首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为进一步满足油菜籽干燥过程中低能耗高效率的要求,设计研制了一种小型太阳能热风油菜籽循环干燥设备。设备依靠太阳能集热器提供热风,干燥室内设有一对转向相反的筛网叶轮,转动的叶片延长油菜籽滞空时间,斗式提升机实现物料循环干燥。以油菜籽为干燥对象进行试验,研究干燥室进口热风风速、筛网叶轮转速、物料循环速率对含水率变化的影响,结合试验结果获得设备最优运行工况。试验结果表明:当使用波纹型太阳能集热器,进口风速为5 m/s,物料循环速率为800 kg/h,筛网叶片转速50 r/min时,油菜籽干燥速率最高,可满足日干燥量250 kg的干燥需求。  相似文献   

2.
基于计算流体力学(computational fluid dynamics,CFD)技术及多孔介质模型对干燥室内气流场进行数值模拟,并根据模拟结果对小型油菜籽分层床式干燥设备进行优化。结果表明:优化后的干燥设备能够满足油菜籽干燥要求,通过数值模拟可得单一纵向通风时干燥室内存在热风死区,使得干燥均匀性较低,增加横向通风后干燥室内流场分布较为均匀,油菜籽与热风接触面积增大,提高干燥效率及均匀性,且利用生物质能源能够实现节能减排的要求。  相似文献   

3.
技术简介将果蔬原料进行干燥处理,可以很好地提高其加工储藏性和商品性,对促进果蔬加工产业发展意义重大。目前常用的果蔬脱水方式有热风干燥、真空低温油浴干燥、真空冷冻干燥等。单一干燥方式均有明显的不足,如热风干燥效率低、能耗大、品质差;真空低温油浴即使经脱油处理后,仍含有少量油脂,贮藏期间油脂氧化易产生不良风味;真空冷冻干燥品质好,但能耗高、干燥时间长等。研究新型干燥技术与装备,如热泵干燥、中短波红外  相似文献   

4.
不同的干燥方式和干燥温度对香菇品质的影响不同。本研究选用中短波红外干燥和热风干燥以及不同干燥温度(50、60、70℃)对新鲜去茎香菇进行干燥处理,测定了香菇的干燥特性、硬度、体积收缩率、复水比、微观结构、营养物质、挥发性成分和单位能耗。结果表明:干燥工艺为MIRD70℃时香菇干燥时间最短,为532min,水分比和干基含水率都随着干燥时间的增加而减小。干燥工艺为MIRD50℃时香菇硬度相对较小,为13237.08g。干燥工艺为HAD50℃时体积收缩率相对较小,为73.77%。干燥工艺为HAD50℃时复水比相对较大,为312.68%,MIRD70℃时复水比为238.19%。干燥工艺为MIRD70℃、60℃和HAD 60℃时总糖含量相对较大,分别为26.66%、26.22%、26.28%。干燥工艺为MIRD70℃和HAD60℃时粗蛋白含量相对较大,分别为36.61%和36.64%。干燥工艺为MIRD70℃和MIRD50℃时可溶性糖含量相对较大,分别为2.83mg·100 g-1和2.47mg·100 g-1。所有干燥工艺的香菇维生素B2含量都较鲜香...  相似文献   

5.
银耳热风换向干燥技术研究   总被引:1,自引:0,他引:1  
研究以干燥银耳为主的食用菌热风换向干燥新技术取代传统的垂直气流热风干燥。采用垂直气流热风换向干燥与横向水平气流热风换向干燥的2个技术改造方案,分别进行试验。在恒定风速、干燥初始热风温度80℃条件下,分别测定各层物料含水率变化的分布曲线与平均含水率梯度Waj指标,得出较优干燥工艺为干燥温度70~80℃,换向时间间隔1h,分别比传统垂直气流热风干燥速率提高30%与40%,后者还具有相同满负荷工作时间,节电50%,节省占地77.8%的优势。同时给出横向水平气流热风干燥自动化模拟。  相似文献   

6.
对目前国内农作物、海产品的一种干燥系统——太阳能热风干燥系统的现状进行了简单介绍,并根据太阳能热风干燥系统的运行特点,应用换热式太阳能热风干燥实验系统,对该实验系统在无辅助热源运行时的运行参数变化规律进行试验分析。结果表明,盘管进水温度、风机风量与水流量为该太阳能热风干燥系统末端温度调控的敏感参数,为太阳能热风干燥系统运行特性研究奠定基础。  相似文献   

