首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two plum (Prunus salicina Lindl.) cultivars ‘Black Splendor’ (BS) and ‘Royal Rosa’ (RR) were treated with methyl jasmonate (MeJA) at 3 concentrations (0.5, 1.0 and 2.0 mM) along the on-tree fruit development: 63, 77 and 98 days after full blossom (DAFB). On a weekly basis, fruit samples were taken for measuring fruit size and weight and parameters related to quality. Results revealed that MeJA was effective in increasing fruit size and weight, the 0.5 mM being the most effective for BS cultivar and 2.0 mM for RR. At harvest, those fruit treated with 0.5 mM MeJA had the highest firmness and colour Hue values. Total acidity was also generally higher in MeJA-treated fruit than in controls, while the content of total soluble solids remained unaffected. In addition, total phenolics and total antioxidant activity were found at higher concentrations in 0.5 and 2.0 mM MeJA-treated than in control fruit over at last 3 weeks of fruit development for BS and RR cultivars, respectively. Overall results suggest that MeJA could be a promising preharvest tool to increase plum size and quality with enhanced bioactive compounds and antioxidant activity, although the optimum concentration is cultivar dependent.  相似文献   

2.
The effect of exogenous oxalic acid treatment on ripening attributes of banana fruit during storage was investigated. Banana fruit were dipped into solutions of 0 (control) or 20 mM oxalic acid for 10 min and then stored at room temperature (23 ± 2 °C) and 75–90% relative humidity. The application of oxalic acid reduced fruit deterioration during storage. The oxalic acid treatment also reduced the rates of respiration and ethylene production, and delayed the decreases in firmness, hue angle, and maximal chlorophyll fluorescence (Fv/Fm) of banana fruit during storage. Furthermore, fruit treated with oxalic acid exhibited higher superoxide dismutase activity and antioxidant capability with a lower production of reactive oxygen species at the late storage period compared with non-oxalic acid-treated fruit. Overall, the oxalic acid treatment was effective in inhibiting postharvest ripening of banana fruit and exhibited the potential for commercial application to store the bananas at room temperature. It can be concluded that the delay in banana fruit ripening associated with oxalic acid treatment could be due to inhibition of respiration and ethylene production rates, and reduction of oxidative injury caused by reactive oxygen species through increased antioxidant activity.  相似文献   

3.
Four cultivars of tomato fruit (‘Cherry’, ‘Daniela’, ‘Patrona’ and ‘Raf’) were harvested at two ripening stages (S1 and S2), treated with 0.5 μl l−1 of 1-methylcyclopropene (1-MCP) for 24 h and stored at 10 °C for 28 days. For all cultivars, control fruit deteriorated very rapidly (due to weight loss, softening, colour changes and decay) with an estimated shelf life of 7 days (‘Cherry’ and ‘Patrona’) and 14 days (‘Daniela’ and ‘Raf’), independently of the ripening stage at harvest. All quality parameters for all cultivars were delayed and/or inhibited in treated fruit, the efficacy of 1-MCP being higher in tomatoes harvested at the S2 ripening stage. At this stage, the organoleptic properties had already developed in fruit on the plant and tomatoes could thus reach consumers with optimal postharvest quality.  相似文献   

