首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
‘Galia’ (Cucumis melo var. reticulatus L. Naud. cv. Galia) fruit were harvested at the three-quarter slip stage and treated with 1 μL L−1 1-methylcyclopropene (1-MCP) at 20 °C for 24 h. The fruit were processed and stored as fresh-cut cubes and intact fruit for 10 d at 5 °C. Ethylene production of fresh-cut cubes was approximately 4–5-fold higher than intact fruit at day 1. Afterward, the ethylene production of fresh-cut cubes declined significantly whereas that of intact fruit remained relatively constant at about 0.69–1.04 ng kg−1 s−1. 1-MCP delayed mesocarp softening in both fresh-cut and intact fruit and the symptoms of watersoaking in fresh-cut fruit. Continuously stored fresh-cut cubes and cubes derived from intact fruit not treated with the ethylene antagonist softened 27% and 25.6%, respectively, during 10 d storage at 5 °C while cubes derived from 1-MCP-treated fruit softened 9% and 17%, respectively. Fresh-cut tissue from 1-MCP-treated fruit exhibited slightly reduced populations of both total aerobic organisms and Enterobacterium, although the differences did not appear to be sufficient to explain the differences in keeping quality between 1-MCP-treated and control fruit. Based primarily on firmness retention and reduced watersoaking, 1-MCP treatment deferred loss of physical deterioration of fresh-cut ‘Galia’ cubes at 5 °C by 2–3 d compared with controls.  相似文献   

2.
Minimal processing of onion (Allium cepa L.) results in convenience and freshness in a single product. However, inappropriate storage of fresh-cut onion results in losses of nutritional and sensory characteristics. To further understand this phenomenon, we evaluated the effect of the storage temperature and type of cut on the quality of fresh-cut purple onions. Purple onions (cv. Crioula Roxa) were minimally processed using two types of cut (10 mm cubes and 3–5 mm thick slices) and stored at different temperatures (0, 5, 10 and 15 °C) with 85–90% relative humidity (RH) for 15 days. The following analyses were performed to evaluate the shelf life of the purple onion: pungency, total phenolic content, anthocyanin content, quercetin content, respiratory rate, color, soluble solids content, titratable acidity, pH, dryness and deterioration index (DDI), and decay index (DI). Fresh-cut onions stored at 0 °C showed less pungency, lower respiratory rate levels and less variation of total phenolic, anthocyanin and quercetin contents. In addition, the physicochemical aspects and appearance changed less with fresh-cut onions stored at 0 °C. Moreover, slicing enabled a higher stability of the physicochemical and biochemical aspects in comparison to dicing. Storage of slices at 0 °C allowed preservation for up to 15 days.  相似文献   

3.
Red fleshed watermelons are an excellent source of the phytochemical lycopene. However, little is known about the stability of lycopene in cut watermelon. In this study, lycopene stability and other quality factors were evaluated in fresh-cut watermelon. Twenty melons each of a seeded (Summer Flavor 800) and a seedless (Sugar Shack) variety were cut into 5 cm cubes and placed in unvented polystyrene containers, sealed, and stored at 2 °C for 2, 7, or 10 days. At each storage interval, melons were evaluated for juice leakage, changes in carotenoid composition, color, soluble solids content (SSC), and titratable acidity. Headspace carbon dioxide and ethylene were monitored during storage intervals. Juice leakage after 10 days of storage averaged 13 and 11% for the seeded and seedless melons, respectively. Lycopene content decreased 6 and 11% after 7 days of storage for Summer Flavor 800 and Sugar Shack melons, respectively. β-Carotene and cis lycopene contents were 2 and 6 mg kg−1 for Summer Flavor 800 and Sugar Shack, respectively, and did not change with storage. After 10 days of storage, CIE L1 values increased while chroma values decreased, indicating a lightening in color and loss of color saturation in melon pieces. Symptoms of chilling injury, such as greatly increased juice leakage, or lesions on cubes, were not seen on the fresh-cut cut watermelon after 10 days storage at 2 °C. Puree pH increased and SSC decreased slightly after storage. Carbon dioxide levels increased and oxygen levels decreased linearly during storage, creating a modified atmosphere of 10 kPa each of CO2 and O2 after 10 days. Fresh-cut cut watermelon held for 7 or more days at 2 °C had a slight loss of SSC, color saturation, and lycopene, most likely caused by senescence.  相似文献   

