首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of controlled atmospheres (CA) on respiration, ethylene production, firmness, weight loss, quality, chilling injury, and decay incidence of three commercially important cultivars of guava fruit were studied during storage in atmospheres containing 2.5, 5, 8, and 10 kPa O2 with 2.5, 5, and 10 kPa CO2 (balance N2) at 8 °C, a temperature normally inducing chilling injury. Mature light green fruit of cultivars, ‘Lucknow-49’, ‘Allahabad Safeda’ and ‘Apple Colour’, were stored for 30 days either in CA or normal air, and transferred to ambient conditions (25–28 °C and 60–70% R.H.) for ripening. CA storage delayed and suppressed respiratory and ethylene peaks during ripening. A greater suppression of respiration and ethylene production was observed in fruit stored in low O2 (≤5 kPa) atmospheres compared to those stored in CA containing 8 or 10 kPa O2 levels. High CO2 (>5 kPa) was not beneficial, causing a reduction in ascorbic acid levels. CA storage was effective in reducing weight loss, and maintaining firmness of fruit. The changes in soluble solids content (SSC), titratable acidity (TA), ascorbic acid, and total phenols were retarded by CA, the extent of which was dependent upon cultivar and atmosphere composition. Higher amounts of fermentative metabolites, ethanol and acetaldehyde, accumulated in fruit held in atmospheres containing 2.5 kPa O2. Chilling injury and decay incidence were reduced during ripening of fruit stored in optimal atmospheres compared to air-stored fruit. In conclusion, guava cultivars, ‘Lucknow-49’, ‘Allahabad Safeda’, and ‘Apple Colour’ may be stored for 30 days at low temperature (8 °C) supplemented with 5 kPa O2 + 2.5 kPa CO2, 5 kPa O2 + 5 kPa CO2, and 8 kPa O2 + 5 kPa CO2, respectively.  相似文献   

2.
‘Big Top’ and ‘Venus’ nectarines and ‘Early Rich’ and ‘Sweet Dream’ peaches were picked at commercial maturity and stored for 20 and 40 d at −0.5 °C and 92% RH under either air or one of the three different controlled atmosphere regimes (2 kPa O2/5 kPa CO2, 3 kPa O2/10 kPa CO2 and 6 kPa O2/17 kPa CO2). Physicochemical parameters and volatile compounds emission were instrumentally measured after cold storage plus 0 or 3 d at 20 °C. Eight sensory attributes were assessed after cold storage plus 3 d at 20 °C by a panel of 9 trained judges, in order to determine the relationship between sensory and instrumental parameters and the influence of storage period and cold storage atmosphere composition on this relationship.A principal component analysis (PCA) was undertaken to characterize the samples according to their sensory attributes. PCA results reflected the main characteristics of the cultivars: ‘Big Top’ was the nectarine cultivar with the highest values for sweetness, juiciness and flavor; ‘Sweet Dream’ was the sweetest peach and was characterized by high values for crispness and firmness, while ‘Venus’ and ‘Early Rich’ were characterized by their sourness. To assess the influence of storage period and CA composition on sensory properties, a PLS model of the flavor of the different samples was constructed using standard quality attributes and volatile concentrations as the X-variables. The model with 2 factors accounted for more than 80% of flavor variance. PLS results indicated that the main influence on flavor perception was storage period. Atmosphere composition also had an influence on flavor perception: flavor perception decreased from samples stored in a 2/5 O2/CO2 atmosphere composition to those of 3/10 and 6/17. These results can be qualitatively extended to juiciness and sweetness since all these sensory properties were strongly correlated.  相似文献   

