to ozone prior to, or following, infection with B. cinerea; higher concentrations/duration of exposure yielding greater reductions in lesion development and spore production/viability. Impacts on Botrytis colonies grown on Potato Dextrose Agar (PDA) for 5–6 days at 13 °C and 95% relative humidity (RH) revealed less effects than studies on fruit inoculated with the pathogen in vivo. Taken as a whole, the results imply that ozone-induced suppression of pathogen development is due, to some extent, to impacts on fruit–pathogen interactions. This work suggests that ozone may constitute a desirable and effective residue-free alternative to traditional postharvest fungicide practices. Data presented illustrate that optimal ozone treatment regimes are likely to be commodity-specific and require detailed investigation before such practices can be contemplated commercially.  相似文献   

18.
Competition for soil resources plays a key role in the crop yield of intercropping systems. There is a lack of knowledge on the main factors involved in competitive interactions between crops and weeds for nutrients uptake. Hence, the purpose of this work was to compare the effects of arbuscular mycorrhial fungi (Funneliformis mosseae) colonization in interspecific competitive relations and its effect on nutrients uptake and weed control in dill and common bean intercropping. Two field experiments were carried out with factorial arrangements based on randomized complete block design with three replications during 2013–2014. The factors were cropping systems including a) common bean (Phaseolus vulgaris L.) sole cropping (40 plants m−2), b) dill (Anethum graveolens L.) sole cropping at different densities (25, 50 and 75 plants m−2) and c) the additive intercropping of dill + common bean (25 + 40, 50 + 40 and 75 + 40 plants m−2). All these treatments were applied with (+AM) or without (-AM) arbuscular mycorrhiza colonization. In both cropping systems, inoculation with F. mosseae increased the P, K, Fe and Zn concentrations of dill plants by 40, 524, 57 and 1.0 μg kg−1 DW, respectively. Intercropping increased Mn concentration in common bean (4.0 μg kg−1 DW) and dill (3.0 μg kg−1 DW), and also seed yields of both crops (198 g m−2 and161 g m−2, respectively). AM colonization improved seed yields of dill and common bean by 169 and 177 g m−2 in 2013 and 2014, respectively. Moreover, AM application enhanced competitive ability of dill + common bean intercrops against weeds at different intercropping systems. Intercropping significantly changed weed density compared to sole cropping, as weed density was decreased in the dill + common bean intercropping. Diversity (H), Evenness (E) and richness of weed species of weeds for intercrops were higher than those for sole crops.  相似文献   

19.
Pericarp colour of litchi fruit is an important quality attribute that determines its market value and consumer acceptance. Plant growth regulators (PGR) such as abscisic acid (ABA) and ethephon are known to play important roles in peel colour development during maturation and ripening of non-climacteric fruits (e.g. grape and litchi). Our aim was to investigate the effects of preharvest application of ABA, ethephon and their combination on pericarp colour and fruit quality of litchi (cv. Calcuttia) and also to assess the potential effects on postharvest performance of fruit. Exogenous application of ABA (150 or 300 mg L−1) at the colour-break stage significantly increased the concentration of total anthocyanins and cyanidin-3-O-rutinoside, the major anthocyanin contributing ∼71–96% of the total anthocyanins, in litchi pericarp compared to ethephon (500 μL L−1). Among different anthocyanins quantified, the relative contribution of cyanidin-3,5-diglucoside to the total anthocyanins was significantly higher in all PGR-treated fruit compared to the control, but the concentration of cyanidin-3-O-glucoside was specifically enhanced by ABA. No significant effect on the concentrations of epicatechin, and quercetin-3-O-rutinoside was observed in response to PGR treatments. Ethephon (500 μL L−1) treatment did not significantly increase the anthocyanin levels in pericarp, but it caused more degradation of chlorophyll pigments than control. Aril quality with regard to firmness, soluble solids and acidity was not significantly affected by PGR treatments, except that ethephon-treated fruit showed significant softening and lower acidity. Postharvest changes in fruit quality attributes including pericarp browning during cold storage at 5 °C for 14 d were mainly related to the storage duration effect, rather than PGR treatment. In conclusion, ABA treatment (150 or 300 mg L−1) at the colour-break stage enhanced anthocyanins accumulation in litchi pericarp without adversely affecting postharvest quality and storage stability for 14 d.  相似文献   

20.
‘Crimson Seedless’ is a popular table grape cultivar, but in warm-climates, its fruits often fail to develop adequate red color, even after they have been treated with ethephon. Application of abscisic acid (ABA) may improve color more effectively than ethephon, but its potential effects on postharvest quality must be considered before recommending its use on table grapes. Therefore, we compared the postharvest quality attributes of grapes treated preharvest with 250 μL L−1 ethephon, the current industry standard, to that of grapes treated with 150 or 300 μL L−1 ABA, or nontreated. Treatment with either ethephon or 150 μL L−1 ABA allowed grapes to be harvested 10 d before nontreated fruit, and fruits treated with 300 μL L−1 ABA attained marketable quality 30 d before nontreated fruit. Early harvest was possible because the treatments induced more rapid coloring of the grapes, and though total yield was not affected by any plant growth regulator (PGR), all PGRs doubled packable yields by improving the color of the grapes. ABA-treated grapes were characterized by superior appearance both in berries and clusters’ rachises compared to ethephon-treated and control grapes. Other quality attributes such as firmness, berry weight, decay incidence, and shatter remained unaffected among treatments. Therefore, ABA is an effective alternative to ethephon for enhancing the color and maintaining postharvest quality of ‘Crimson Seedless’ grapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号