4.
Pantoea agglomerans CPA-2 is an effective biocontrol agent of postharvest diseases of citrus and pome fruit. A monitoring technique was developed for its identification and to quantify its populations. The methodology used consisted of (i) searching for a semi-selective medium, (ii) identification of molecular markers and (iii) monitoring population dynamics in a commercial trial. As a semi-selective medium, Malonate Broth Agar supplemented with tetracycline hydroxychloride and incubation at high temperature (max. of 40 °C) facilitated the selective recovery of P. agglomerans CPA-2 colonies. The RAPD technique was applied to a collection of 13 strains of P. agglomerans, including CPA-2. Among the 12 primers tested, OPL-11 amplified a fragment (about 720 bp) specific to strain CPA-2. On the basis of this fragment, two SCAR markers were amplified using a primer pair derived from OPL-11 elongation. A first SCAR marker of 720 bp was specifically amplified for the strain CPA-2 and a second one of 270 bp was obtained for all P. agglomerans strains tested, including CPA-2. Commercial trials demonstrated a significant reduction of decay with the treatment of formulated cells of P. agglomerans CPA-2. Population dynamics of CPA-2 in commercial trials were determined on fruit surfaces and in the environment using both the classical plating technique and PCR with SCAR primers. In general, no significant differences were observed between results obtained from the two methods. On fruit surfaces, 1 day after CPA-2 applied its population by classical methods was 4.37 × 106 cfu wound−1 and at the end of the experiment the population increased to 5.8 × 105 cfu wound−1. The percentages of colonies identified as P. agglomerans CPA-2 at these sampling times using SCAR primers were 90 and 95%, respectively. Population dynamics in the environment to evaluate the environmental fate of P. agglomerans CPA-2 showed that it has a limited persistence and limited capacity for dispersion.  相似文献   

5.
A novel hybrid muskmelon has been bred specifically for use by the fresh-cut industry in winter. Quality characteristics of fresh-cut pieces from the hybrid were compared to those of its inbred parental lines and to those of a commercial netted muskmelon (cantaloupe) and a non-netted muskmelon (honeydew) fruit available in winter. Pieces from hybrid and female line fruit had higher soluble solids content (SSC) and firmness, and lower aromatic volatile concentrations compared to those from the male line fruit. Pieces from hybrid fruit also had higher SSC (>3%) and were firmer (>5 N) than commercial fruit available during the winter, and had twice the aromatic volatile concentration of commercial honeydew and a more intense orange hue than commercial muskmelon. Consumers rated the flavor, texture, sweetness and overall eating quality of the hybrid higher than its inbred parents and winter-available honeydew and as well as or better than winter-available muskmelon. Hybrid fruit stored 5 weeks at 1 °C under modified atmospheric conditions, then fresh-cut and stored 14 d in air at 5 °C maintained good quality (firmness = 51 N, SSC > 12%, β-carotene and ascorbic acid concentrations = 18 and 182 mg kg?1, respectively), and showed no signs of tissue translucency or surface pitting despite microbial populations >11 log10 kg?1. The results indicate that the novel hybrid muskmelon is a promising new melon type for fresh-cut processing and marketing, at least during the winter season.  相似文献   

6.
The effect of pre-processing storage time and temperature on post-cutting quality of two artichoke cultivars (‘Catanese’ and ‘Violetto Foggiano’) was studied. Artichoke heads were harvested in January 2010 for ‘Catanese’ and in March 2011 for ‘Violetto Foggiano’ from commercial plantations. Freshly harvested artichoke heads were stored at 0, 5, and 12 °C in a humidified flow of air. Initially, and after 3 and 7 days of storage, respiration rate, weight loss, and electrolytic leakage were monitored. Moreover, at each sampling, artichokes were cut in quarters and stored for additional 3 days at 5 °C. On cut artichokes, soon after cutting and after post-cutting storage, visual appearance, color attributes (on outer bract surface, on cut bracts, and on cut receptacle surface) and phenol content were determined. Time and temperature of storage influenced quality attributes of cut artichokes, but to a different extent depending on the cultivar, whereas temperature did not affect the phenol content. ‘Violetto Foggiano’ artichokes benefited from pre-cutting low storage temperature (0 °C), whereas ‘Catanese’ showed physiological injuries on outer bract surfaces, where brown spots occurred. In both cases low temperatures during pre-cutting storage (5 and 0 °C) reduced the browning rate of the cut surface which maintained a higher L* value, compared to artichokes stored at 12 °C. Moreover, pre-cutting storage at 12 °C resulted in a reduction of quality of artichokes due to growth of floral primordia in the form of reddish tissues at the base of the receptacle for both cultivars. Management of storage conditions before cutting is therefore critical in fresh-cut processing operations of artichokes.  相似文献   