3.
Internal browning (IB) can be a serious problem with the use of modified atmosphere packaging (MAP) for ‘Bartlett’ pears (Pyrus communis L.) grown in the Pacific Northwest during storage and transit to distant markets. To investigate this disorder, ‘Bartlett’ pears harvested at commercial maturity were packed in a commercial MAP (MAPc), an experimental MAP (MAPe) and commercial perforated plastic bags (control) and stored in air at −1.1 °C. After 1 and 3 months of storage, samples of MAPc and control fruit were transferred to rooms at temperatures of 2, 4.5, 7.5, and 10 °C for 3 weeks to simulate transit temperatures and the time required to reach distant markets. MAPc maintained an average internal atmosphere of 12.3% O2 + 5.6% CO2 and significantly extended ‘Bartlett’ pear storage life with high eating quality and without IB and other disorders for up to 4 months at −1.1 °C. The internal gas atmosphere of MAPe equilibrated at 2.2% O2 + 5.7% CO2, which resulted in fruit with 25.5 and 62.3% IB after 3 and 4 months of storage, respectively. During simulated transit conditions of 2, 4.5, 7.5, and 10 °C, the CO2 level in MAPc was maintained at 5.6–7.9%, while O2 was reduced dramatically to 10.5, 5.0, 2.5, and 1.0%, respectively. IB developed at 7.5 and 10 °C but not at 2 and 4.5 °C, regardless of pre-transit storage duration (1 and 3 months) at −1.1 °C. The longer the storage duration and the higher transit temperature, the higher the incidence and severity of IB. The MAP-related IB disorder observed in this study included two types of symptoms: classic pithy brown core and wet brown flesh. The MAPc storage gas atmospheres maintained fruit firmness, color and higher eating quality after ripening, eliminated senescent scald and core breakdown, suppressed the loss of ascorbic acid (AsA) and titratable acidity, and slowed the accumulation of malondialdehyde (MDA) during storage at −1.1 °C for up to 4 months or 3 months + 3 weeks at simulated transit temperatures of 2 and 4.5 °C. In contrast, fruit held in MAP with low O2 levels (1.0–2.5%) developed IB that appeared to be associated with a reduction in AsA, accumulated MDA and exhibited an increase in membrane leakage. MAP inhibited ripening at high CO2 + high O2 but lead to IB when the packaging material or elevated temperatures resulted in high CO2 + low O2 conditions. The incidence of IB closely correlated with lipid peroxidation and appeared to be related to fruit AsA concentration. The MAPc designed for pears appears to be suitable for ‘Bartlett’ fruit stored at −1.1 °C for up to 4 months or storage for 3 months and a transportation duration of up to 3 weeks at 0–4.5 °C during the early season and at 0–2 °C during the late packing season. These conditions yielded fruit of high eating quality and without IB or over-ripening upon arrival at distant markets.  相似文献   

4.
Most sweet cherries produced in the US Pacific Northwest and shipped to distant markets are often in storage and transit for over 3 weeks. The objectives of this research were to study the effects of sweet cherry storage O2 and CO2 concentrations on the respiratory physiology and the efficacy of modified atmosphere packaging (MAP) on extending shelf life. Oxygen depletion and CO2 formation by ‘Bing’ and ‘Sweetheart’ cherry fruit were measured. While respiration rate was inhibited linearly by reduced O2 concentration from 21% to 3–4% at 20 °C, it was affected very little from 21% to ∼10% but declined logarithmically from ∼10% to ∼1% at 0 °C. Estimated fermentation induction points determined by a specific increased respiratory quotient were less than 1% and 3–4% O2 for both cultivars at 0 and 20 °C, respectively. ‘Bing’ and ‘Sweetheart’ cherry fruits were packaged (∼8 kg/box) in 5 different commercial MAP box liners and a standard macro-perforated polyethylene box liner (as control) and stored at 0 °C for 6 weeks. MAP liners that equilibrated with atmospheres of 1.8–8.0% O2 + 7.3–10.3% CO2 reduced fruit respiration rate, maintained higher titratable acidity (TA) and flavor compared to control fruit after 4 and 6 weeks of cold storage. In contrast, MAP liners that equilibrated with atmospheres of 9.9–14.4% O2 + 5.7–12.9% CO2 had little effect on inhibiting respiration rate and TA loss and maintaining flavor during cold storage. All five MAP liners maintained higher fruit firmness (FF) compared to control fruit after 6 weeks of cold storage. In conclusion, storage atmospheres of 1.8–14.4% O2 + 5.7–12.9% CO2 generated by commercial MAP, maintained higher FF, but only the MAP with lower O2 permeability (i.e., equilibrated at 1.8–8.0% O2) maintained flavor of sweet cherries compared to the standard macro-perforated liners at 0 °C. MAP with appropriate gas permeability (i.e., equilibrated at 5–8% O2 at 0 °C) may be suitable for commercial application to maintain flavor without damaging the fruit through fermentation, even if temperature fluctuations, common in commercial storage and shipping, do occur.  相似文献   

