首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pre-storage application of 40% CO2 at 0 °C for 24 or 48 h and controlled atmosphere (12% O2 + 12% CO2) storage at 0 °C for up to eight weeks on decay control and quality of organic ‘Flame Seedless’ and ‘Crimson Seedless’ table grapes were studied as a postharvest disease control alternative. To simulate different potential field conditions, these organic treatments were applied to organic-grown grapes that were naturally infected (without inoculation), surface inoculated (berries inoculated by spraying with a conidia suspension), and nesting inoculated (clusters inoculated by placing in the middle an artificially infected berry) with the pathogen Botrytis cinerea, the cause of grape gray mold. Under these three conditions, a 40% CO2 for 48 h pre-storage treatment followed by controlled atmosphere reduced the gray mold incidence from 22% to 0.6% and from 100% to 7.4% after four and seven weeks, respectively. High CO2 pre-storage alone limited botrytis incidence in both naturally and artificially infected grapes, but was more effective when combined with CA. These treatments did not affect visual or sensory fruit quality. Exposure to high CO2 for 24 or 48 h effectively inhibited mycelial growth of B. cinerea in PDA plates incubated at 22 °C for up to 72 h. Conidia germination in PDA plates was reduced ∼60% after 12 h incubation. In vitro studies demonstrated a fungistatic effect, but further studies on the mechanism of action could improve treatment performance. This novel high CO2 initial fumigation followed by controlled atmosphere during storage or transportation could be a commercially feasible alternative for postharvest handling of organic and conventional table grapes. Our results encourage validating this combined physical treatment in other cultivars and under commercial conditions.  相似文献   

2.
Over 54,600 ha of table grapes (Vitis vinifera), mainly cvs. ‘Thompson Seedless’, ‘Flame Seedless’ and ‘Redglobe’, are planted in Chile. Almost the entire production is exported to the USA, Europe, Asia, or one of several Latin American countries, which typically requires 15–40 d of maritime transportation. During this period, several physical, physiological, and pathological factors cause table grape deterioration. Because berry size is the main quality factor in international markets, farmers often overuse the growth regulators, gibberellic acid (GA3) and forchlorfenuron (CPPU), in an effort to increase berry size. We examined the effect of preharvest growth regulators on seedless (‘Thompson Seedless’, and ‘Ruby Seedless’) and seeded (‘Redglobe’) table grape cultivars during cold (0 °C) storage plus a shelf life period of 3 d at 20 °C. The overuse of GA3, eight instead of two GA3 applications on Thompson Seedless, and the use of one GA3 application on Redglobe and ‘Ruby Seedless’, increased berry pedicel thickness and lowered cuticle content but induced shatter and predisposed grapes to gray mold caused by Botrytis cinerea. In contrast, CPPU increased berry pedicel thickness and cuticle content but did not increase shatter or gray mold incidence. Clusters that were subjected to overuse of combined GA3 and CPPU were highly sensitive to shatter, had the thickest pedicel, and developed a high gray mold incidence during cold storage. Hairline, a fine cracking developed during cold storage, was induced on ‘Thompson Seedless’ and ‘Ruby Seedless’ by growth regulators, but no hairline occurred on ‘Redglobe’ table grapes. Therefore, berry quality during cold storage is greatly influenced by growth regulator management in the vineyard.  相似文献   