7.
The increased consumption of fresh-cut celery has led to the need to explore packaging alternatives for fresh-cut celery that can meet consumer, market, and industry needs. In this study, the effect of bio-based packaging and non-conventional atmospheres on the quality and safety of chlorine-sanitized celery sticks stored at 7 °C was investigated. Two materials differing in permeability [a bio-based polyester (polylactic acid (PLA)) and a petroleum-based polyolefin (polypropylene/low density polyethylene (PP/PE)] and four initial gas compositions [air (A-PLA or A-PP/PE), 95 kPa O2 + 5 kPa N2 (O2-PLA), 99 kPa N2 + 1 kPa O2 (N2-PLA), and 6 kPa O2 + 12 kPa CO2 + 82 kPa N2 (CO2-PLA)] were evaluated. Changes in headspace composition, weight loss, surface and cut end color, texture, ethanol content, appearance, and growth of Listeria monocytogenes on inoculated celery sticks were assessed during 21 d of storage. Active MAP (CO2-PLA) out-performed passive MAP (A-PLA) in maintaining celery stick quality but not safety. Conventional active MAP (CO2-PLA) out-performed non-conventional active MAPs (O2-PLA and N2-PLA) in maintaining celery stick quality throughout storage, but O2-PLA suppressed L. monocytogenes growth while CO2-PLA promoted growth during the first 10 d of storage. PLA and PP/PE materials affected celery stick quality but not Listeria growth. This study shows that the initial gas composition and packaging material both impact the quality and safety of celery sticks. Overall, the combination PLA and 95 kPa O2 proved most beneficial in maximizing both the safety and quality of celery sticks during one week of storage at 7 °C.  相似文献   

8.
The effects of different concentrations (0.1%, 0.3% and 0.5%, w/v) of lemongrass essential oil incorporated into an alginate-based [sodium alginate 1.29% (w/v), glycerol 1.16% (w/v) and sunflower oil 0.025% (w/v)] edible coating on the respiration rate, physico-chemical properties, and microbiological and sensory quality of fresh-cut pineapple during 16 days of storage (10 ± 1 °C, 65 ± 10% RH) were evaluated. Coated fresh-cut pineapple without lemongrass and uncoated fresh-cut pineapple were stored under the same conditions and served as the controls. The results show that yeast and mould counts and total plate counts of coated samples containing 0.3 and 0.5% (w/v) lemongrass were significantly (p < 0.05) lower than other samples. However, the incorporation of 0.5% (w/v) lemongrass in coating formulation significantly (p < 0.05) decreased the firmness and sensory scores (taste, texture and overall acceptability) of fresh-cut pineapples. Therefore, the results indicate that an alginate-based edible coating formulation incorporated with 0.3% (w/v) lemongrass has potential to extend the shelf-life and maintain quality of fresh-cut pineapple.  相似文献   

9.
Flower opening in Iris (Iris x hollandica) depends on elongation of the pedicel + ovary. This elongation lifts the bud above the point where the sheath leaves no longer mechanically inhibit lateral tepal movement. We here report on the effects on flower opening of storage at various temperatures, of holding the flowers dry rather than in water, and of a 12 h light/dark cycle instead of darkness, in cv. Blue Magic. During 3 d of storage in darkness at 11 °C or 6 °C the flowers placed in water opened. Flowers stored at 3.0 °C did not open during the storage period but did so during subsequent vase life at 20 °C. Flowers stored in water at 0.5 °C remained closed, even during subsequent vase life at 20 °C. None of the flowers that were stored dry for 3 d at 15 °C, 11 °C, 6 °C, 3 °C or 0.5 °C opened during vase life. Compared to flowers placed in continuous darkness, a rhythm of 12 h light and 12 h darkness inhibited opening during a 3 d storage period at 20 °C. It is concluded that cut Iris flowers (a) can be stored in water at 3 °C for more than a week, but cannot be stored for 3 d or more in water at 15 °C, 11 °C, 6 °C or 0.5 °C, and (b) cannot be stored dry for long (under the present conditions 3 d or longer) at any of these temperatures. Iris flowers were found to be chilling-sensitive, although only at temperatures of about 0.5 °C.  相似文献   