5.
The potential of 1-MCP for controlling ripening in ‘Angeleno’ plum fruit under air and controlled atmosphere (CA) storage was explored, and the possibility that 1-MCP can inhibit development of brown rot caused by Monilinia laxa and internal breakdown in ‘Fortune’ and ‘Angeleno’ plums tested. After harvest, fruit were exposed to 300 and 500 nl l−1 (in 2003) and 500 nl l−1 1-MCP (in 2004) at low temperatures (0–3 °C) for 24 h. After treatment the plums were stored in air at 0 °C and ‘Angeleno’ fruit were also stored in CA storage (1.8% O2 + 2.5% CO2). Following storage, fruit were kept at 20 °C. In ‘Angeleno’ fruit, 1-MCP was effective in delaying the loss of firmness and colour changes during holding at 20 °C. 1-MCP reduced brown rot in fruit stored in CA but no significant reduction was found in air storage. Internal breakdown, a major physiological storage disorder in plums, was inhibited by 1-MCP treatment. Furthermore, since 1-MCP applied in air storage showed better results than the control in CA conditions, an application of 1-MCP before air storage could be the best way to reduce the ripening process for short or medium storage periods (40 and 60 days). CA storage plus 1-MCP treatment could be used for long periods (80 days).  相似文献   

6.
Blueberries are highly perishable and therefore it is necessary to develop strategies to increase their storage life. Two rabbiteye cultivars (‘Centurion’ and ‘Maru’) were stored at 1.5 °C in either regular air or controlled atmosphere (2.5 kPa O2 + 15 kPa CO2) for up to 6 weeks. Measurements of firmness, soluble solids content, titratable acidity, weight loss, shrivel and blemishes were combined with determinations of antioxidant activities and total phenolic content. Weight loss and shrivel were not affected by storage atmosphere or storage duration. After 28 days, controlled atmosphere storage resulted in only half as much blemished fruit compared with storage in regular air. Additionally, fungal development in ‘Maru’ fruit was minimised by controlled atmosphere storage.Water-soluble extracts from ‘Centurion’ fruit had higher antioxidant activities and total phenolic content than those from ‘Maru’ fruit at harvest and after storage in regular air and controlled atmosphere. The highest increases in antioxidant activity and total phenolic content occurred during the additional 6 days of shelf-life at 20 °C.  相似文献   

7.
The effect of MAP on extending storage life and maintaining fruit quality was studied in ‘Doyenne du Comice’ (Pyrus communis L.) pears at Hood River and Medford, Oregon. Control fruit packed in standard perforated polyethylene liners started to show senescent core breakdown and lost the capacity to ripen at 20 °C after 4–5 months of cold storage in Hood River and after 5.25–6 months in Medford. LifeSpan® L257 MAP achieved steady-state atmospheres of 15.8% O2 + 3.7% CO2 in Hood River and 15.7–17.5% O2 + 3.8–5.7% CO2 in Medford. MAP inhibited ethylene production, ascorbic acid degradation and malondialdehyde accumulation, and extended storage life for up to 6 months with maintenance of fruit flesh firmness (FF) and skin color without commercially unacceptable level of physiological disorders. After 4, 5 and 6 months at −1 °C, MAP fruit exhibited climacteric-like patterns of ethylene production and softened to proper texture with desirable eating quality on day 5 during ripening at 20 °C. After 6 months at −1 °C plus 2 weeks of simulated transit conditions, MAP fruit maintained FF and skin color and had good eating quality at transit temperatures of 2 and 4.5 °C (10.1–11.5% O2 + 4.8–5.2% CO2), but reduced FF substantially and developed internal browning disorder at 7.5 and 20 °C (3.2–7.2% O2 + 7.9–9.5% CO2). The storage life of ‘Doyenne du Comice’ pears with high eating quality could be increased by up to 2 months when packed in MAP as compared with fruit packed in standard perforated polyethylene liners.  相似文献   