4.
We investigated the effects of nitric oxide (NO) fumigation on fruit ripening, chilling injury, and quality of Japanese plums cv. ‘Amber Jewel’. Commercially mature fruit were fumigated with 0, 5, 10, and 20 μL L−1 NO gas at 20 °C for 2 h. Post-fumigation, fruit were either allowed to ripen at 21 ± 1 °C or were stored at 0 °C for 5, 6, and 7 weeks followed by ripening for 5 d at 21 ± 1 °C. NO-fumigation, irrespective of concentration applied, significantly (P  0.5) suppressed respiration and ethylene production rates during ripening at 21 ± 1 °C. At 21 ± 1 °C, the delay in ripening caused by NO-fumigation was evident from the restricted skin colour changes and retarded softening in fumigated fruit. NO treatments (10 and 20 μL L−1) delayed the decrease in titratable acidity (TA) without a significant (P  0.5) effect on soluble solids concentration (SSC) during ripening. During 5, 6, and 7 weeks of storage at 0 °C, NO-fumigation was effective towards restricting changes in the ripening related parameters, skin colour, firmness, and TA. The individual sugar (fructose, glucose, sucrose, and sorbitol) profiles of NO-fumigated fruit were significantly different from those of non-fumigated fruit after cold storage and ripening at 21 ± 1 °C. CI symptoms, manifest in the form of flesh browning and translucency, were significantly lower in NO-fumigated fruit than in non-fumigated fruit after 5, 6, and 7 weeks storage followed by ripening for 5 d at 21 ± 1 °C. NO-fumigation was effective in reducing decay incidence in plums during ripening without storage and after cold storage at 0 °C for 5, 6, and 7 weeks. In conclusion, the postharvest exposure of ‘Amber Jewel’ plums to NO gas (10 μL L−1) delayed ripening by 3–4 d at 21 ± 1 °C, and also alleviated chilling injury symptoms during cold storage at 0 °C for 6 weeks.  相似文献   

5.
Coating of tomato fruit with gum arabic has been found to delay the ripening process and maintain the antioxidant capacity. Gum arabic in aqueous solutions of 5, 10, 15 and 20% was applied as an edible coating to green-mature tomatoes which were stored at 20 °C and 80–90% RH for 20 days. Fruit coated with 10% gum arabic delayed the ripening process by slowing down the rate of respiration and ethylene production and also maintained total antioxidant capacity, lycopene content, total phenolics and total carotenoids during storage as compared to the uncoated control and fruit treated with 5% gum arabic concentration. The results suggest that by using 10% gum arabic as an edible coating, the ripening process of tomatoes can be delayed and the antioxidant can be preserved for up to 20 days during storage at 20 °C without any negative effects on postharvest quality.  相似文献   

6.
Peach (Prunus persica) fruit have a short shelf-life, and the most common method employed to delay ripening and increase their postharvest life is cold storage. However, after extended storage at low temperature some cultivars have alterated ripening processes, resulting in a lack of juice and a woolly texture. To improve our understanding of the molecular mechanisms involved in the responses of peach fruit to cold storage we determined gene expression changes of fruit (cv. O’Henry) under different postharvest conditions: ripening (5 days at 21 °C), cold storage (21 days at 4 °C) and induction of woolliness (21 days at 4 °C followed by 5 days at 21 °C).Cluster analyses of genes differentially expressed between treatments revealed unique patterns associated with biological processes that operate during postharvest treatments. Genes up-regulated during postharvest ripening and woolliness include components of ethylene, and aroma biosynthesis as well as oxidative stress response. During cold storage treatment and woolliness, several genes linked to the oxidative stress response increased in abundance, suggesting changes in redox status. Quantitative RT-PCR analysis showed a sequential increase levels of mRNAs encoding key components of cellular stress response. Moreover, after 21 days of cold storage, expression of genes encoding oxidoreductase, catalase, superoxide dismutase and gluthatione reductase was still significantly higher than before cold treatment, suggesting that fruit cells were able to respond to the increased production of ROS that was induced by extended cold storage. In the woolly fruit, up-regulation of stress response genes was accompanied by down-regulation of key components of metabolic pathways that are active during peach ripening. The altered expression pattern of these genes might account for the abnormal ripening of woolly fruit.  相似文献   