7.
以干燥风速、热泵干燥阶段温度、分阶段干燥的水分转换点、后期热风干燥阶段温度为影响因素,以叶绿素含量为评价指标,进行正交优化试验,得出莴笋热泵 热风联合干燥最优工艺。比较热泵 热风联合干燥最优工艺条件和热风干燥的样品品质和能耗,得出联合干燥得到的莴笋品质高于热风干燥,而且比单独热风干燥降低了能耗32.26%。  相似文献   

8.
为确定香菇热风干燥的最佳工艺参数,以新鲜香菇为试验对象,开展多目标优化研究。以相对湿度、风速和单位载荷量为自变量,以干香菇的色差、水溶性蛋白含量和干燥时间为响应值,建立香菇热风干燥多目标综合评分模型,通过响应曲面法优化得到香菇热风干燥的最佳工艺参数。结果表明,色差为3.58、水溶性蛋白含量为46.39 mg·g-1、干燥时间为12.5 h,干燥条件50℃时,最佳干燥工艺参数为相对湿度27.1%、风速5 m·s-1、单位载荷量4 kg·m-2;将优化目标的模型预测值与试验值相比较,平均相对误差仅为6.6%,最大相对误差为7.4%。研究结果表明,基于响应曲面法建立的综合评分预测模型不仅可用于香菇热风干燥过程,还为提高干香菇的营养和感官品质提供理论指导。  相似文献   

9.
热风干燥是多物理场耦合的过程,存在热风外环境和物料内部湿热迁移共同作用.在质量和能量守恒定律的基础上应用达西定律、菲克定律、傅里叶导热定律,分别构建了热风干燥过程中物料外部与内部的流场、温度场、质量场的控制方程及模型,描述了热风干燥过程中整个干燥室内的湿热传递规律.针对油菜籽热风干燥过程,基于COMSOL Multiphysics对干燥模型进行求解并进行了油菜籽热风干燥实验,以验证模型的有效性.结果表明:物料干基含水率的模型求解结果与真实实验结果最大相对误差为13.3%;在干燥过程中物料存在干区、湿区、蒸发区之分,干区与湿区被蒸发区分开,且蒸发区逐渐由物料外部向物料内部迁移;干燥过程中干燥室内水蒸气浓度先增大后减小,且干燥室中心区域水蒸气浓度比干燥室边缘区域高;物料平均温度在干燥初期迅速上升,中期上升速度逐渐减小,后期趋于平稳且接近热风温度;干燥室边缘区域风速比中心区域风速大,热风流场在极短的时间内达到稳态,其中心区域风速接近为0.  相似文献   

10.
香菇热泵-真空联合干燥工艺优化   总被引:1,自引:0,他引:1  
【目的】降低加工成本、保证干制香菇的品质。【方法】在单因素试验基础上运用Box-Behnken Design(BBD)方法设计优化试验,研究热泵温度(A)、真空度(B)和转换点含水率(C)对单位能耗、感官评分、复水比和硬度的影响,推导多项式回归模型,优化联合干燥工艺条件,并与单一热泵干燥,单一真空干燥相比较。【结果】确定了最佳联合干燥工艺:热泵温度49℃,真空度110 Pa,转换点含水率(w)56%。在此条件下实测得单位能耗345.01 kJ·g–1、感官评分8.3、复水比2.72、硬度3.61 N;与预测值相近,相对误差分别为0.19%、3.61%、1.47%和1.66%。联合干燥的单位能耗比真空干燥减少37.69%,但高于热泵干燥;其感官评分和复水比与真空干燥相近,高于热泵干燥;其硬度略大于真空干燥,小于热泵干燥。【结论】热泵干燥和真空干燥相结合,得到能耗低、质量好的干制香菇,解决了热泵干燥品质不佳、真空干燥能耗高等问题,可为香菇的热泵–真空联合干燥提供理论依据。  相似文献   

11.
为了提高荔枝果实热风干燥加工技术,研究荔枝果实的热风干燥特性。在不同热风温度、热风风速和装载量对荔枝果实干燥特性(干基含水率和干燥速率)影响的基础上,设计L9(34)正交试验,研究上述因素对荔枝果实平均干燥速率的影响,进而得出最佳的工艺参数组合。结果表明:当热风温度为90℃、热风风速为3m·s-1、装载量为5.0kg·m-2时,荔枝果实热风干燥效率最优。通过研究荔枝果实热风干燥特性,有利于提高荔枝果实采后热风干燥效率。  相似文献   

