首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phenolic compounds in blueberry (Vaccinium spp.) fruit and leaf extracts (BLE) were determined based on HPLC analysis. Antimicrobial assays against Staphylococcus aureus, Listeria monocytogenes, Salmonella typhimurium and Escherichia coli, as well as fungi isolated from the rotting blueberry fruit were conducted. The effects of chitosan coating incorporating different concentrations of BLE on the quality of fresh fruit during postharvest storage at 2 ± 1 °C and 95 ± 2% relative humidity (RH) for 35 d and then at room conditions for 3 d were also investigated. Five different coating treatments were applied including 2% (w/v) chitosan coating (T1), 2% (w/v) chitosan coating containing 4% (w/v, T2), 8% (w/v, T3), or 12% (w/v, T4) BLE, and 2% (w/v) chitosan coating containing 12% BLE plus modified atmosphere packaging (MAP at 3 kPa O2 + 12 kPa CO2) (T5). A sample of blueberries dipped into distilled water was used as control (T0). BLE had a greater variety of phenolic compounds than fruit extracts with syringic acid the highest concentration (0.259 ± 0.003 g kg−1), but the total phenolic content in BLE was lower (P < 0.05) than in fruit extracts. BLE showed good antimicrobial activity against all tested microorganisms, with a minimum inhibition concentration from 25 to 50 g L−1. The 2% chitosan coating that incorporated 8% or 12% BLE showed some degree of decreasing decay rate of fruit compared with the control, and the coating with BLE plus MAP had more effective control of fruit decay. All treated samples maintained higher total phenolic content and radical scavenging activity than the control. This study suggested that chitosan coating incorporating BLE can be employed to extend shelf-life and maintain high nutritional value of fresh blueberries during postharvest storage.  相似文献   

2.
Flower opening in Iris (Iris x hollandica) depends on elongation of the pedicel + ovary. This elongation lifts the bud above the point where the sheath leaves no longer mechanically inhibit lateral tepal movement. We here report on the effects on flower opening of storage at various temperatures, of holding the flowers dry rather than in water, and of a 12 h light/dark cycle instead of darkness, in cv. Blue Magic. During 3 d of storage in darkness at 11 °C or 6 °C the flowers placed in water opened. Flowers stored at 3.0 °C did not open during the storage period but did so during subsequent vase life at 20 °C. Flowers stored in water at 0.5 °C remained closed, even during subsequent vase life at 20 °C. None of the flowers that were stored dry for 3 d at 15 °C, 11 °C, 6 °C, 3 °C or 0.5 °C opened during vase life. Compared to flowers placed in continuous darkness, a rhythm of 12 h light and 12 h darkness inhibited opening during a 3 d storage period at 20 °C. It is concluded that cut Iris flowers (a) can be stored in water at 3 °C for more than a week, but cannot be stored for 3 d or more in water at 15 °C, 11 °C, 6 °C or 0.5 °C, and (b) cannot be stored dry for long (under the present conditions 3 d or longer) at any of these temperatures. Iris flowers were found to be chilling-sensitive, although only at temperatures of about 0.5 °C.  相似文献   

3.
It has been reported that a short duration hot water treatment, applied as a heat shock, improves subsequent postharvest quality in bagged spinach and rocket leaves. This study has established that the maximum hot water temperature and duration before spinach leaves showed damage, was 45 °C for 60 s. Subsequent detailed studies compared postharvest quality of leaves treated at 45 °C for 60 s immediately after harvest with untreated leaves after 5 and 10 days of storage at 4 °C. Heated leaves were significantly lighter and more yellow suggesting enhanced senescence, but leaf membrane integrity and associated gas composition of the storage atmosphere were not significantly different. Hot water treatment at 45 °C for 60 s applied immediately after harvest had a mixed effect on the biochemical constituents of the leaves; total carotenoid concentration was maintained compared to untreated leaves but the contents of ascorbic acid, dehydroascorbic acid, chlorophyll a and b were not affected. These observations suggest that in contrast to other reports, hot water treatments have limited commercial potential for postharvest quality improvement of spinach leaves.  相似文献   