3.
An integrated approach was evaluated that combined biological and chemical fumigation of table grapes to control postharvest gray mold caused by Botrytis cinerea. After fumigation of the grapes with ozone or sulfur dioxide during pre-cooling, the fruit were then exposed to continuous biofumigation by the volatile-producing fungus Muscodor albus during storage. Biofumigation was provided by in-package generators containing a live grain culture of the fungus. This grain formulation of M. albus survived the initial ozone or sulfur dioxide fumigation, but sulfur dioxide reduced its production of isobutyric acid, an indicator of the production of antifungal volatiles. Gray mold incidence was reduced among inoculated ‘Autumn Seedless’ grapes from 91.7 to 19.3% by 1 h fumigation with 5000 μL L?1 ozone, and further reduced to 10.0% when ozone fumigation and M. albus biofumigation were combined. The natural incidence of gray mold among organically grown ‘Thompson Seedless’ grapes after 1 month of storage at 0.5 °C was 31.0%. Ozone fumigation and M. albus biofumigation reduced the incidence of gray mold to 9.7 and 4.4, respectively, while the combined treatment reduced gray mold incidence to 3.4%. The use of commercial sulfur dioxide pads reduced the incidence to 1.1%. The combination of ozone and M. albus controlled decay significantly, but was less effective than the standard sulfur dioxide treatments. Although less effective than sulfur dioxide treatment, ozone and M. albus controlled decay significantly, and could be alternatives to sulfur dioxide, particularly for growers complying with organic production requirements.  相似文献   

4.
To control postharvest decay, table grapes are commercially fumigated with sulfur dioxide. We evaluated ozone (O3) fumigation with up to 10,000 μL L?1 of ozone for up to 2 h to control postharvest gray mold of table grapes caused by Botrytis cinerea. Fumigation for 1 h with 2500 or 5000 μL L?1 of ozone were equal in effectiveness. Both treatments reduced postharvest gray mold among inoculated ‘Thompson Seedless’ grapes by approximately 50% when the grapes were examined after storage for 7 d at 15 °C following fumigation. In a similar experiment, ‘Redglobe’ grapes were stored for 28 d at 0.5 °C following fumigation for 1 h with 2500 or 5000 μL L?1 of ozone. Both treatments were equal in effectiveness, but inferior to fumigation with 10,000 μL L?1. Ozone was effective when grapes were inoculated and incubated at 15 °C up to 24 h before fumigation. The cluster rachis sustained minor injuries in some tests, but berries were never harmed. Ozone was applied in three combinations of time and ozone concentration (10,000 μL L?1 for 30 min, 5000 μL L?1 for 1 h, and 2500 μL L?1 for 2 h) where each had a constant concentration × time product (c × t) of 5000 μL L?1 × h. The effectiveness of each combination was similar. The incidence of gray mold was reduced by approximately 50% among naturally inoculated, organically grown ‘Autumn Seedless’ and ‘Black Seedless’ table grapes, and by 65% among ‘Redglobe’ table grapes, when they were fumigated with 5000 μL L?1 ozone for 60 min in a commercial ozone chamber and stored for 6 weeks at 0.5 °C. Residues of fenhexamid, cyprodinil, pyrimethanil, and pyraclostrobin were reduced by 68.5, 75.4, 83.7, and 100.0%, respectively, after a single fumigation of table grapes with 10,000 μL L?1 ozone for 1 h. Residues of iprodione and boscalid were not significantly reduced. Ozone is unlikely to replace sulfur dioxide treatments in conventional grape production unless its efficacy is improved, but it could be an acceptable technology to use with grapes marketed under “organic” classification, where the use of SO2 is prohibited, or if SO2 use were to be discontinued.  相似文献   

5.
‘Crimson Seedless’ is a popular table grape cultivar, but in warm-climates, its fruits often fail to develop adequate red color, even after they have been treated with ethephon. Application of abscisic acid (ABA) may improve color more effectively than ethephon, but its potential effects on postharvest quality must be considered before recommending its use on table grapes. Therefore, we compared the postharvest quality attributes of grapes treated preharvest with 250 μL L−1 ethephon, the current industry standard, to that of grapes treated with 150 or 300 μL L−1 ABA, or nontreated. Treatment with either ethephon or 150 μL L−1 ABA allowed grapes to be harvested 10 d before nontreated fruit, and fruits treated with 300 μL L−1 ABA attained marketable quality 30 d before nontreated fruit. Early harvest was possible because the treatments induced more rapid coloring of the grapes, and though total yield was not affected by any plant growth regulator (PGR), all PGRs doubled packable yields by improving the color of the grapes. ABA-treated grapes were characterized by superior appearance both in berries and clusters’ rachises compared to ethephon-treated and control grapes. Other quality attributes such as firmness, berry weight, decay incidence, and shatter remained unaffected among treatments. Therefore, ABA is an effective alternative to ethephon for enhancing the color and maintaining postharvest quality of ‘Crimson Seedless’ grapes.  相似文献   