7.
The role of putrescine (PUT) in regulating fruit softening, antioxidative enzymes and biochemical changes in fruit quality was investigated during ripening and cold storage of mango (Mangifera indica cv. Samar Bahisht Chaunsa). Fruit were treated with various PUT concentrations (0.0, 0.1, 1.0 and 2.0 mM) and were allowed to ripen at 32 ± 2 °C for 7 days, or stored at 11 ± 1 °C for up to 28 days. Respiration rate and ethylene production were measured daily during ripening and cold storage. Cell wall degrading enzymes such as exo-polygalacturonase (exo-PG), endo-polygalacturonase (endo-PG), pectin esterase (PE), endo-1,4-β-d-glucanase (EGase), antioxidative enzymes including superoxide dismutase (SOD), peroxidase (POX), and catalase (CAT), fruit firmness as well as biochemical fruit quality characteristics were estimated during ripening and cold storage at 2 and 7 day intervals, respectively. PUT treatments reduced respiration rate, ethylene production and maintained higher fruit firmness during ripening as well as cold storage. PUT-treated fruit exhibited significantly suppressed activities of cell wall enzymes (exo-, endo-PG and EGase), but retained higher PE activity during ripening and cold storage. Total phenolic and antioxidant contents were significantly higher in PUT-treated fruit during ripening as well in the cold storage period than in the controls. Activities of antioxidative enzymes (CAT, POX and SOD) were also significantly higher in PUT-treated fruit during ripening as well as cold storage. SSC and SSC:TA were lower in PUT-treated fruit, while TA and ascorbic acid content showed the reverse trend. In conclusion, pre-storage 2.0 mM PUT treatment inhibited ethylene production and suppressed the activities of cell wall enzymes, while resulting in higher activities of antioxidative enzymes and maintaining better fruit quality during ripening and cold storage.  相似文献   

8.
In this work Aloe vera gel (AV) alone or with the addition of 10 or 2% rosehip oil was used as fruit edible coatings in a wide range of Prunus species and cultivars: peaches (‘Roma’ and ‘B-424-16’ flat type), plums (‘Red Beauty’ and ‘Songria’), nectarine (‘Garofa’) and sweet cherry (‘Brooks’). Following treatments, fruit were stored at 20 °C for 6 days and analysed for the effect of treatments on fruit ripening and quality parameters compared with uncoated fruit (control). The addition of the rosehip oil to AV gel reduced respiration rate in all fruit, and ethylene production in the climacteric ones (peaches, plums and nectarine). In addition, all the parameters related with fruit ripening and quality, such as weight loss, softening, colour change and ripening index, were also delayed in treated compared with control fruit, the effect being generally higher when rosehip oil was added to AV, and especially in those fruit that exhibited the highest ethylene production rates (‘Roma’ and flat type peaches). Although the highest effect was obtained with AV + rosehip oil at 10%, the sensory panel detected an excess of gloss and oiliness on the fruit surface, which was considered as a negative attribute. Thus, 2% rosehip oil added to AV could be used as an innovative postharvest tool to increase the beneficial effect of AV as an edible coating, especially in climacteric fruit showing high ethylene production rates.  相似文献   

9.
The potential of 1-MCP for controlling ripening in ‘Angeleno’ plum fruit under air and controlled atmosphere (CA) storage was explored, and the possibility that 1-MCP can inhibit development of brown rot caused by Monilinia laxa and internal breakdown in ‘Fortune’ and ‘Angeleno’ plums tested. After harvest, fruit were exposed to 300 and 500 nl l−1 (in 2003) and 500 nl l−1 1-MCP (in 2004) at low temperatures (0–3 °C) for 24 h. After treatment the plums were stored in air at 0 °C and ‘Angeleno’ fruit were also stored in CA storage (1.8% O2 + 2.5% CO2). Following storage, fruit were kept at 20 °C. In ‘Angeleno’ fruit, 1-MCP was effective in delaying the loss of firmness and colour changes during holding at 20 °C. 1-MCP reduced brown rot in fruit stored in CA but no significant reduction was found in air storage. Internal breakdown, a major physiological storage disorder in plums, was inhibited by 1-MCP treatment. Furthermore, since 1-MCP applied in air storage showed better results than the control in CA conditions, an application of 1-MCP before air storage could be the best way to reduce the ripening process for short or medium storage periods (40 and 60 days). CA storage plus 1-MCP treatment could be used for long periods (80 days).  相似文献   