4.
Preharvest gibberellic acid-treated California ‘Bing’ sweet cherries (Prunus avium L.) were treated with hot water baths (46–58 °C for 0.25–18 min), followed by hydrocooling. The fruit were then stored to simulate either air shipment or sea shipment to overseas markets, both followed by 15 h of shelf life at 20 °C. In separate experiments, cherries were also infested with codling moth larvae and subjected to similar hot water bath heating. The quality attributes showed different sensitivity to the combinations of temperature and time used for hot water bath treatment. Pitting was more common in fruit treated at lower temperatures for longer times, while stem browning was more common in fruit treated at high temperatures. Berry browning, stem color, and pitting were the quality attributes most affected by heat treatment. Browning of cherry stem color was a crucial factor in determining whether a combination of temperature and time for hot water bath treatment was successful. All cherries stored at 0 °C for 14 days to simulate sea shipment were of unacceptable quality after shelf life. Hot water bath treatments that provided 100% codling moth mortality and maintained overall acceptable fruit quality were very limited and included treatments at 50 °C for 10 min and at 54 °C for 6 min. Delaying the hot water bath treatment after fruit harvest, even if the cherries were kept at 0 °C, resulted in a greater loss in fruit quality compared with those treated on the harvest day. Using hot water baths as a quarantine treatment for codling moths (Cydia pomonella) on sweet cherries may be feasible if fruit are air shipped at 5 °C for 2 days, but not suitable if fruit are sea shipped at 0 °C for 14 days.  相似文献   

5.
Kiwifruit is cold-sensitive and very susceptible to chilling injury (CI) during low temperature storage. In this study, kiwifruit (Actinidia chinensis cv. Hongyang) were pre-treated by water dip for 10 min at 20 (control) or 35, 45, or 55 °C (heat pretreatments) and then stored at 0 °C for 90 days to investigate the effect of hot water treatments (HWT) on chilling injury tolerance. Results showed that 35 °C and 45 °C HWT alleviated but did not completely prevent chilling injury development. By contrast, 55 °C HWT increased symptoms of chilling injury. The 45 °C HWT was the most effective at reducing chilling injury index and incidence. Compared with the other HWT, fruit treated at 45 °C exhibited higher firmness and soluble solids content (SSC), and lower malondialdehyde (MDA) content, lipoxygenase (LOX) activity and ethylene production rate. C-repeat/dehydration-responsive element binding factors (CBFs) are key regulators in cold response. To investigate the molecular regulation of HWT on chilling tolerance of kiwifruit, a 637 bp CBF gene was identified and the relative expression of AcCBF was measured by RT-qPCR. In accordance with the effects of HWT on physiological parameters of chilling injury, AcCBF expression level was highest in the 45 °C HWT. These results indicate that HWT at 45 °C for 10 min prior to low temperature storage is effective for alleviating symptoms of chilling injury in ‘Hongyang’ kiwifruit.  相似文献   

6.
The effects of four cut types (wedges, slices, 1/2 and 1/4 slices) of ‘Lisbon’ lemons (Citrus lemon L.) and storage at four temperatures (0, 2, 5 and 10 °C) on post-cutting life were studied. Respiration rates of all cut types that were stored at 0, 2 and 5 °C up to 8 days were 2–5 times higher than those of the whole lemons, while the increase was up to 12-fold at 10 °C. Small differences among treatments were observed in the post-cutting changes of color parameters and chemical composition. Based on sensory analysis, the four cut types remained marketable for up to 7 days at all tested temperatures, but only the wedges, slices, and 1/2 slices stored at 0, 2 and 5 °C preserved their sensory attributes for up to 10 days. Good retention of vitamin C (about 85% ascorbic acid and 15% dehydroascorbic acid) and antioxidant capacity were found after 10 days at 0, 2, and 5 °C. Ethanol was the main fermentative metabolite found (88% of the total) and its concentration increased by up to three-fold in slices, 1/2 and 1/4 slices after 10 days at 10 °C. Total phenolics concentrations decreased gradually throughout the storage period in all cases.  相似文献   

