首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Banana fruit of the cultivar ‘Sucrier’ (Musa acuminata, AA Group) develops peel spotting at a relatively early stage of development (when the peel is about as slightly more yellow than green). Holding ripening bananas at 15 and 18 °C instead of room temperature (26–27 °C) only temporarily reduced spotting, but holding the fruit at 12 °C completely prevented it. The 12 °C treatment resulted in a lower level of total free phenolics, but had no effect on PAL or PPO activity. Transfer of banana fruit previously held at 12 °C to room temperature rapidly increased peel spotting. Transfer of bananas that had some spotting, from room temperature to 12 °C did not prevent further development of the spotting. It is concluded that holding spotless fruit at 12 °C prevents the spotting, although only if they are kept at that temperature, and that PAL and PPO activities seem not rate-limiting.  相似文献   

2.
‘Goldfinger’ bananas (Musa accuminata, FHIA-01) were harvested, held for 14–22 d at five temperatures and a constant relative humidity (RH) or at five RHs and a constant temperature and evaluated for quality attributes. The objectives of this work were to: (1) create quality curves for bananas stored at chilling and non-chilling temperatures; (2) create quality curves for bananas stored at a non-chilling temperatures and different RHs; (3) identify which sensory quality attribute limits the shelf life and marketability of bananas when stored at chilling and non-chilling temperatures or at different RHs; and (4) correlate subjective sensory attributes with quantitative quality measurements. Results from this study showed that temperature had a more significant impact on the quality of banana than RH. Bananas stored at temperatures higher than 10 °C were yellower and softer but had lower starch and higher soluble solids and total sugar content than those stored at lower temperatures. When stored at 2, 5 and 10 °C, bananas developed chilling injury (CI) and abnormal ripening when transferred to 20 °C. The most remarkable impact of RH on banana quality was on weight loss, which was significantly higher in fruit held below 80% RH than in fruit held in 87 or 92% RH. CI was the first sensory quality attribute to reach the limit of acceptability in fruit stored at 2, 5 and 10 °C, whereas color changes and softening limited the shelf life of bananas stored at 15 and 20 °C. Changes in color and/or softening were the two main sensory attributes that limited the shelf life of bananas stored at different RHs. Overall, for maximum quality and shelf life bananas should be stored at or above 15 °C and 92% RH. Finally, sensory attributes can be used to estimate peel color, pulp softening and sweetness, while SSC can be used as a reliable and simple method to estimate the total sugar content of bananas stored at different temperatures or different RHs.  相似文献   

3.
‘Anjou’ and ‘Comice’ pears from three harvest dates were conditioned to develop ripening capacity by exposure to 100 μL L−1 ethylene at 20 °C for 0, 24, 48, or 72 h, followed by varying durations of temperature conditioning at −0.5 or 10 °C. Ripening capacity was tested by measuring fruit firmness after 7 d at 20 °C after completion of conditioning treatments. Fruit firmness was also measured after conditioning but before ripening, and was designated “shipping firmness”, indicative of the potential for the fruit to withstand transport conditions without physical injury. Ripening capacity in both cultivars developed more rapidly with later harvest date, increasing duration of ethylene conditioning, and increasing duration of temperature conditioning. Ripening capacity developed much more rapidly at 10 °C than at −0.5 °C. Useful durations of temperature conditioning at 10 °C were limited by fruit softening below acceptable values of shipping firmness. However, sequential combinations of ethylene and temperature conditioning at both −0.5 and 10 °C were identified wherein post-conditioning shipping firmness was acceptable.  相似文献   