10.
The risk of undesirable by-products from chlorine disinfection in fresh-cut industries, together with its limited efficacy, has led to a search for alternative agents. The aim of this study was to test several alternative putative antimicrobial substances to reduce Escherichia coli O157:H7, Salmonella spp. and Listeria spp. populations on fresh-cut apple. Carvacrol, vanillin, peroxyacetic acid, hydrogen peroxide, N-acetyl-l-cysteine and Citrox were selected for their results in in vitro assays against E. coli O157:H7 and Listeria spp., to be tested on fresh-cut apple plugs. Apple flesh was inoculated by dipping in a suspension of a mix of the studied pathogens at 106 cfu mL?1, and then treated with the antimicrobial substances. All treatments were compared to deionized water and a standard sodium hypochlorite treatment (SH, 100 mg L?1, pH 6.5). Pathogen population on apple plugs was monitored for up to 6 days at 10 °C. Bacterial reductions obtained by peroxyacetic acid (80 and 120 mg L?1), vanillin (12 g L?1), hydrogen peroxide (5, 10, 20 mL L?1) and N-acetyl-l-cysteine (5 and 10 g L?1) were similar or higher than reduction obtained by SH. In addition, bacterial populations were maintained at low levels throughout storage. No cells of any of the pathogens were detected in the peroxyacetic acid, hydrogen peroxide, Citrox and SH washing solutions after apple treatment. Peroxyacetic acid, hydrogen peroxide and N-acetyl-l-cysteine could be potential disinfectants for the fresh-cut industry as an alternative to chlorine disinfection. However, their effect on sensory quality and effectiveness under commercial processing conditions should be evaluated.  相似文献   

11.
The storage of fruit is characterized by many physiological and biochemical changes, and this study aimed to study respiration rate, ethylene production, and other biochemical variations of ackee fruit arils (Blighia sapida), cheese variety, stored at 5, 10 and 20 °C during eight days. During storage, respiration rate decreased but ethylene production increased. Glucose, fructose, sucrose, and short chain fructooligosaccharides – 1-kestose, nystose and DP-5 – and total phenolic compounds also decreased, however, the decrease was much higher at 20 °C. The L*, a*, b, C* and H* values showed that lower temperatures preserved much better colour and visual quality, and arils stored at 5 °C were rated excellent compared to those stored at 10 and 20 °C. The quality of arils stored at 10 °C also was more than satisfactory, while arils stored at 20 °C were completely spoiled after 8 days and showed high weight losses compared to arils stored at 5 and 10 °C, which did not show any spoilage and very low weight losses. In conclusion, the results demonstrated that ackee fruit arils can be stored in very good conditions for a minimum of eight days under low temperature regimes, although at 5 °C arils showed the best shelf-life.  相似文献   

12.
A continuing challenge for commercializing 1-methylcyclopropene (1-MCP) to extend the storage life and control superficial scald of ‘d’Anjou’ pear (Pyrus communis L.) is how to initiate ripening in 1-MCP treated fruit. ‘D’Anjou’ pears harvested at commercial and late maturity were treated with 1-MCP at 0.15 μL L−1 and stored either at the commercial storage temperature −1.1 °C (1-MCP@−1.1 °C), or at 1.1 °C (1-MCP@1.1 °C) or 2.2 °C (1-MCP@2.2 °C) for 8 months. Control fruit stored at −1.1 °C ripened and developed significant scald within 7 d at 20 °C following 3–5 months of storage. While 1-MCP@−1.1 °C fruit did not develop ripening capacity due to extremely low internal ethylene concentration (IEC) and ethylene production rate for 8 months, 1-MCP@1.1 °C fruit produced significant amounts of IEC during storage and developed ripening capacity with relatively low levels of scald within 7 d at 20 °C following 6–8 months of storage. 1-MCP@2.2 °C fruit lost quality quickly during storage. Compared to the control, the expression of ethylene synthesis (PcACS1, PcACO1) and signal (PcETR1, PcETR2) genes was stable at extremely low levels in 1-MCP@−1.1 °C fruit. In contrast, they increased expression after 4 or 5 months of storage in 1-MCP@1.1 °C fruit. Other genes (PcCTR1, PcACS2, PcACS4 and PcACS5) remained at very low expression regardless of fruit capacity to ripen. A storage temperature of 1.1 °C can facilitate initiation of ripening capacity in 1-MCP treated ‘d’Anjou’ pears with relatively low scald incidence following 6–8 months storage through recovering the expression of certain ethylene synthesis and signal genes.  相似文献   