10.
The aim of this work was to study the specific effects of low temperature and 1-MCP treatment on ethylene metabolism and oxidative behaviour in plums (Prunus × salicina cv. Larry Ann). Control fruit were stored at 20 °C or 0 °C and the 1-MCP (625 nL L?1) treated fruit at 0 °C. Changes in the kinetics of ethylene production upon removal were related to changes in ACC metabolism (ACC and MACC levels), oxidative behaviour (H2O2 content) and enzymatic antioxidant potential (SOD, CAT and POX enzymes) during cold storage. Low temperature stress inhibited the synthesis of MACC, which appeared to be the basic process that regulated ACC and ethylene production at ambient temperature. Although 1-MCP treatment inhibited ethylene production and ACC accumulation in the cold, it did not inhibit the accumulation of MACC. Neither cold nor 1-MCP treatment induced oxidative stress. Nevertheless, the 1-MCP treatment significantly impaired the increase in POX activity observed during cold storage. Collectively these results showed the underlying role that ACC metabolism plays in the ripening behaviour of cold-stored plums, confirming previous results. The results also indicate that MACC and malonyl transferase activity are the key regulatory factors that control ripening and possibly some ethylene-related disorders such as chilling injury in cold-stored plums.  相似文献   

11.
A number of fruit including plums develop a pronounced conspicuous layer of epicuticular wax responsible for their attractive visual appearance. During harvest, packaging and transport, this protective layer may be damaged or removed. The resulting appearance generates the impression of poor fruit quality. The aim of this research was to analyse and compare the influence of this wax bloom on storability using a new non-invasive technology and three modifications of the fruit surface. Weight loss was recorded of plums with the natural wax layer, polished by hand or wax removed chemically and stored at 20 °C room temperature or in a refrigerator at 5 °C. With 9.2 mg epicuticular wax/fruit or 302 μg/cm2 surface, European plums were classified as highly waxy, which contributed to for their conspicuous wax bloom. The disappearance of the wax bloom viz. increase in glossiness, measured non-destructively with a special sensor, was associated with a doubling of luster levels from 150–250 arbitrary units (a.u.) to 300–600 a.u. after polishing, simulating postharvest handling. Luster levels decreased with time with the polished surface, but not with the natural wax layer, confirming the concomitant greatest weight loss during the 20 days storage of polished fruit. Weight loss was lowest in plums with the natural wax layer, refrigerated at 5 °C, while those stored at 20 °C lost more weight irrespective of surface treatment. This case study explains the relatively short shelf-life and effects of water loss of the plums under different temperatures and surface conditions with wax, polish and chemically treated. This affordable compact light-weight sensor technology offers the opportunity to detect the degree of glossiness and may be used for sorting a number of affected fruit.  相似文献   

12.
Conventional chitosan (CC) and submicron chitosan dispersions (SCD) were evaluated for the control of postharvest anthracnose and maintenance of quality of dragon fruit during storage at 10 ± 2 °C and 80 ± 5% RH for 28 days. All the chitosan treatments significantly reduced anthracnose symptoms, resulting in a reduction of disease development and thereby maintained the quality of fresh fruit for extended periods. SCD at 1.0% with 600 nm droplet size gave the best result in that it delayed the onset of disease and maintained the quality of dragon fruit for up to 28 days of storage. It can be concluded from the present investigation that SCD have potential to be used as an antifungal agent to control postharvest anthracnose and maintain quality of dragon fruit during storage.  相似文献   

13.
The relationship between fruit maturity at harvest and the duration of postharvest exposure to ?1 °C required to induce ripening capacity was studied in ‘Comice’ and ‘Bosc’ pears. As fruit of both cultivars were harvested progressively later, shorter durations of exposure to ?1 °C were required to induce ripening capacity. The relationship between the duration of conditioning at ?1 °C and the fruit flesh firmness after 7 d at 20 °C was well-described by second-order polynomial equations. These equations were used to determine the number of days at ?1 °C required to induce ripening capacity for each harvest date. A linear relationship was observed between the number of days after fruit in the orchard reached maturity that fruit were harvested and the number of days of low-temperature conditioning needed to induce ripening capacity. This relationship may be used to predictively estimate the duration of low-temperature conditioning required to induce ripening based on harvest date.  相似文献   

14.
‘Raf’ tomato fruit were harvested at the mature-green stage and treated with 1-methylcyclopropene (1-MCP) at 0.5 (for 3, 6, 12 or 24 h) or 1 μl l−1 for 3 or 6 h. Fruit were stored at 10 °C for 7 days and a further 4 days at 20 °C for a shelf life period. All 1-MCP treatments reduced both ethylene production and respiration rate and in turn retarded the changes in parameters related to fruit ripening, such as fruit softening, colour (a*) change, and increase in ripening index (TSS/TA ratio). These effects were significantly higher when 1-MCP was applied at 0.5 μl l−1 for 24 h. In order to obtain the maximum benefit from 1-MCP, this treatment would be the most suitable for commercial purposes.  相似文献   