4.
Ethylene is related to senescence but also induces protective mechanisms against stress in plants. The citrus industry only applies the hormone to induce fruit degreening. The aim of this work was to determine the effect of ethylene on the quality of colored citrus fruit stored under commercial conditions to extend postharvest life, since it protects them from stress causing postharvest disorders such as chilling injury (CI) and non-chilling peel pitting (NCPP). The effect of conditioning mature Navelate and Lane Late sweet oranges (Citrus sinensis L. Osbeck) for 4 days with 2 μL L−1 ethylene at 12 °C, rather than at higher temperatures used for degreening, on the quality of fruit stored at 2 or 12 °C, was examined. The ethylene conditioning (EC) treatment did not increase color but reduced calyx abscission and NCPP in fruit of both cultivars stored at 12 °C, and also CI in Navelate fruit at 2 °C. Lane Late fruit did not develop CI but showed a new disorder in EC fruit held at 2 °C. This disorder began as scalded areas around the fruit stem end and extended over the fruit surface during storage. EC had no deleterious effect on the quality of Navelate oranges stored at either 2 or 12 °C. Similar results were found in Lane Late fruit although EC slightly increased off-flavor perception at 2 °C and the maturity index at 2 and 12 °C. Moreover, EC slightly increased the content of bioactive flavonoids in the pulp of Navelate fruit but significant differences between control and EC fruit were only found after prolonged storage at 2 °C. In Lane Late fruit, EC avoided the initial decrease in flavonoid content found in control samples. Results show, therefore, that EC at 12 °C may be a tool to extend postharvest life of NCPP and CI-sensitive oranges, and that the tolerance of citrus cultivars to the combined effect of EC and non-freezing low temperature (2 °C) should be tested to select the proper storage temperature.  相似文献   

5.
A continuing challenge for commercializing 1-methylcyclopropene (1-MCP) to extend the storage life and control superficial scald of ‘d’Anjou’ pear (Pyrus communis L.) is how to initiate ripening in 1-MCP treated fruit. ‘D’Anjou’ pears harvested at commercial and late maturity were treated with 1-MCP at 0.15 μL L−1 and stored either at the commercial storage temperature −1.1 °C (1-MCP@−1.1 °C), or at 1.1 °C (1-MCP@1.1 °C) or 2.2 °C (1-MCP@2.2 °C) for 8 months. Control fruit stored at −1.1 °C ripened and developed significant scald within 7 d at 20 °C following 3–5 months of storage. While 1-MCP@−1.1 °C fruit did not develop ripening capacity due to extremely low internal ethylene concentration (IEC) and ethylene production rate for 8 months, 1-MCP@1.1 °C fruit produced significant amounts of IEC during storage and developed ripening capacity with relatively low levels of scald within 7 d at 20 °C following 6–8 months of storage. 1-MCP@2.2 °C fruit lost quality quickly during storage. Compared to the control, the expression of ethylene synthesis (PcACS1, PcACO1) and signal (PcETR1, PcETR2) genes was stable at extremely low levels in 1-MCP@−1.1 °C fruit. In contrast, they increased expression after 4 or 5 months of storage in 1-MCP@1.1 °C fruit. Other genes (PcCTR1, PcACS2, PcACS4 and PcACS5) remained at very low expression regardless of fruit capacity to ripen. A storage temperature of 1.1 °C can facilitate initiation of ripening capacity in 1-MCP treated ‘d’Anjou’ pears with relatively low scald incidence following 6–8 months storage through recovering the expression of certain ethylene synthesis and signal genes.  相似文献   

6.
Mature green banana (Musa sapientum L. cv. Cavendish) fruit were stored in 0.5%, 2%, or 21% O2 for 7 days at 20 °C before ripening was initiated by ethylene. Residual effects of low O2 storage in mature green fruit on ripening and ester biosynthesis in fruit were investigated during ripening for up to 6 d at 20 °C. Concentrations of ethanol in mature green fruit did not change during storage in both 21% and 2% O2 atmospheres, but increased in fruit stored in 0.5% O2. The activities of alcohol dehydrogenase (ADH) in 2% and 21% O2 atmospheres remained very low throughout the storage period, but significantly increased with 0.5% O2. After transferring fruit to regular air and trigging ripening with ethylene, yellowing of peel, fruit softening and hydrolysis of starch in fruit stored in low O2 atmospheres were slower than in the control. Fruit stored in low O2 also showed a delayed onset of the climacteric peak. The activities of ADH were lower in the low O2 stored fruit than in the control fruit. Productions of ethyl acetate, isoamyl acetate, and isobutyl acetate were remarkably suppressed by low O2 storage. Alcohol acetyltransferase activity increased gradually with storage time in all treatments, being significantly lower in fruit with low O2 pretreatments. The results indicate that low O2 plus room temperature storage can extend storage life of bananas with the sacrifice of a low production of ester volatiles.  相似文献   