6.
‘Black Splendor’ (BS) and ‘Royal Rosa’ (RR) plums were treated preharvest with methyl jasmonate (MeJA) at three concentrations (0.5, 1.0 and 2.0 mM) along the on-tree fruit development: 63, 77 and 98 days after full blossom (DAFB). Both control and treated fruit were harvested at the commercial ripening stage and stored in two temperature conditions: 9 days at 20 °C or at 2 °C + 1 day at 20 °C for 50 days. Preharvest MeJA at 2.0 mM significantly accelerated whereas 0.5 mM delayed the postharvest ripening process for both cultivars, since ethylene production, respiration rate and softening were reduced significantly at the two storage conditions for 0.5 mM. In these fruit, total phenolics, total antioxidant activity (hydrophilic fraction, HTAA) and the antioxidant enzymes peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were found at higher levels in treated than control plums during postharvest storage, which could account for the delay of the postharvest ripening process and the extension of shelf-life.  相似文献   

7.
The efficacy of three methods of applying ethanol to prevent storage decay was tested on two cultivars of table grapes, ‘Superior’ and ‘Thompson Seedless’. Ethanol was applied by: (1) dipping grapes in 50% ethanol for 10 s followed by air drying before packaging; (2) placing a container with a wick and 4 or 8 ml ethanol/kg grapes inside the package; (3) applying 4 or 8 ml ethanol/kg grapes to paper and placing this paper above the grapes in the package. The grapes were stored for 6 or 8 weeks at 0 °C and assessed after an additional 3 days at 20 °C. All methods of application controlled decay as well as or better than a SO2-releasing pad. The ethanol impregnated paper caused high levels of berry browning, perhaps because of high levels of acetaldehyde inside the package. However, the taste of the berries was not impaired by any of the ethanol applications. The taste of ‘Thompson Seedless’ grapes stored for 8 weeks in modified atmosphere storage was affected by CO2 levels above 7%. Some methods of applying ethanol used here show promise as alternatives to SO2 to prevent decay of grapes during storage while maintaining fruit quality.  相似文献   

8.
The control by ozone of postharvest decay of table grapes, caused by Botrytis cinerea and other pathogens, was evaluated in chambers and commercial storage facilities. Ozone at 0.100 μL/L or higher inhibited the spread of gray mold among stored grapes. Ozone diffusion into many types of commercial packaging was measured. Boxes made of uncoated paper corrugate inhibited diffusion more than those composed of coated paper corrugate, plastic corrugate, hard plastic, or expanded polystyrene. Internal packaging of hard plastic clamshell containers inhibited diffusion less than low density polyethylene cluster bags. Atmospheres of 0.100 μL/L ozone in the day and 0.300 μL/L at night reduced the natural incidence of gray mold by approximately 65% after 5–8 weeks of storage. Its effectiveness to control postharvest decay was compared to sulfur dioxide fumigation. After 68 days at 1 °C the incidence of gray mold among grapes stored in air, ozone, or with weekly sulfur dioxide fumigation was 38.8%, 2.1%, and 0.1%, respectively. However, decay by other fungi, such as Alternaria spp. and Penicillium spp., was controlled by sulfur dioxide, but not by ozone. In some tests, rachis appearance was moderately harmed by ozone. The combination of ozone use in storage following a single initial sulfur dioxide fumigation, or its use in between biweekly sulfur dioxide fumigations, controlled both gray mold and other pathogens and matched the commercial practice of initial and weekly sulfur dioxide fumigation. The use of both gases in this way reduced sulfur dioxide use greatly. Differences in flavor of grapes treated with ozone were not detectable compared to those stored in air, and grapes treated with ozone were preferred over those treated with sulfur dioxide.  相似文献   