8.
Pre-storage application of 40% CO2 at 0 °C for 24 or 48 h and controlled atmosphere (12% O2 + 12% CO2) storage at 0 °C for up to eight weeks on decay control and quality of organic ‘Flame Seedless’ and ‘Crimson Seedless’ table grapes were studied as a postharvest disease control alternative. To simulate different potential field conditions, these organic treatments were applied to organic-grown grapes that were naturally infected (without inoculation), surface inoculated (berries inoculated by spraying with a conidia suspension), and nesting inoculated (clusters inoculated by placing in the middle an artificially infected berry) with the pathogen Botrytis cinerea, the cause of grape gray mold. Under these three conditions, a 40% CO2 for 48 h pre-storage treatment followed by controlled atmosphere reduced the gray mold incidence from 22% to 0.6% and from 100% to 7.4% after four and seven weeks, respectively. High CO2 pre-storage alone limited botrytis incidence in both naturally and artificially infected grapes, but was more effective when combined with CA. These treatments did not affect visual or sensory fruit quality. Exposure to high CO2 for 24 or 48 h effectively inhibited mycelial growth of B. cinerea in PDA plates incubated at 22 °C for up to 72 h. Conidia germination in PDA plates was reduced ∼60% after 12 h incubation. In vitro studies demonstrated a fungistatic effect, but further studies on the mechanism of action could improve treatment performance. This novel high CO2 initial fumigation followed by controlled atmosphere during storage or transportation could be a commercially feasible alternative for postharvest handling of organic and conventional table grapes. Our results encourage validating this combined physical treatment in other cultivars and under commercial conditions.  相似文献   

9.
The influences of storage temperature and modified O2 and CO2 concentrations in the atmosphere on the post-cutting life and quality of fresh-cut pineapple (Ananas comosus) were studied. Temperature was the main factor affecting post-cutting life, which ranged from 4 days at 10 °C to over 14 days at 2.2 and 0 °C. The end of post-cutting life was signaled by a sharp increase in CO2 production followed by an increase in ethylene production. The main effect of reduced (8 kPa or lower) O2 levels was better retention of the yellow color of the pulp pieces, as reflected in higher final chroma values, whereas elevated (10 kPa) CO2 levels led to a reduction in browning (higher L values). Modified atmosphere packaging allowed conservation of pulp pieces for over 2 weeks at 5 °C or lower without undesirable changes in quality parameters.  相似文献   

10.
Standard quality parameters, consumer acceptability, emission of volatile compounds and ethylene production of ‘Mondial Gala®’ apples (Malus × domestica Borkh.) were determined in relation to storage atmosphere, storage period and shelf-life period. Fruit were harvested at the commercial date and stored in AIR (21 kPa O2:0.03 kPa CO2) or under three different controlled atmospheres (CAs): LO (2 kPa O2:2 kPa CO2), ULO1 (1 kPa O2:1 kPa CO2), or ULO2 (1 kPa O2:2 kPa CO2). Fruit samples were analysed after 12 and 26 weeks of storage plus 1 or 7 d at 20 °C.Apples stored in CA maintained better standard quality parameters than AIR-stored fruit. The volatile compounds that contributed most to the characteristic aroma of ‘Mondial Gala®’ apples after storage were butyl, hexyl and 2-methylbutyl acetate, hexyl propanoate, ethyl butanoate, ethyl hexanoate, ethyl, butyl and hexyl 2-methylbutanoate. Data obtained from fruit analysis were subjected to principal component analysis (PCA). The apples most accepted by consumers showed the highest emission of ethyl 2-methylbutanoate, ethyl hexanoate, tert-butyl propanoate and ethyl acetate, in addition to the highest titratable acidity and firmness values.  相似文献   