7.
Fresh-cut banana slices have a short shelf-life due to fast browning and softening after processing. The effects of atmospheric modification, exposure to 1-MCP, and chemical dips on the quality of fresh-cut bananas were determined. Low levels of O2 (2 and 4 kPa) and high levels of CO2 (5 and 10 kPa), alone or in combination, did not prevent browning and softening of fresh-cut banana slices. Softening and respiration rates were decreased in response to 1-MCP treatment (1 μL L−1 for 6 h at 14 °C) of fresh-cut banana slices (after processing), but their ethylene production and browning rates were not influenced. A 2-min dip in a mixture of 1% (w/v) CaCl2 + 1% (w/v) ascorbic acid + 0.5% (w/v) cysteine effectively prevented browning and softening of the slices for 6 days at 5 °C. Dips in less than 0.5% cysteine promoted pinking of fresh-cut banana slices, while concentrations between 0.5 and 1.0% cysteine delayed browning and softening and extended the post-cutting life to 7 days at 5 °C.  相似文献   

8.
Methods were tested for rapid induction of ripening capacity in ‘Packham's Triumph’ and ‘Gebhard Red D’Anjou’ pears in order to facilitate early marketing. Fruit of each cultivar were harvested at the onset of maturity and conditioned to develop ripening capacity by exposure to 100 μL L−1 ethylene at 20 °C for 0, 24, 48, or 72 h, followed by varying durations of temperature conditioning at −0.5 or 10 °C. Ripening capacity was tested by measuring fruit firmness after 7 d at 20 °C after completion of conditioning treatments. Fruit firmness was also measured after conditioning but before ripening, and was designated “shipping firmness,” indicative of the potential for the fruit to withstand transport conditions without physical injury. With temperature conditioning at −0.5 °C only, ‘Packham's Triumph’ pears needed 45 d to develop ripening capacity, while ‘Gebhard Red D’Anjou’ pears were not capable of fully ripening after 60 d, the longest duration tested. Using ethylene only, 72 h exposure was necessary to develop full ripening capacity in both cultivars, and adequate shipping firmness was maintained. Using temperature conditioning at 10 °C, ripening capacity in ‘Packham's Triumph’ and ‘Gebhard Red D’Anjou’ developed within 10 and 20 d, respectively, but shipping firmness in ‘Gebhard Red D’Anjou’ was compromised at 20 d. In both cultivars, 24 or 48 h in ethylene followed by 5 d at 10 °C induced ripening capacity while maintaining adequate shipping firmness.  相似文献   

9.
Persimmon production in Brazil is concentrated from February to June. The large amount of this fruit available in the market influences its price during this period. This study was carried out to evaluate the effect of different packaging plastic materials on extending the storage life of ‘Fuyu’ persimmons kept under refrigeration. ‘Fuyu’ persimmon fruits were harvested on the mature-green stage and enclosed in groups of three (750 ± 30 g) in different packaging materials: 58-μm multilayer polyolephynic film (PO); 50-μm low density polyethylene film (LDPE) and 38-μm microperforated PO. Unpacked fruit stored in corrugated cardboard boxes were used as control. Fruit were stored at 1 ± 1 °C/90 ± 5% RH for 90 d. Every 7 d, five replicates of each treatment were evaluated for headspace gas composition (O2, CO2) and then transferred to 25 ± 1 °C/70 ± 5% RH for five more days. Then they were evaluated as to headspace gas composition (O2, CO2, acetaldehyde and ethanol), firmness, weight loss, skin and flesh color, total soluble solids, titratable acidity, pH, decay, discoloration and sensory attributes. The gas composition in the steady-state established in the 58-μm PO and 50-μm LDPE films extended the storage period up to 84 d at 1 °C plus 5 d at 25 °C differing significantly (P  0.05) from the control fruit as well as from those in the 38-μm microperforated PO, which were stored for 21 and 28 d, respectively. Off-flavors were not detected by sensory analysis. These results suggest that the 58-μm PO and 50-μm LDPE films are suitable for atmosphere modification and packaging of ‘Fuyu’ persimmon fruit stored under refrigeration with an additional period of time at ambient temperature.  相似文献   