9.
Freshly harvested tomato fruit were pretreated with 0.2 mM arginine at −35 kPa for 0.5 min and then stored at 2 °C for 28 d to investigate the effect of exogenous arginine treatment on endogenous arginine catabolism in relation to chilling injury (CI). Arginine treatment reduced the CI index of fruit and enhanced accumulation of polyamines, especially putrescine, and proline, which resulted from the increased activities of the catabolic enzymes arginase, arginine decarboxylase, ornithine decarboxylase and ornithine δ-aminotransferase at most sampling times. Nitric oxide synthase activity was also increased by arginine treatment, which at least partly contributed to the increased nitric oxide concentration. These results revealed that the reduction in CI by exogenous arginine may be due to the accumulation of putrescine, proline and nitric oxide induced by activating the different pathways of endogenous arginine catabolism.  相似文献   

10.
Preventive and curative activities of postharvest treatments with selected chemical resistance inducers to control postharvest green (GM) and blue (BM) molds on oranges (cvs. ‘Valencia’ or ‘Lanelate’) artificially inoculated with Penicillium digitatum and Penicillium italicum, respectively, were evaluated. In vivo primary screenings to select the most effective chemicals and concentrations were performed with benzothiadiazole (BTH), β-aminobutyric acid (BABA), 2,6-dichloroisonicotinic acid (INA), sodium silicate (SSi), salicylic acid (SA), acetylsalicylic acid (ASA) and harpin. INA at 0.03 mM, SA at 0.25 mM, BABA at 0.3 mM and BTH at 0.9 mM were selected and tested afterwards as dips at 20 °C for 60 or 150 s with oranges artificially inoculated before or after the treatment and incubated for 7 d at 20 °C. Although it was an effective treatment, SSi at 1000 mM was discarded because of potential phytotoxicity to the fruit rind. Preventive or curative postharvest dips at room temperature had no effect or only reduced the development of GM and BM very slightly. Therefore, these treatments cannot be recommended for inclusion in postharvest decay management programs for citrus packinghouses.  相似文献   

11.
The effectiveness of short hyperbaric treatments to control postharvest decay of sweet cherries (Prunus avium L., cv Ferrovia) and table grapes (Vitis vinifera L., cv Italia) was investigated. Sweet cherries and table grape berries were exposed to the pressure of 1140 mmHg (1.5 atm) for 4 and 24 h, respectively, in 64 L gas-proof tanks. Fruit kept at ambient pressure (near 760 mmHg, 1.0 atm) served as a control. Postharvest rots of sweet cherries arose from naturally occurring infections, whereas table grape berries were artificially wounded, exposed to the hyperbaric treatment, then the wounds inoculated with 20 μL of a Botrytis cinerea conidial suspension (5 × 104 spores mL−1). Sweet cherries were stored at 0 ± 1 °C for 14 d, followed by 7 d at 20 ± 1 °C. Table grapes berries were kept at 20 ± 1 °C for 3 d. On sweet cherries, hyperbaric treatment reduced the incidence of brown rot, grey mould, and blue mould, with respect to the control. Similarly, on treated table grapes a significant reduction of lesion diameter and percentage of B. cinerea infected berries was observed. Induced resistance was likely to be responsible for the observed decay reduction. To our knowledge, this is the first report on the effectiveness of short hyperbaric treatments in controlling postharvest decay of sweet cherries and table grapes.  相似文献   