7.
This study investigated the effects of brief hot water and thiabendazole (TBZ) postharvest dip treatments on ultrastructural changes of fruit epicuticular wax (ECW), TBZ residues, decay development and quality traits of ‘Tarocco’ oranges [Citrus sinensis (L.) Osbek] subjected to cold quarantine, subsequent simulated transport and shelf-life. Commercially mature fruit were submerged in water at 20 °C (control fruit) or TBZ at 1000 mg/L and 20 °C for 60 s, or in hot water without or with TBZ at 300 mg/L and 53, 56, or 59 °C for 60, 30, and 15 s respectively. Following treatments, fruit were stored for 3 weeks at 1 °C (simulated quarantine conditions for fruit disinfestations against Mediterranean fruit fly, Medfly), followed by 4 days at 3 °C (simulated long distance transport), and finally kept at 20 °C for 3 days (shelf-life, SL). Scanning electron microscopy (SEM) analysis of ‘Tarocco’ orange surface showed that the typical wax platelets, lifting around edges of wax plates and areas free of epicuticular wax (ECW), that disappeared after hot water dips at 53–59 °C for 60–15 s, become visible again after storage for 21 days at 1 °C (quarantine conditions), and changes involving the appearance of rough ultrastructure, presence large curled plates, fissured wax crusts, and areas with ECW deficiencies, became much more pronounced after shelf-life. These occurrences were related to the transient effect of hot water treatment in decay control. Conversely, treatments with 300 mg/L TBZ 53 °C for 60 s or 56 °C for 30 s effectively reduced decay after quarantine. These treatments were as effective as standard treatment with 1000 mg/L TBZ at 20 °C and produced similar TBZ residue levels in fruit, without impairing fruit quality traits such as visual appearance, weight loss, compression test, sensory attributes, juice color parameters (a*, b*, h, L*, and Chroma), and juice chemical characteristics (soluble solids content, titratable acidity, ascorbic acid, glucose, sucrose, citric acid, total phenols, total anthocyanins, and total antioxidant activity).  相似文献   

8.
The integration of sodium carbonate (SC; dips at 20 °C for 150 s in aqueous 3% SC solutions) treatments and X-ray irradiation (at doses of 510 and 875 Gy) was evaluated on artificially inoculated ‘Clemenules’ clementine mandarins for the control of postharvest green and blue molds, caused by Penicillium digitatum and Penicillium italicum, respectively. Although significant, the reduction of both disease incidence (number of infected fruit) and severity (lesion diameter) on fruit either incubated at 20 °C for 7 days or cold-stored at 5 °C for 21 days was not sufficient for satisfactory disease control under hypothetical commercial conditions. Therefore, the combined treatments could not be a substitute for conventional chemical fungicides. However, pathogen sporulation was greatly inhibited on infected clementines, thus X-irradiation could be of value for management of Penicillium resistant strains and to reduce inoculum levels in citrus packinghouses. X-ray irradiation at 195, 395, 510, and 875 Gy did not influence either decay incidence or the area under the disease progress curve (AUDPC) of lesions of green and blue molds on mandarins inoculated with the pathogens 2, 3, or 6 days after irradiation and incubated for 7 days at 20 °C. Therefore, X-ray treatment did not induce disease resistance in the rind of irradiated fruit. Although X-irradiation at doses up to 875 Gy followed by either 14 days at 20 °C or 60 days at 5 °C caused very slight rind pitting, minor decreases in fruit firmness, and modest increases in juice acetaldehyde and ethanol contents, these changes had no practical impact on fruit quality. Rind color, titratable acidity, soluble solids concentration, maturity index and juice yield were not influenced by irradiation. ‘Clemenules’ can be considered as a clementine cultivar highly tolerant to X-irradiation.  相似文献   

9.
The effects of different concentrations (0.1%, 0.3% and 0.5%, w/v) of lemongrass essential oil incorporated into an alginate-based [sodium alginate 1.29% (w/v), glycerol 1.16% (w/v) and sunflower oil 0.025% (w/v)] edible coating on the respiration rate, physico-chemical properties, and microbiological and sensory quality of fresh-cut pineapple during 16 days of storage (10 ± 1 °C, 65 ± 10% RH) were evaluated. Coated fresh-cut pineapple without lemongrass and uncoated fresh-cut pineapple were stored under the same conditions and served as the controls. The results show that yeast and mould counts and total plate counts of coated samples containing 0.3 and 0.5% (w/v) lemongrass were significantly (p < 0.05) lower than other samples. However, the incorporation of 0.5% (w/v) lemongrass in coating formulation significantly (p < 0.05) decreased the firmness and sensory scores (taste, texture and overall acceptability) of fresh-cut pineapples. Therefore, the results indicate that an alginate-based edible coating formulation incorporated with 0.3% (w/v) lemongrass has potential to extend the shelf-life and maintain quality of fresh-cut pineapple.  相似文献   