10.
The effect of commercial degreening with ethylene gas on fruit susceptibility and quality and development of postharvest green (GM) and blue (BM) molds on early season citrus fruit was investigated. Each cultivar was harvested with different peel color indexes (CI). Fruit were exposed for 3 d to 2 μL L−1 ethylene at 21 °C and 95–100% RH before or after artificial inoculation with Penicillium digitatum or Penicillium italicum. Control fruit were kept at the same environmental conditions without ethylene. Fruit were stored at either 20 °C for 7 d or 5 °C for 14 d and disease incidence (%) and severity (lesion diameter) were assessed. No significant effect of commercial degreening was observed on fruit susceptibility to both GM and BM on citrus cultivars inoculated after degreening. Likewise, no significant effect was observed on disease incidence on citrus cultivars inoculated before degreening and stored at either 20 °C for 7 d or 5 °C for 14 d. In contrast, in cultivars like ‘Clemenules’ mandarins and ‘Navelina’ oranges, degreening significantly increased the severity on fruit with higher initial CI (−3.6 and 1.7, respectively). GM and BM severity on degreened and control ‘Clemenules’ mandarins incubated at 20 °C for 7 d was 146 and 118 mm and 56 and 46 mm, respectively. In general, commercial degreening did not significantly affect external and internal quality attributes of citrus cultivars. Commercial degreening after inoculation of less green (more mature) fruit showed a trend to increase mold severity, presumably through an aging effect (acceleration of peel senescence).  相似文献   

11.
Fresh basil (Ocimum basilicum L.) is a highly perishable leafy green vegetable with a storage life of 4–5 d at room temperature. Exposure of basil leaves to temperatures below 12 °C during storage results in chilling injury; therefore, refrigeration cannot be used to extend postharvest life of basil. Typically, leafy vegetables are stored in darkness or extremely low irradiance. Darkness is known to induce senescence, and the initial phase of senescence is reversible by exposure to light. In this work, we studied the effects of low-intensity white light pulses at room temperature on postharvest senescence of basil leaves. Daily exposure for 2 h to 30–37 μmol m−2 s−1 of light was effective to delay postharvest senescence of basil leaves. Chlorophyll and protein levels decreased, ammonium accumulated and leaves developed visual symptoms of deterioration (darkening) during storage in darkness. Light pulses reduced the intensity of these senescence symptoms. The photosynthesis light compensation point of basil leaves was 50 μmol m−2 s−1 i.e., higher than the intensity used in this study, and the effect of treatment with red light was the same as with white light, while far red light was ineffective. Light pulses exerted a local effect on chlorophyll loss, but the effect on protein degradation was systemic (i.e., spreading beyond the illuminated parts of the leaf blade). The results of this study indicate that daily treatment for 2 h with low intensity light (30–37 μmol m−2 s−1 every day) during storage at 20 °C is an effective treatment to delay postharvest senescence of basil leaves. The delay of postharvest senescence by low intensity light pulses seems to be mediated by phytochromes, and it is systemic for protein, and partially systemic for chlorophyll degradation.  相似文献   