12.
Gray mold is the most common postharvest disease of table grapes in most regions of the world. The effect of eight salts, namely sodium silicate (SSi), sodium sulphate (SS), sodium carbonate (SC), sodium bicarbonate (SB), iron chelate (Fech), iron sulphate (FeS), ammonium bicarbonate (AB), and ammonium oxalate (AO) was determined in vitro on mycelial growth and spore suspension of Botrytis cinerea. In particular, SSi, SC, SB, FeS, and AB completely inhibited pathogen growth at 0.25% concentration. Six salt solutions at 1%, immersion or spray, were tested to verify their effect on grapes artificially inoculated with B. cinerea. All salts significantly reduced the percentage of gray mold as compared to control except for Fech after one week at 22 ± 1 °C. Three salt solutions were applied, in vivo, according to different strategies: (i) spraying before harvest, (ii) immersion after harvest, and (iii) the combination of pre- and postharvest treatments. Water was involved as a negative control while Rovral (a.i. iprodione) and SO2 served for comparisons. After one month of cold storage at 2 ± 1 °C followed by one week of shelf-life at 22 ± 2 °C, the natural incidence of postharvest mold was mostly caused by B. cinerea. The efficacy of preharvest applications was noticeably high and statistically was not enhanced by further treatments after harvest. Salts applied only after harvest were not effective in suppressing Botrytis mold, with the exception of FeS. The influence of salts on physicochemical properties for berry quality was also monitored. The field application of salts can be considered as an appropriate regime to enhance their activity since no negative impact of their application on quality profile was observed. The incidence of gray mold can be significantly reduced using some salts which are safe for consumers and the environment.  相似文献   

13.
Table grapes have high market value in international markets due to their attractive taste and high antioxidant content. However, their market potential is limited by losses due to Botrytis cinerea Pers. Fr. Cinnamon leaf oil (CLO) is a natural fungicidal and antioxidant agent that can be used to avoid postharvest losses due to B. cinerea Pers. Fr. and to increase the antioxidant levels of this produce. CLO was applied to grapes as water emulsions (0, 0.5, 2.5, and 5 g L−1), as vapors (0, 0.196, 0.392, and 0.588 g L−1), or as a chemical incorporated into pectin coatings (0 and 36.1 g L−1). Afterwards, berries were stored at 10 °C for 15 d and were evaluated periodically for the fungal decay index, the total phenolic and flavonoid contents and the antioxidant activity using the Trolox equivalent antioxidant capacity and DPPH radical inhibition methods. The odor acceptability of the treated berries was evaluated after 10 d of storage. The CLO emulsion (5 g L−1) significantly reduced the fungal decay without affecting the antioxidant properties of the berries. The application of CLO as a vapor was more effective according to the evaluated parameters than the emulsions; all tested concentrations inhibited fungal decay and increased the flavonoid content and antioxidant activity. When CLO was incorporated into the pectin, no fungal decay appeared, and the highest antioxidant activity was observed after 15 d of storage. Additionally, all treatments, except the emulsion treatment, increased the odor acceptability of the treated berries compared to the control berries. From this study, it can be concluded that CLO as vapors or coatings can be used to control decay and increase the antioxidant health benefits of grapes due to CLO's antifungal and antioxidant properties.  相似文献   