15.
This study aimed to investigate the application of microbubble technology for delaying banana ripening. A preparation of 1-MCP designed for use as a form of aqueous micro bubble (MBs) solutions was formulated. Banana fruit were immersed in 500 nL L−1 of aqueous 1-MCP microbubbles (1-MCP-MBs) or fumigated with 500 nL L−1 1-MCP, then stored at 25 °C for 8 days. 1-MCP-MBs were more effective in delaying postharvest ripening than conventional 1-MCP fumigation. 1-MCP-MBs reduced the respiration rate and ethylene production compared to the control and 1-MCP fumigated fruit. Moreover, 1-MCP-MBs delayed yellowing and maintained firmness of banana fruit during storage. These results indicate that 1-MCP-MBs can be used as an alternative method for delaying the postharvest ripening of banana fruit, and its application for other commodities needs to be further elucidated.  相似文献   

16.
Preclimacteric avocado (Persea americana Mill. cv. Booth 7) fruit were treated with aqueous 1-methylcyclopropene (1-MCP) at 0.93 and 9.3 mmol m−3 and then stored at 20 °C to investigate the effect of 1-MCP on antioxidant systems of mesocarp tissue during ripening. Exposure to 1-MCP concentrations significantly delayed softening and peak ethylene production. 1-MCP significantly delayed accumulation of total soluble phenolics, flavonoids, and total antioxidant capacity although levels eventually reached control fruit maxima. The influence of 1-MCP was more pronounced at the higher concentration. Activities of peroxidase [POD (EC 1.11.1.7)], superoxide dismutase [SOD (EC 1.15.1.1)], catalase [CAT (1.11.1.6)] and l-ascorbate peroxidase [APX (EC 1.11.1.11)] increased during early ripening of control fruit followed by slight (CAT) or significant (POD, APX) declines with further ripening. Increases in activities of all enzymes were delayed in proportion to 1-MCP concentration, and maximum activities attained during ripening were largely unaffected by 1-MCP. Postclimacteric declines in POD and APX were not observed at the higher 1-MCP concentration, possibly reflecting incomplete ripening. The results indicate that changes in antioxidant parameters of avocado fruit are not markedly influenced by 1-MCP but are delayed or altered in proportion to the general suppression of ripening as indicated by ethylene production and fruit softening trends. Together with previously published reports, the data also indicate that the effects of ethylene-action suppression on antioxidant parameters during ripening vary considerably among different fruits. Relationships between antioxidant systems, ethylene and ripening are discussed.  相似文献   

17.
Fruit maturity stage at harvest influences the response to postharvest storage conditions and bioactive compounds content. In this work fruit from two purple eggplant cultivars (Monarca and Perla Negra) were harvested at 12, 15, 18, 20 and 23 d after fruit set (designated as stages I through V) and changes in size, dry weight, calyx area, cell wall material (AIR, alcohol insoluble residue), firmness, respiration, and antioxidants (peel anthocyanins and pulp carotenoids, ascorbic acid, phenolics and chlorogenic acid) were determined. In a second set of experiments the postharvest performance of fruit harvested at stages I (“baby” eggplants), III and IV (traditional harvest stages) during storage at 0 or 10 °C was assessed. Fruit growth continued until late ripening in contrast to calyx expansion and peel anthocyanin accumulation, which were relatively earlier events. Fruit dry weight decreased between stages I and III, remaining constant afterwards. “Baby” eggplants had higher antioxidant capacity, chlorogenic acid (ChA), carotenoids and ascorbic acid contents than late-harvested fruit. ChA predominated in pulp placental tissues at stage I, spreading throughout the fruit core at as ripening progressed. No marked differences in dry mass, antioxidant capacity or responses to postharvest storage regimes were found between fruit harvested at stages III and IV. Late pickings increased yields and led to less dense fruit, which had lower respiration rates. Within this harvest window, storage at 10 °C maximized quality maintenance. In contrast “baby” eggplants stored better at 0 °C. Understanding the developmental changes in bioactive compounds and postharvest performance may help in the maximization of fruit antioxidant properties as well as in the selection of the optimal handling conditions for each ontogenic stage.  相似文献   