12.
The aim of this study was to understand the genotypic factors and post-climacteric storage conditions that affect bruise susceptibility of banana peel. Putative physicochemical indicators of bruise susceptibility, including peel electrolyte leakage (PEL), total polyphenolic content, hardness, water content, and peel thickness, were investigated. Bruise susceptibility is the lowest impact energy needed to produce visible bruising by an object dropped on post-climacteric banana fruit from a pre-determined height, converted into impact energy (20–200 mJ with a 20 mJ increment). The bananas were stored either at 18 °C throughout ripening or at 13 °C between the 2nd and 6th day after ethylene induction. Five cultivars with contrasting susceptibility to impact bruises were used. Neither Grande Naine nor hybrid Flhorban925 bruised at the maximum impact energy (200 mJ) during ripening whatever the storage conditions. A gradient in bruise susceptibility was observed among the other cultivars: French Corne > Fougamou > hybrid Flhorban916. Bruise susceptibility increased during ripening and was higher in bananas stored at 18 °C. The lower ripening temperature resulted in a two-day delay to fruit maturity as well as in bruise susceptibility. Bruise susceptibility was positively correlated with PEL (R = 0.78) and to a lesser extent negatively correlated with hardness (R = −0.45), and was not correlated with polyphenolic content. In conclusion, membrane permeability provides the first clue to understanding bruise susceptibility.  相似文献   

13.
Postharvest diseases limit the storage period and market life of fresh figs (Ficus carica L.). The objective of this work was to determine the effect of sulfur dioxide (SO2) applied by fumigation and/or by dual release SO2 generating pads on postharvest decay and quality retention of ‘Black Mission’ and ‘Brown Turkey’ (dark skin), and ‘Kadota’ and ‘Sierra’ (green skin) figs. A protocol for the computer-controlled application of gaseous SO2 has been developed which allows the application of very low specific concentration × time products of SO2 and simultaneous monitoring of the application progress. In vitro tests with important fungal, yeast and bacterial postharvest pathogens plated on Petri dishes and exposed to a SO2 concentration × time product (C × t) of 100 (μL/L) h at different temperatures showed fewer survived at 20 °C than at 0 °C. Therefore, fumigations were carried out at 20 °C in the rest of the experiments. The evaluation of different SO2 concentration × time products showed that a product of 25 (μL/L) h provided the best compromise between decay control and fruit injury. The performance of SO2 fumigations on warm or cold fruit, its combination with SO2 generating pads, and the use of repeated fumigations during cold storage were also evaluated. All the SO2 treatments tested reduced the percentage of decay, extending the market life of fresh figs. However, in some cases, the use of SO2 generating pads increased the incidence of skin bleaching. Fumigation of warm fruit at 25 (μL/L) h of SO2 reduced populations of Alternaria and Rhizopus spp. growing on the fig surface. The treatment was more effective against Rhizopus spp. than against Alternaria spp. Contamination of fruit by Botrytis spp. and Penicillium spp. was also reduced by SO2. In conclusion, results showed that SO2 can be a potential tool to control postharvest rots and therefore increase the market life of fresh figs.  相似文献   

14.
Wooden bin-stored ‘Bartlett’ pears (Pyrus communis L.) were hydrocooled (HC) or forced-air cooled (FAC) and immediately treated or not with 1-methylcyclopropene (1-MCP) for 24 h. 1-MCP gas concentrations used were 0, 0.3 or 0.6 μL L?1 (called 0, 0.3 and 0.6, respectively). Fruit were subsequently kept at 20 °C for 20 d or stored at ?0.5 °C and 95% RH for 60, 90, 120 or 150 d. After cold storage, fruit were kept at 20 °C for up to 16 d for further ripening. In another experiment, pears stored in wooden bins (W) or plastic bins (P) were all hydrocooled, treated or not with 0.5 μL L?1 1-MCP (called 0.5 and 0, respectively), stored at ?0.5 °C and 95% RH for 0, 30, 60, 90 or 120 d, and transferred to 20 °C for further ripening. In FAC pears, increasing 1-MCP concentrations usually resulted in delayed increases in ethylene production and lower ethylene production rates, as well as delayed softening. In contrast, HC-0.3 pear firmness did not differ from that of HC-0 fruit after cold storage. Generally, HC-0.3 pears displayed higher ethylene production and lower firmness values than FAC-0.3 pears after a 7-d exposure to 20 °C, regardless the length of cold storage. FAC-0.6 pears always showed lower ethylene production rates and higher flesh firmness values than HC-0.6 fruit. Soluble solids concentration was not consistently affected by 1-MCP. FAC-0.3 and HC-0.6 fruit showed higher titratable acidity values than HC-0 fruit after 0, 60, 120 and 150 d of cold storage plus 7 d at 20 °C. Effectiveness of 1-MCP treatments on HC pears was influenced by the bin material; P-0.5 pears were firmer than W-0.5 pears after 7 d at 20 °C, regardless the length of the cold storage. HC-0.5 fruit exposed to ?0.5 °C for 90 d reached eating quality (firmness ≤23 N) by day 7 if placed in W, and by day 21 when stored in P. Results and previous evidence suggest that wet wooden bin material may represent a major though unpredictable source of 1-MCP sorption that could bind a significant percentage of the 1-MCP applied. When used at relatively low doses 1-MCP partial removal by wet wooden bins can compromise the application effectiveness for controlling ethylene action.  相似文献   