11.
‘Pink Lady®’ apples were harvested at commercial maturity, treated with three different agrochemical products, and stored at 1 °C under either air or controlled atmosphere conditions (2 kPa O2 + 2 kPa CO2 and 1 kPa O2 + 1 kPa CO2) for 13 and 27 weeks, followed by 4 weeks storage in air at 1 °C. Diphenylamine, folpet and imazalil contents in both the skin and flesh were simultaneously determined after cold storage plus simulated marketing periods of 1 and 7 d at 20 °C. After 27 weeks plus 7 d, diphenylamine and folpet levels in apple skin were lower for fruit stored in low O2 (2 kPa) or air than for those kept under ultra-low O2 (1 kPa). An additional storage period of 4 weeks in air reduced diphenylamine and folpet contents in whole apples stored for 13 weeks in the low O2 controlled atmosphere. For imazalil, the same result was obtained in apple skins stored for 27 weeks under an ultra-low O2 controlled atmosphere. Differences in diphenylamine and folpet contents were found for skin and flesh samples throughout the simulated marketing period, but there were observable differences in imazalil contents only for flesh samples.  相似文献   

12.
The efficacy of chemical dips and modified atmosphere packaging (MAP), alone and in combinations, on the quality of fresh-cut papaya were studied throughout 25 days at 5 °C. Fresh-cut papaya were dipped in a solution of calcium chloride (1% w/v) and citric acid (2% w/v), packed in an atmosphere of 5% O2, 10% CO2, 85% N2 and stored at 5 °C for 25 days. Physico-chemical analysis (package atmosphere, weight loss, pH, total soluble solids, firmness and color) and microbial quality along with a sensory analysis were measured at regular intervals throughout the storage period. Significant differences were found among the chemically treated and non-treated fresh-cut papaya in all the parameters considered. Chemical treatment followed by MAP, showed the best results among the treatment in terms of retaining sensory and quality characteristics and extending the shelf-life of 25 d for fresh-cut papaya.  相似文献   

13.
A major problem associated with minimally processed baby spinach (Spinacia oleracea L.) is strong off-odours when stored under modified atmosphere packaging (MAP) with low O2 and high CO2. Although the influence of O2 and CO2 levels on the quality and shelf-life of baby spinach has been extensively studied, results have been inconsistent and the benefits and disadvantages are not well understood. In this study, the effects of 3 different MAP conditions with low O2 with CO2 (stabilizing near 1% O2 + 11% CO2), low O2 alone (stabilizing near 1% O2, CO2 scrubber) and moderate O2 with CO2 (stabilizing near 10% O2 + 9% CO2) were studied during storage at 7 °C for 12 days. Different parameters related to physiology, tissue structure, microbial population and metabolite production were evaluated. Samples exposed to low O2 with CO2 had the lowest quality at the end of storage due to high development of off-odours, while off-odours of spinach in low O2 alone were intermediate but higher than in moderate O2 with CO2. Increasing CO2 concentration significantly increased tissue damage with ammonia release and decreased protein content. Decreasing O2 concentration significantly reduced the development of aerobic psychrophilic bacteria and Pseudomonas. Senescence occurred more rapidly in baby spinach held in moderate O2 with CO2. Baby spinach quality remained acceptable during 7 days of storage at 7 °C, independent of MAP conditions tested. Appropriate MAP for baby spinach must be associated with maintenance of quality and extension of shelf-life.  相似文献   