13.
Fresh-cut banana slices have a short shelf-life due to fast browning and softening after processing. The effects of atmospheric modification, exposure to 1-MCP, and chemical dips on the quality of fresh-cut bananas were determined. Low levels of O2 (2 and 4 kPa) and high levels of CO2 (5 and 10 kPa), alone or in combination, did not prevent browning and softening of fresh-cut banana slices. Softening and respiration rates were decreased in response to 1-MCP treatment (1 μL L−1 for 6 h at 14 °C) of fresh-cut banana slices (after processing), but their ethylene production and browning rates were not influenced. A 2-min dip in a mixture of 1% (w/v) CaCl2 + 1% (w/v) ascorbic acid + 0.5% (w/v) cysteine effectively prevented browning and softening of the slices for 6 days at 5 °C. Dips in less than 0.5% cysteine promoted pinking of fresh-cut banana slices, while concentrations between 0.5 and 1.0% cysteine delayed browning and softening and extended the post-cutting life to 7 days at 5 °C.  相似文献   

14.
The main problem affecting the quality of fresh-cut sunchoke tubers is cut surface discoloration. Pre- and post-cutting hot water and ethanol treatments were evaluated for their potential to inhibit discoloration, color changes, and associated phenolic metabolism in tuber slices stored in air at 5 °C. Some of the treatments tested inhibited discoloration and changes in a* and hue color values. Slices that were post-cut treated with hot water at 50 °C for 6–8 min or 55 °C for 3–4 min and pre-cut treated with water at 50 °C for 20–25 min maintained good color for 8–12 days at 5 °C. Post-cut ethanol fumigation (150–750 μL/L for 5 h at 5 °C) can prevent discoloration for 30 d at 5 °C. Post-cut dips with ethanol solutions (3, 5, 8 or 10% for 5 min) increased shelf-life twofold or longer compared to untreated slices. Ethanol fumigation retarded the onset of wound-induced respiration rates as well as reducing maximum rates. A post-cut 10% ethanol dip also reduced respiration rates and reduced PAL activity and total phenolics. Ethanol dips had no effect and hot water treatments had no persistent effect on microbial loads over 12 d.  相似文献   

15.
The influence of light on fresh-cut vegetables during storage is controversial, since both positive and negative effects on shelf-life and quality of such products have been observed. In this work, the effect of low-intensity light treatments on lamb's lettuce, a fresh-cut leafy and ready-to-eat vegetable, was investigated during storage at low temperature (6 °C), in comparison with conventional storage (in the dark at 4 °C). Although continuous light treatment (1 cycle of 8 h per day) was deleterious, cycles of light treatments (8 cycles of 1 h per day; 16 cycles of 0.5 h per day) showed positive effects, assessed by evaluating the content of chlorophylls, carotenoids, ATP, glucose and ascorbate. These analyses were performed at the beginning and after 6 days of storage, in comparison with samples stored in the dark at 4 °C. Under low-intensity light treatments, even if performed at a higher temperature (6 °C), the content of such bioactive compounds increased or was at least similar to that found in samples stored in the dark at the same temperature. We suggest that continuous low-intensity light treatments during cold storage of lamb's lettuce are able to promote photosynthesis but, at the same time, induce photo-damage. On the contrary, under intermittent low-intensity light cycles, photosynthesis is only partially activated, while the metabolism of the green tissues is still able to provide carbon moieties for the synthesis of bioactive molecules involved in delaying senescence. Therefore, low-intensity light cycles at 6 °C could contribute to maintain quality of lamb's lettuce, with respect to samples stored in the dark at both 6 and 4 °C. Finally, setting the temperature at 6 °C allows reduction of refrigerator energy consumption during storage.  相似文献   