15.
‘Raf’ tomato fruit were harvested at the mature-green stage and treated with 1-methylcyclopropene (1-MCP) at 0.5 (for 3, 6, 12 or 24 h) or 1 μl l−1 for 3 or 6 h. Fruit were stored at 10 °C for 7 days and a further 4 days at 20 °C for a shelf life period. All 1-MCP treatments reduced both ethylene production and respiration rate and in turn retarded the changes in parameters related to fruit ripening, such as fruit softening, colour (a*) change, and increase in ripening index (TSS/TA ratio). These effects were significantly higher when 1-MCP was applied at 0.5 μl l−1 for 24 h. In order to obtain the maximum benefit from 1-MCP, this treatment would be the most suitable for commercial purposes.  相似文献   

16.
Dendrobium orchid inflorescences were treated for 4 h at 25 °C with or without 100–500 nl/l 1-MCP and were then placed in water at 25 °C to follow abscission. In controls, depending on the experiment, 20–80% of the floral buds and 0–20% of the open flowers abscised within 1 week. The 1-MCP pretreatment largely prevented this abscission. If flowers were exposed to 1.0 μl/l ethylene for 3 days, all floral buds and all open flowers abscised within the 3 days of treatment. 1-MCP treatment just prior to ethylene treatment largely prevented the ethylene effect. Treatment with STS was as effective as treatment with 1-MCP. Dendrobium inflorescences are usually shipped by air in cardboard boxes lined with plastic film. The stem ends are placed in plastic tubes filled with water. After shipment and placement in water, a considerable percentage of the buds, and some flowers, abscise. This is probably due to elevated ethylene concentrations inside the boxes. Treatment of the inflorescences with 100–500 nl/l 1-MCP prior to simulated air transport largely prevented abscission during vase life. 1-MCP treatment inhibited ethylene production of the inflorescences by lowering both ACC synthase in open flowers and ACC oxidase activity in floral buds.  相似文献   

17.
In this study, the changes in vitamin C, l-ascorbic acid (AA) and l-dehydroascorbic acid (DHA) levels in broccoli flower buds were examined during pre-storage and storage periods, simulating refrigerated transport with wholesale distribution and retail, respectively. Broccoli heads were pre-stored for 4 or 7 days at 0 °C or 4 °C in the dark and then stored for 3 days at 10 °C or 18 °C. During storage the broccoli heads were exposed for 12 h per day to three different levels of visible light (13, 19 or 25 μmol m−2 s−1) or a combination of visible light (19 μmol m−2 s−1) and UV-B irradiation (20 kJ m−2 d−1), or they were stored in the dark. The vitamin C content in broccoli flower buds during storage was significantly affected by pre-storage period and temperature. Higher vitamin C levels in flower buds after storage were observed for broccoli heads pre-stored for 4 days or at 0 °C as compared to those pre-stored for 7 days or at 4 °C. Storage temperature also affected vitamin C in broccoli flower buds, with higher levels observed for broccoli stored at 10 °C than at 18 °C. Hence, vitamin C in broccoli flower buds was demonstrated to decrease together with increasing pre-storage period, pre-storage temperature and storage temperature. AA in broccoli flower buds was influenced mainly by storage temperature and to a minor extent by pre-storage temperature. The DHA level and DHA/AA ratio were stable in flower buds of broccoli pre-stored for 7 days, whereas increasing tendencies for both DHA level and ratio were observed after pre-storage for 4 days. These results indicate a shift in the ascorbate metabolism in broccoli flower buds during storage at low temperatures, with its higher rate observed for broccoli pre-stored for shorter time. There were no effects of the light and UV-B irradiation treatments on vitamin C, AA and DHA levels in broccoli flower buds.  相似文献   