14.
In order to evaluate the effect of ethanol vapor treatments (0.5 mL/kg and 3 mL/kg) on postharvest storage at 23 °C, quality of oriental sweet melons, and to clarify the mechanism of the inhibition of senescence, we investigated physiological and quality changes induced by ethanol vapor, decay incidence, internal ethylene concentration (IEC) and ethylene-related enzymes activities as well as gene expression. Both ethanol vapor treatments, irrespective of concentration, significantly (P < 0.5) delayed skin color changes, retarded softening and suppressed fruit decay in ethanol vapor-treated fruit. Between the two treatments, 0.5 mL/kg of ethanol vapor maintained better quality in storage than that of 3 mL/kg. Compared with the control, both ethanol vapor treatments resulted in different profiles and composition of aromatic volatile compounds of fruit during storage, and a significant increase of ethyl esters, including ethyl acetate, ethyl butanoate, ethyl hexanoate, ethyl 2-methylbutanoate, 3-(methylthio) propionate and 2-phenethyl acetate, and five new ethyl esters were also detected. Both treatments increased alcohol acyl-transferase (AAT) activity levels, which peaked earlier than in the control, but there were no significant differences in activities of alcohol dehydrogenase (ADH). Both treatments significantly (P < 0.5) suppressed internal ethylene concentrations (IEC) during storage at 23 °C, which was evident from reducing 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) and ACC oxidase (ACO) activities, and inhibiting ACC biosynthesis, and the effect of the 0.5 mL/kg treatment was better than that of 3 mL/kg. Real-time quantitative PCR (Q-PCR) analysis showed that the expression patterns of CM-ACO1, CM-ACO2, CM-ACS1 and CM-ACS2 were consistent with ethylene production during storage. These results suggest that postharvest ethanol vapor treatments markedly delayed the senescence of harvested oriental sweet melons, maintained better quality in storage and improved levels of volatile aroma compounds, especially the ethyl esters, through suppressing the expression of particular members of ethylene-forming enzyme gene families as well as ethylene biosynthesis, and the effect is dose dependent.  相似文献   

15.
The effect of 1-methylcyclopropene (1-MCP) on postharvest quality and lignification of Chinese chive scapes (Allium tuberosum Rottler ex Sprengel) was examined during storage at 20 °C. The results showed that the treatment with 0.5 μL L?1 1-MCP significantly delayed weight loss and opening rate of flowers, maintained higher chlorophyll and ascorbic acid contents, inhibited respiration, reduced the activities of the enzymes phenylalanine ammonia lyase, cinnamyl alcohol dehydrogenase and peroxidase, and retarded lignin and cellulose accumulation. The results suggest that 1-MCP treatment may be a promising technique to maintain postharvest quality of Chinese chive scapes.  相似文献   

16.
The effects of postharvest application of fruit hardening chemical agents on fig (Ficus carica L. cv. Poona) fruit were compared with untreated figs during storage. The impact of calcium chloride (4%) was notable in terms of retention of fruit color, texture and increased accumulation of ascorbic acid, compared to untreated control figs. Pretreatment with calcium chloride (4%) was found to be most effective in checking the growth of both mesophilic aerobic bacteria and yeast and molds at low temperature (1 ± 0.5 °C; 95–98% RH) storage and it further delayed ripening and senescence of figs and was beneficial in prolonging the postharvest life twofold. Treated figs without microbial spoilage could be used for short term storage, transportation, distribution and marketing for long distance domestic markets in India.  相似文献   

17.
Peach (Prunus persica) fruit have a short shelf-life, and the most common method employed to delay ripening and increase their postharvest life is cold storage. However, after extended storage at low temperature some cultivars have alterated ripening processes, resulting in a lack of juice and a woolly texture. To improve our understanding of the molecular mechanisms involved in the responses of peach fruit to cold storage we determined gene expression changes of fruit (cv. O’Henry) under different postharvest conditions: ripening (5 days at 21 °C), cold storage (21 days at 4 °C) and induction of woolliness (21 days at 4 °C followed by 5 days at 21 °C).Cluster analyses of genes differentially expressed between treatments revealed unique patterns associated with biological processes that operate during postharvest treatments. Genes up-regulated during postharvest ripening and woolliness include components of ethylene, and aroma biosynthesis as well as oxidative stress response. During cold storage treatment and woolliness, several genes linked to the oxidative stress response increased in abundance, suggesting changes in redox status. Quantitative RT-PCR analysis showed a sequential increase levels of mRNAs encoding key components of cellular stress response. Moreover, after 21 days of cold storage, expression of genes encoding oxidoreductase, catalase, superoxide dismutase and gluthatione reductase was still significantly higher than before cold treatment, suggesting that fruit cells were able to respond to the increased production of ROS that was induced by extended cold storage. In the woolly fruit, up-regulation of stress response genes was accompanied by down-regulation of key components of metabolic pathways that are active during peach ripening. The altered expression pattern of these genes might account for the abnormal ripening of woolly fruit.  相似文献   