14.
The influences of controlled atmosphere (CA) and storage time on ultrastructural degradation of chelate-soluble pectin (CSP) in yellow peaches (Prunus persica L. Batsch.) were investigated. Freshly harvested peaches were stored at 2 °C under CA (CA1, 2% O2 + 10% CO2; CA2, 5% O2 + 5% CO2) or regular atmosphere conditions. Qualitative and quantitative aspects of CSP polymers were studied by atomic force microscopy (AFM) on the initial, the 15th and the 45th days. The frequency of small width CSP observations increased with time in both groups, but was greater in the regular atmosphere group, indicating CA conditions inhibited the degradation of CSP molecules. Widths of CSP chains were composed of four basic units with widths of 17.578, 19.531, 23.438 and 29.297 nm from the AFM determination. These results indicate that parallel linkages or intertwists between the basic units are fundamental structural conformations for CSP molecules.  相似文献   

15.
The effects of high CO2 concentration (10% CO2, 17% O2) on the changes of functional cell wall components (pectic substances, hemicellulose, cellulose, lignin), mechanical properties, content of free soluble sugars (sucrose, glucose, fructose), and respiration activity were studied in harvested white asparagus spears stored at 10 and 20 °C, respectively, for up to 7 d. Spears stored at 2, 10 and 20 °C in air were studied as controls, where the 2 °C condition indicated the effects of cold storage. During storage, respiration activity declined only slightly, irrespective of the CO2 and temperature regime. Spears stored at 20 °C under both CA and normal air became less stiff and more elastic, however, tissue toughness increased significantly. Changes in toughness were associated primarily with the dynamics of lignin and cellulose, revealing a strong correlation (r2 = 0.81). High CO2 concentration inhibited the synthesis of cellulose and, to some extent, lignin accumulation at 20 °C. Additionally, elevated CO2 inhibited the degradation of soluble carbohydrates. In contrast, slightly lower temperatures of 10 °C in combination with high CO2 did not have a pronounced effect on changes in structural carbohydrates (lignin, cellulose, hemicellulose and pectins). The effect low temperature (2 °C) under normal atmosphere conditions resulted in the inhibition of cell wall changes in asparagus spears.  相似文献   

16.
The effect of a soy protein-based edible coating with antioxidant activity, and conventional and superatmospheric modified atmosphere (MA) packaging, on the quality of fresh-cut ‘Telma’ eggplants, was evaluated during storage. In a first experiment, eggplant pieces were dipped in either a coating composed of soy protein isolate (SPI) and 0.5% cysteine (Cys), or water as an uncoated control. Samples were packed in trays under atmospheric conditions to reach a passive MA (MA-P) or two gas mixtures (MA-A: 15 kPa CO2 + 5 kPa O2; MA-B: 80 kPa O2) and were stored at 5 °C. Atmospheric conditions were used as the control conditions (Control). The coated samples packed under MA-B and Control conditions resulted in the highest whiteness index (WI) values during storage, whereas MA-A did not improve the shelf-life of minimally processed eggplants and had the lowest WI values. The MA-B and atmospheric control conditions helped to maintain firmness, whereas the coating helped to maintain the weight loss under MA-A and MA-B. The maximum commercial shelf-life was reached on day 6 for the coated samples packed under atmospheric conditions. In a second experiment, the commercial shelf-life of fresh-cut eggplants was extended to 8 and 9 storage days by increasing the Cys content in the edible coating from 0.5 to 1% under MA-B and Control storage conditions, respectively.  相似文献   