16.
This study was undertaken to optimize ethanol vapor application as a ripening inhibitor on whole mangoes to extend fresh-cut mango shelf life. Freshly harvested mangoes were first subjected to hot water (+HW) at 46 °C for 60 or 90 min to simulate quarantine heat treatments, or remained untreated (−HW). Fruit of each batch (+ or −HW) were then held at 20–25 °C for 4 or 7 d (D4 and D7) after the hot water treatment before being exposed to ethanol vapors [0 h (E0), 10 h (E10), or 20 h (E20)]. Fruit were then peeled and cut into slices, packed in plastic clamshells, and stored at 7 °C for 15 d. Only slices from +HW-D4-E20-treated fruit maintained higher firmness, hue angle, and titratable acidity (TA) in storage. The +HW-D7-E10- or E20-treated fruit had higher hue angle than E0, but firmness, total soluble solids, TA, pH, and respiration rate did not differ. Internal ethanol and acetaldehyde were very high in slices from +HW, D4 and D7, E20 and −HW-D7-E20-treated fruit. A sensory panel could perceive higher firmness and acidity in slices from fruit treated with ethanol. However, E20 induced off-flavor, and these fruit were least preferred.Ethanol exposure on fruit was repeated with purchased mangoes that had been subjected to a commercial quarantine heat treatment. A second heat treatment of 18 h at 38 °C and 98% relative humidity was added to one batch of fruit in this experiment. Ethanol vapors did not result in delayed ripening in those mangoes. However, this treatment inhibited microbial growth. The second heat treatment did not improve fresh-cut mango shelf life, and further, microbial growth increased compared to other treatments. It is concluded that, due to inconsistent results, ethanol vapor applied for 20 h to whole mangoes prior to processing for fresh-cut is not a practical approach to delay ripening; however, at lower doses (10 h), it could be used as a safe microbial control in a fresh-cut production sanitation system.  相似文献   

17.
The curative antifungal activity of postharvest sodium methylparaben (SMP) treatments against citrus green (GM) and blue (BM) molds was characterized on different citrus species and cultivars artificially inoculated with Penicillium digitatum or Penicillium italicum and incubated at 20 °C and 90% RH for 7 d or stored at 5 °C and 90% RH for 8 weeks plus 7 d of shelf-life at 20 °C. Effective concentrations were selected in in vivo primary screenings with ‘Valencia’ oranges. SMP at 200 mM was tested at 20, 50 or 62 °C for 30, 60 or 150 s in small-scale trials to determine the best dip treatment conditions. Dips of 200 mM SMP at 20 °C for 60 s were selected and applied alone or in combination with 25 μL L−1 of the conventional fungicide imazalil (SMP + IMZ 25). Imazalil at the very low concentrations of 25 (IMZ 25) or 50 μL L−1 (IMZ 50) were also tested. Effectiveness of SMP alone at 20 °C for 60 s was significantly higher on oranges (cvs. ‘Valencia’ and ‘Lanelate’) than on mandarins (cvs. ‘Clemenules’, ‘Nadorcott’ and ‘Ortanique’), with GM and BM incidence reductions of up to 88% after 7 d at 20 °C. SMP was compatible with IMZ 25 and consistently improved its performance, irrespective of citrus cultivars and storage conditions. All treatments were less effective on ‘Clemenules’ mandarins. On ‘Valencia’ oranges stored for 8 weeks at 5 °C and 7 d at 20 °C, the combined treatment was significantly more effective than the single treatments (reductions of GM and BM incidence of about 50–60% and 90–95%, respectively). In additional tests, 200 mM SMP dips at 20 °C for 60 s did not prevent GM on ‘Valencia’ oranges wounded, treated, inoculated with P. digitatum 24 h later, and incubated at 20 °C for 7 d. In contrast, the treatments IMZ 25 and SMP + IMZ 25 showed significant preventive activity. It can be concluded from these results that SMP aqueous solutions, especially applied at room temperature, might be an interesting nonpolluting control alternative to be included in citrus postharvest disease control programs in the future.  相似文献   