18.
Investigations were carried out to verify the potential of putrescine and spermidine as a postharvest dip treatment for maintaining quality and extending storage life of table grapes (Vitis vinifera L.) cv. Flame Seedless during the 2012 and 2013 seasons. Grape clusters were manually harvested at the commercial mature stage and were dipped in different concentrations (0.0, 0.5, 1.0 and 1.5 mM) of putrescine and spermidine, and then stored at 3–4 °C, and 90–95% RH. Evaluation of physico-chemical parameters and other fruit quality attributes were made at 0 day (before treatment) and at 30, 45, 60 and 75 days of storage. Putrescine and spermidine at the lowest dose (0.5 mM) effectively maintained berry firmness, peel colour (L*, C*, h°) and stabilized anthocyanins as well as suppressing the activity of pectin methylesterase and reducing the rate of electrolyte leakage. The polyamines also retarded the degradation of TSS and TA while maintaining higher total phenol content and reduced decay incidence. Putrescine and spermidine at 1.0 mM exhibited almost similar effects with a 0.5 mM dose. The highest doses (1.5 mM) of both polyamines showed detrimental effects, especially on weight loss, decay incidence, rachis browning and organoleptic properties, as found in the control group, which was commercially acceptable only up to 45 days. Furthermore, analysis of linear regressions and correlations showed that many quality parameters were interdependent. The postharvest dip treatment of spermidine or putrescine at a dose of 0.5 mM for 5 min could be an effective means for prolonging storage and increasing shelf-life of ‘Flame Seedless’ grapes.  相似文献   

19.
To investigate the effects of postharvest application of 1-MCP on ethylene production and fruit softening, activities of ethylene biosynthesis and fruit softening enzymes were measured during postharvest ripening of plum (Prunus salicina Lindl. cv. Tegan Blue) fruit after being exposed to 1-MCP (0, 0.5, 1.0 or 2.0 μL L−1) at 20 ± 1 °C for 24 h. Following the treatments, fruit were allowed to ripen at ambient temperature (20 ± 1 °C), and ethylene production in fruit, activities of ACS and ACO, ACC content and fruit softening enzymes (PE, EGase, exo-PG and endo-PG) in fruit skin and pulp were recorded at different intervals. Postharvest application of 1-MCP significantly delayed and suppressed the climacteric ethylene production with reduction in the activities of ethylene biosynthesis enzymes (ACS, ACO) and ACC content, and fruit softening enzymes (PE, EGase, exo-PG and endo-PG) in the skin as well as in pulp tissues. The reduction was more pronounced with increased concentrations of 1-MCP. 1-MCP treated fruit showed different rates of fruit softening and activities of ethylene biosynthesis enzymes in the skin and pulp tissues which warrant further investigation on regulation of gene expression related to these enzymes with the inhibitory effect of 1-MCP.  相似文献   

20.
Methyl jasmonate (MeJA) can act as an activator of defense responses in plants against pathogenic infection. However, the mechanisms involved in the postharvest induction of resistance by MeJA in fruit are largely unknown. Thus, we investigated the effect of a postharvest MeJA treatment on disease resistance against Penicillium citrinum infection in Chinese bayberries and the possible mechanisms. The results indicated that treatment with 10 μmol L−1 of MeJA significantly inhibited green mould rot caused by P. citrinum, with the decay incidence being 66.2% lower than that of the control fruit after storage at 1 °C for 8 d. Moreover, it is clear that MeJA triggers a priming mechanism in Chinese bayberries, since only the MeJA-treated fruit showed an enhanced capacity to augment defense responses upon challenge with the pathogen. These augmented responses included an H2O2 burst, enhanced protein levels of phenylalanine ammonia-lyase and chitinase, and accumulation of phenolic compounds, lignin and phytoalexin. Therefore, our results suggest that a postharvest MeJA treatment induces disease resistance against P. citrinum in Chinese bayberries by priming of defense responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号