17.
Button mushrooms (Agaricus bisporus) were dipped for 2 min in different concentrations (1%, 2% and 3%) of alginate, then placed in jars and ventilated continuously with 100% O2 for up to 16 d at 4 °C. Mushroom respiration rate, weight loss, texture, color, percent open caps, chemical properties and activities of polyphenol oxidase (PPO), and peroxidase (POD) were measured. The results indicate that treatment with alginate coating (2%) + 100% O2 maintained a high level of firmness, and delayed browning and cap opening. In addition, alginate coating (2%) + 100% O2 also delayed changes in the soluble solids concentration, total sugars and ascorbic acid, and inhibited the activity of PPO and POD throughout storage. Our study suggests that the use of alginate coating under a high oxygen modified atmosphere has the potential to maintain button mushroom quality and extend its postharvest life to 16 d.  相似文献   

18.
The effects of both 1-MCP treatment of pineapples and packaging of their fresh-cut products with an alternative modified atmosphere (MA: 86.13 kPa N2O, 10.13 kPa O2 and 5.07 kPa CO2) on physiological and quality changes of these minimally processed products were investigated. Fresh-cut fruit treated or not with 1-MCP were packed in Air or in MA and were stored at 4 °C for 10 d. The following parameters were monitored during storage: ripening index; O2, CO2 and C2H4 in the package headspace; firmness and colour. Microbial spoilage of MP pineapple samples was also investigated and a mathematical model based on the Zwietering modified Gompertz equation was used to obtain growth parameters of mesophilic bacteria, yeasts and moulds.The results showed that 1-MCP treatment and MAP in a N2O enriched atmosphere had a positive combined effect on the inhibition of respiration and ethylene production of fresh-cut pineapple and on its softening delay, confirming previous findings about 1-MCP and N2O preservative effects on fresh-cut fruit quality. This combined effect was not extended to the ripening index and colour maintenance, as MAP at 86.13 kPa of N2O did not add any benefit to that of the 1-MCP treatment. From a microbiological point of view, N2O MAP extended the shelf-life of the products of 3–4 d by increasing the lag phase of microbial growth.  相似文献   

19.
The effect of different O2 levels from 0 to 100 kPa in combination with 0, 10 and 20 kPa CO2 on the respiration metabolism of greenhouse grown fresh-cut butter lettuce was studied. Controlled atmospheres of 20 or 75 kPa O2 with 0 or 10 kPa CO2 showed a constant respiration rate during the first 2–4 days at different temperatures (1, 5 and 9 °C). Therefore, constant respiration rates during a short period of 2–4 days could be considered as valid for a large part of the commercial life of, for instance, a modified atmosphere package development. The fresh-cut lettuce exposed to low O2 levels (2–10 kPa) combined with moderate to high CO2 levels (10 and 20 kPa) had a higher respiration rate than when 20–100 kPa O2 were used. Moderate CO2 levels (10 kPa) reduced the respiration rates of fresh-cut lettuce 20–40% at 9 °C. This effect was less noticed at lower temperatures. Gas composition with high CO2 levels (20 kPa) probably caused a metabolic disorder increasing the respiration rate of fresh-cut butter lettuce. It was concluded that 80 kPa O2 must be used in modified atmosphere packaging (MAP) to avoid fermentation of fresh-cut butter lettuce in combination with 10–20 kPa CO2 for reducing their respiration rate.  相似文献   

20.
Gas exchange rates and softening of kiwifruit (Actinidia deliciosa (A Chev) Liang et Ferguson cv Hayward) were measured during two seasons under a range of modified atmosphere (MA) conditions (0–21 kPa O2, 0–5 kPa CO2) at 0–10 °C to characterise their functional relationship. The kinetics of gas exchange and softening were the same for the two seasons studied.CO2 partial pressures delayed softening but did not inhibit the rate of gas exchange. Lowering the O2 levels to near 0 kPa did not inhibit softening completely, suggesting that the rate of softening was driven by energy provided by both oxidative and fermentative processes.An integrated modelling approach was used to link the rate of softening to the rate of gas exchange explaining 88% of the effect of MA on both the rate of gas exchange and fruit softening. Shelf life simulations showed that during storage at 0 °C, lowering O2 or raising CO2 gave a substantial benefit towards extending shelf life. At temperatures higher than 3 °C, the additional effect of MA was already limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号