12.
利用热风干燥结合太阳能干燥的方式加工龙眼干,对比在不同温度、干燥时间以及物料装载量的条件下加工的龙眼干品质,通过正交试验优化热风初烘与太阳能复烘的工艺参数.结果表明,最优工艺参数为:龙眼物料装载量200 g,热风初烘温度55℃,初烘时间16h,太阳能复烘时间8h.  相似文献   

13.
针对北方苜蓿(alfalfa)二茬收获量大且与雨季相遇,易出现干燥不及时导致贮藏过程品质变差问题,使用热风循环干燥技术,可克服方捆苜蓿热风干燥过程成本高、效率低、品质下降的技术瓶颈。结合热风循环干燥特性和捡拾打捆工艺,研究苜蓿草捆合理干燥工艺参数。利用5HY-Ⅱ热风实验台配合温湿度传感器检测方捆中各点温湿度状况,研究方捆内温度、水分传递规律。以苜蓿外观品质和单位能耗为评价指标,利用正交实验设计方法,确定高水分苜蓿方草捆干燥工艺参数。结果表明,得到的方捆苜蓿干燥实验特性曲线分为预热阶段、等速干燥阶段、稳定阶段。依据色泽和气味的感官评价为评价指标发现方捆长度和干燥温度与感官评价指标作用显著,且成负相关;依据单位能耗作为评价指标得出方捆长度和密度与单位能耗指标作用显著,且成负相关。使用Neuro shell结合实经济效益进行神经元网络预测分析,得出热风循环干燥工艺最佳参数组合,即:草捆长度285.7 mm,密度238.38 kg/m3,干燥温度60.48℃,风速1.73 m/s,耗能0.203 k J/kg H2O。该预测干燥工艺研究可为人工辅助干燥贮藏苜蓿草捆作指导。  相似文献   

14.
为提高农产品的干燥效率及质量,采用STC89C52单片机作为干燥过程热风温度控制的核心,利用DS18B20数字温度传感器实时采集干燥热风温度等方法,研究了基于VB与单片机的干燥温度测控系统。结果表明:0~10V模拟电压信号控制变频器可调节循环水泵电机转速,进而调节进入风机盘管机组的热媒流量;用高低电平信号控制继电器通断,可实现风机盘管机组3种不同风量的转换,最终达到对干燥过程热风温度的控制。实际应用中,热风温度波动小,与自然晾晒相比干燥效率显著提高,干燥时间减少近30h。  相似文献   

15.
为筛选合适的即食杏鲍菇片干燥方法,以新鲜杏鲍菇为原料,研究了热风、微波、热风微波和真空冷冻4种不同干燥方法对即食杏鲍菇脆片品质的影响。结果表明:干燥速率依次为微波干燥热风微波干燥热风干燥真空冷冻干燥;热风干燥对色泽影响不大,产品硬度脆度较差,复水率较低,为150%,边缘皱缩严重;微波干燥的速率快,能耗低,为2.07(kw·h)/kg,但产品有焦糊现象,色泽和风味较差,多糖保留率低,为2.80mg/g;真空冷冻干燥色泽较好,多糖保留率和复水率较高,分别为4.92mg/g和570%,但产品硬度差,能耗高,为37.09(kw·h)/kg;热风微波干燥对色泽影响不大,多糖保留率和复水率分别为3.60mg/g和271%,硬度脆度适中,能耗较低,为2.23(kw·h)/kg,是较适合生产即食杏鲍菇脆片的干燥方法。  相似文献   

16.
不同干燥方法对杏鲍菇片品质和能耗的影响   总被引:1,自引:0,他引:1  
为提高杏鲍菇干制品品质并降低能耗,研究冷冻干燥、热风干燥、微波干燥和微波-气流膨化干燥4种不同干燥方法对杏鲍菇片品质和能耗的影响。结果表明,不同干燥方法对杏鲍菇片干燥能耗和时间排列顺序均为冷冻干燥热风干燥微波-气流膨化干燥微波干燥;冷冻干燥的杏鲍菇片色泽良好,复水率高、收缩率小,但硬度过低,口感偏软;微波干燥的杏鲍菇片品质不稳定,有焦斑;热风干燥的杏鲍菇片品质最差;微波-气流膨化干燥的杏鲍菇片在色泽方面与冷冻干燥的产品差异不显著,并且酥脆性得到了明显的改善,产品的感官品质较佳,因此该方法可作为最佳干燥方式并用于生产。  相似文献   