18.
The effectiveness of alternatives to synthetic fungicides for the control of pathogens causing postharvest diseases of sweet cherry was tested in vitro and in vivo. When amended to potato dextrose-agar, oligosaccharides, benzothiadiazole, chitosan, calcium plus organic acids, and nettle macerate reduced the growth of Monilinia laxa, Botrytis cinerea and Rhizopus stolonifer. Treatment of sweet cherries three days before harvest or soon after harvest with oligosaccharides, benzothiadiazole, chitosan, calcium plus organic acids, nettle extract, fir extract, laminarin, or potassium bicarbonate reduced brown rot, gray mold, Rhizopus rot, Alternaria rot, blue mold and green rot of cherries kept 10 d at 20 ± 1 °C, or 14 d at 0.5 ± 1 °C and then exposed to 7 d of shelf-life at 20 ± 1 °C. Among these resistance inducers, when applied either preharvest or postharvest, chitosan was one of the most effective in reducing storage decay of sweet cherry, and its antimicrobial activity in vitro and in field trials was comparable to that of the fungicide fenhexamid. Benzothiadiazole was more effective when applied postharvest than with preharvest spraying. These resistance inducers could represent good options for organic growers and food companies, or they can complement the use of synthetic fungicides in an integrated disease management strategy.  相似文献   

19.
It has been reported that a short duration hot water treatment, applied as a heat shock, improves subsequent postharvest quality in bagged spinach and rocket leaves. This study has established that the maximum hot water temperature and duration before spinach leaves showed damage, was 45 °C for 60 s. Subsequent detailed studies compared postharvest quality of leaves treated at 45 °C for 60 s immediately after harvest with untreated leaves after 5 and 10 days of storage at 4 °C. Heated leaves were significantly lighter and more yellow suggesting enhanced senescence, but leaf membrane integrity and associated gas composition of the storage atmosphere were not significantly different. Hot water treatment at 45 °C for 60 s applied immediately after harvest had a mixed effect on the biochemical constituents of the leaves; total carotenoid concentration was maintained compared to untreated leaves but the contents of ascorbic acid, dehydroascorbic acid, chlorophyll a and b were not affected. These observations suggest that in contrast to other reports, hot water treatments have limited commercial potential for postharvest quality improvement of spinach leaves.  相似文献   

20.
The efficacy of some potassium and calcium based salts, namely potassium sulphate (PS), potassium sorbate (PSo), potassium carbonate (PC), potassium bicarbonate (PB), calcium sulphate (CS), calcium chelate (CCh), calcium chloride (CC) and calcium silicate (CSi) against gray mold of ‘Italia’ table grapes, was evaluated. In in vitro experiments, PSo, PC, PB, and CCh completely inhibited mycelial growth of Botrytis cinerea at 0.25%. Under artificial inoculation, salts at 1% (immersed or sprayed) showed a variable effect against the pathogen. For natural infection, salt solutions (1%, w/v) were applied according to three strategies: (a) spray (one week) before harvest, (b) immersion after harvest, and (c) combined treatments spray and immersion. The decay incidence of gray mold was evaluated after 30 days at 2 ± 1 °C and 90–95% RH, followed by 7 days of shelf-life at 22 ± 2 °C. All tested salts significantly reduced the decay incidence of gray mold as compared to a water control for the three strategies. The percentages of reduction ranged between 77–100, 91–98, and 61–100% for the preharvest treatment, in combined application, and in the postharvest treatment, respectively. PB and PSo were the most effective salts, completely inhibiting development of gray mold when applied before harvest and as a postharvest treatment. The influence of salts on physical and chemical properties of berry quality including total soluble solids, titratable acidity, pH, color index, weight losses and microbiological profiles was also investigated. New strategies are needed with the critical goal of controlling gray mold of grapes with no fungicide residues. Salts applied just before harvest may be an effective way to minimize gray mold during storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号