18.
The effect of exogenous oxalic acid treatment on ripening attributes of banana fruit during storage was investigated. Banana fruit were dipped into solutions of 0 (control) or 20 mM oxalic acid for 10 min and then stored at room temperature (23 ± 2 °C) and 75–90% relative humidity. The application of oxalic acid reduced fruit deterioration during storage. The oxalic acid treatment also reduced the rates of respiration and ethylene production, and delayed the decreases in firmness, hue angle, and maximal chlorophyll fluorescence (Fv/Fm) of banana fruit during storage. Furthermore, fruit treated with oxalic acid exhibited higher superoxide dismutase activity and antioxidant capability with a lower production of reactive oxygen species at the late storage period compared with non-oxalic acid-treated fruit. Overall, the oxalic acid treatment was effective in inhibiting postharvest ripening of banana fruit and exhibited the potential for commercial application to store the bananas at room temperature. It can be concluded that the delay in banana fruit ripening associated with oxalic acid treatment could be due to inhibition of respiration and ethylene production rates, and reduction of oxidative injury caused by reactive oxygen species through increased antioxidant activity.  相似文献   

19.
Temperature abuse of fresh-cut products occurs routinely during transport and retail store display. However, the stage of product shelf life during temperature abuse and its impact on sensory attributes have not been studied. This study evaluated the effect of temperature abuse occurring immediately after processing and late in shelf life through measurements of sensory attributes, and membrane integrity of commercially packaged ready-to-eat baby spinach. The packaged products were received within 2 days of processing. Samples subject to early temperature abuse were immediately placed at 1, 4, 8, 12, 16 and 20 °C storage upon arrival, and those subject to late temperature abuse were stored at 1 °C for six days, and then transferred to 4, 8, 12, 16 and 20 °C storage. Package headspace gas composition, in-package visual appeal, purchase intent, product color, off-odor, decay, texture, overall quality, and tissue electrolyte leakage were evaluated every 1–2 day up to 16 day total. Results indicate that when the product temperature is maintained at 1–4 °C, the quality of commercially packaged baby spinach can be retained for up to 18 days post-processing. However, storage temperature of 8 °C or above, significantly (P < 0.001) shortened product shelf life as exhibited by accelerated tissue electrolyte leakage, product yellowing, decay and off-odor development. Most importantly, the product's shelf life stage significantly affected its response to temperature. Quality deterioration proceeded more rapidly when temperature abuse occurred in late as opposed to early shelf life stage.  相似文献   

20.
Freshly cut slices of apple (Malus x domestica Borkh cv. Granny Smith) were fumigated with nitric oxide (NO) gas at concentrations between 1 and 500 μl l−1 in air at 20 °C for up to 6 h followed by storage at 0, 5, 10 and 20 °C in air. Exposure to nitric oxide delayed the onset of browning on the apple surface with the most effective treatment being fumigation with 10 μl l−1 NO for 1 h. While nitric oxide inhibited browning in slices held at all temperatures, it was relatively more effective as the storage temperature was reduced with the extension in postharvest life over the respective untreated slices increasing from about 40% at 20 °C to about 70% at 0 °C. In a smaller study on ‘Royal Gala’, ‘Golden Delicious’, ‘Sundowner’, ‘Fuji’ and ‘Red Delicious’ slices stored at 10 °C, 10 μl l−1 NO for 1 h was found to be effective in inhibiting surface browning in all cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号