17.
为解决传统花椒干燥方式效率低、花椒品质低、能耗大的问题,提出热泵-太阳能花椒干燥系统,阐述了该系统的结构与工作原理,研究了热泵-太阳能花椒干燥系统的设计方法。以在陕西省韩城市干燥3 t花椒为例,设计了热泵-太阳能花椒干燥系统,并利用Airpak软件的方法对烘干室采用下部送风、上部回风的气流组织方式进行模拟。结果表明,烘干室风速和温度能较好地满足花椒干燥的要求。  相似文献   

18.
【目的】探讨不同热风温度、切片厚度及装载量对牛大力切片热风干燥速率的影响,并建立牛大力切片热风干燥动力学模型,为牛大力干燥工艺探索提供理论依据。【方法】以热风温度(50、60、70、80℃)、切片厚度(2、4、6、8mm)和装载量(100、200、300 g)为考察因素,实时测定各条件下牛大力切片热风干燥过程中水分变化,对常见的5种干燥模型进行筛选,并计算干燥过程中的有效水分扩散系数和活化能。【结果】随着热风温度的升高,切片厚度和装载量的降低,牛大力切片的干基含水量明显减少,干燥速率明显增加。牛大力切片在热风干燥过程分为加速和降速2个阶段,其中大部分干燥过程为降速阶段。牛大力切片热风干燥动力学模型符合Page模型,该模型预测值与试验值拟合度较高(R2=0.969),拟合方程为ln (-lnMR)=-3.174-0.242H+0.029T-0.006L+(0.721+0.015H+0.002T)lnt,可求得-k=e(-3.174-0.242H+0.029T-0.006L),n=0.721+0.015H+0.0027,不同干燥条件下牛大力切片的有效水分扩散系数在1.62114×10-10~12.96913×10-10 m2/s,均随着热风温度的升高和切片厚度的增加,总体呈上升趋势;活化能为60.7388 kJ/mol。【结论】Page模型可较好地描述不同切片厚度的牛大力切片热风干燥过程中水分的变化规律,且通过拟合方程能较准确预测热风干燥过程中某时刻牛大力切片的水分比。  相似文献   

19.
太阳能-热泵除湿机-微计算机监控(TRCW)联合干燥系统中,木材干燥室的供热与湿空气的排湿,由太阳能供热系统和热泵除湿机两者配合起来完成。整个联合干燥系统的工作过程由微机监控系统来实现自动控制。太阳能集热器为平板式空气型,采光面积为75m~2,,热泵除湿干燥机按压缩式制冷循环工作(压缩机功率为3.75kW),以热泵供热的方式供给木材干燥所需的热量,而以制冷除湿方式除去木材蒸发到空气中的水分。联合系统的干燥能力为15~25m~3木材,在1989年4月至1990年7月的实验中,干燥的材种有水曲柳、柞木、榆木、红松、白松等。木材板厚为3~6cm,初含水率40%~60%,终含水率8.5%~15%,年平均干燥能耗每m~3木材为80kW·h及每kg水为0.53kW·h。  相似文献   

20.
太阳能-热泵除湿机-微计算机监控联合干燥系统的研究   总被引:1,自引:2,他引:1  
太阳能-热泵除湿机-微计算机监控(TRCW)联合干燥系统中,木材干燥室的供热与湿空气的排湿,由太阳能供热系统和热泵除湿机两者配合起来完成。整个联合干燥系统的工作过程由微机监控系统来实现自动控制。太阳能集热器为平板式空气型,采光面积为75m~2,,热泵除湿干燥机按压缩式制冷循环工作(压缩机功率为3.75kW),以热泵供热的方式供给木材干燥所需的热量,而以制冷除湿方式除去木材蒸发到空气中的水分。联合系统的干燥能力为15~25m~3木材,在1989年4月至1990年7月的实验中,干燥的材种有水曲柳、柞木、榆木、红松、白松等。木材板厚为3~6cm,初含水率40%~60%,终含水率8.5%~15%,年平均干燥能耗每m~3木材为80kW·h及每kg水为0.53kW·h。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号