18.
Fruit of cv. Monthong durian (Durio zibethinus) were treated with 0 (control) or 500 nL L−1 1-MCP for 12 h at 25 °C. Fruit were then stored at 15 °C. To determine storage life, every 3 days a batch of fruit was transferred to 25 °C. The time to ripeness (adequate eating quality) at 25 °C in controls (no 1-MCP) decreased from 5 days in freshly harvested fruit to 3 days after 18 days of storage at 15 °C. Storage life was considered adequate if the time to ripeness was ≥3 days. The storage life at 15 °C of control fruit (no 1-MCP) was therefore 18 days. After the 1-MCP treatment the time to ripeness at 25 °C was 7 days in fresh fruit, while in fruit stored at 15 °C for 30 days it was about 3 days. The storage life at 15 °C of 1-MCP-treated fruit was therefore 30 days. Pulp firmness and pulp total soluble solids (TSS) were determined after 3 day storage intervals at 15 °C and when the fruit was ripe at 25 °C. These parameters were only slightly affected by the 1-MCP treatment. Furthermore, 1-MCP had no effect on pulp color, but delayed yellowing of the fruit exterior. It is concluded that treatment with 1-MCP before storage at 15 °C extended storage life from 18 to 30 days.  相似文献   

19.
The effect of commercial degreening with ethylene gas on fruit susceptibility and quality and development of postharvest green (GM) and blue (BM) molds on early season citrus fruit was investigated. Each cultivar was harvested with different peel color indexes (CI). Fruit were exposed for 3 d to 2 μL L−1 ethylene at 21 °C and 95–100% RH before or after artificial inoculation with Penicillium digitatum or Penicillium italicum. Control fruit were kept at the same environmental conditions without ethylene. Fruit were stored at either 20 °C for 7 d or 5 °C for 14 d and disease incidence (%) and severity (lesion diameter) were assessed. No significant effect of commercial degreening was observed on fruit susceptibility to both GM and BM on citrus cultivars inoculated after degreening. Likewise, no significant effect was observed on disease incidence on citrus cultivars inoculated before degreening and stored at either 20 °C for 7 d or 5 °C for 14 d. In contrast, in cultivars like ‘Clemenules’ mandarins and ‘Navelina’ oranges, degreening significantly increased the severity on fruit with higher initial CI (−3.6 and 1.7, respectively). GM and BM severity on degreened and control ‘Clemenules’ mandarins incubated at 20 °C for 7 d was 146 and 118 mm and 56 and 46 mm, respectively. In general, commercial degreening did not significantly affect external and internal quality attributes of citrus cultivars. Commercial degreening after inoculation of less green (more mature) fruit showed a trend to increase mold severity, presumably through an aging effect (acceleration of peel senescence).  相似文献   

20.
‘Rocha’ pear (Pyrus communis L.) was used as a model system to assess the effect of pH of dipping solutions on quality retention of fresh-cut fruit and its interaction with calcium additives. Pear slices were dipped for 60 s in a buffer solution at pH 3.0, 5.0 or 7.0 and stored at 4.5 °C for 13 days. In other experiments, pear slices were dipped for 60 s in buffer solutions containing 250 mM of calcium ascorbate, lactate, chloride, and propionate, at pH 3.0 or 7.0, and stored at 4.5 °C for 6 days. Browning and softening were more intense in slices dipped in a solution at pH 3.0 than at pH 5.0 or 7.0, but microbial growth was lower in slices treated at pH 3.0. The effect of calcium additives depended on the anion and significant interactions between the effects of calcium salt and pH were observed. Calcium ascorbate was very effective in preserving color and reducing microbial growth irrespective of pH, but enhanced pectin solubilization and tissue softening at pH 3.0. Slices treated with 250 mM calcium propionate or calcium lactate were softer and had higher electrolyte efflux when treated at pH 3.0 than at pH 7.0. Calcium lactate enhanced browning and reduced microbial growth at pH 3.0 but did not affect color or microbial counts at pH 7.0. All calcium treatments enhanced electrolyte leakage. pH of the dipping solution can affect, per se, the quality of fresh-cut fruit. The choice of calcium additives to prevent undesirable changes on visual and sensory quality of cut produce should involve pH ranges that provide the expected benefits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号