10.
An antagonistic isolate Bacillus amyloliquefaciens HF-01, sodium bicarbonate (SBC) and hot water treatment (HW) were investigated individually and in combination against green and blue mold and sour rot caused by Penicillium digitatum, P. italicum and Geotrichum citri-aurantii respectively, in mandarin fruit. Populations of antagonists were stable in the presence of 1% or 2% SBC treatment, and spore germination of pathogens in potato dextrose broth was greatly controlled by the hot water treatment of 45 °C for 2 min. Individual application of sodium bicarbonate at low rates and hot water treatment, although reducing disease incidence after 8 weeks or 4 weeks of storage at 6 °C or 25 °C respectively, was not as effective as the fungicide treatment. The treatment comprising B. amyloliquefaciens combined with 2% SBC or/and HW (45 °C for 2 min) was as effective as the fungicide treatment and reduced decay to less than 80% compared to the control. B. amyloliquefaciens HF-01 alone or in combination with 2% SBC or/and HW significantly reduced postharvest decay without impairing fruit quality after storage at 25 °C for 4 weeks or at 6 °C for 8 weeks. These results suggest that the combination of B. amyloliquefaciens HF-01, SBC and HW could be a promising method for the control of postharvest decay on citrus while maintaining fruit quality after harvest.  相似文献   

11.
The storage of fruit is characterized by many physiological and biochemical changes, and this study aimed to study respiration rate, ethylene production, and other biochemical variations of ackee fruit arils (Blighia sapida), cheese variety, stored at 5, 10 and 20 °C during eight days. During storage, respiration rate decreased but ethylene production increased. Glucose, fructose, sucrose, and short chain fructooligosaccharides – 1-kestose, nystose and DP-5 – and total phenolic compounds also decreased, however, the decrease was much higher at 20 °C. The L*, a*, b, C* and H* values showed that lower temperatures preserved much better colour and visual quality, and arils stored at 5 °C were rated excellent compared to those stored at 10 and 20 °C. The quality of arils stored at 10 °C also was more than satisfactory, while arils stored at 20 °C were completely spoiled after 8 days and showed high weight losses compared to arils stored at 5 and 10 °C, which did not show any spoilage and very low weight losses. In conclusion, the results demonstrated that ackee fruit arils can be stored in very good conditions for a minimum of eight days under low temperature regimes, although at 5 °C arils showed the best shelf-life.  相似文献   

12.
Burdock roots were stored for six weeks at three temperatures, 0, 15 and 20 °C, and activity of sucrose hydrolase (SH), 1-kestose hydrolase (1-KH), inulin hydrolase (InH), sucrose:sucrose 1-fructosyltransferase (1-SST) and fructan:fructan 1-fructoslytransferase (1-FFT) were assessed. Simultaneously, total fructooligosaccharides (FOS), total inulooligosaccharides (IOS) and inulin were also assessed during storage. During storage, SH showed an irregular variation at 15 and 20 °C, and was significantly higher at 0 °C showing a continuous increase during the storage period. 1-KH decreased progressively at 15 and 20 °C, but showed a sharp increase at 0 °C after two weeks and decreased afterwards. InH showed a different although more regular pattern by decreasing progressively at 0, 15 and 20 °C. However, the decrease was more significant at 15 and 20 °C during the first two weeks, while at 0 °C the decrease was significant after four weeks storage. 1-SST and 1-FFT activities decreased progressively in a pseudo-linear regression during storage, and showed similar patterns. At 15 and 20 °C, total FOS increased during the first three weeks then decreased, while at 0 °C FOS increased progressively during storage. Total IOS increased during storage, however, this increase was much higher at 0 °C than that observed at 15 and 20 °C. Inulin content decreased during storage and final content was lower at 20 °C. The inulin to total FOS plus total IOS ratio decreased sharply during the first two weeks of storage, then progressively during the last four weeks, while the ratio of hydrolyzing to synthesizing activities was quite stable at 15 and 20 °C, but showed a peak at 0 °C after two weeks. The results suggest that carbohydrate metabolism in stored burdock depends partly on temperature and other physiological factors.  相似文献   

13.
Significant (P  0.05) differences were observed in dragon fruit quality when treated with different concentrations of ethanolic extract of propolis (EEP) (0.25, 0.50, 0.75 and 1.0%) and stored at 20 ± 2 °C and 80 ± 5% relative humidity (RH) for 20 days. Fruit treated with 0.50% EEP showed the most promising results, while fruit treated with 0.75 and 1.0% EEP showed some phytotoxic effects even after 8 days of storage. The results of gas exchange analysis also proved the efficacy of 0.50% EEP concentration. Thus, it can be concluded from the present investigation that EEP at 0.50% concentration could be used to extend the storage life of dragon fruit without any negative effects on the quality.  相似文献   

14.
Freshly harvested leeks (Allium porrum L.) were heated by immersion in water at 50, 52.5, 55 or 57.5 °C for 0–60, 0–35, 0–20 and 0–15 min, respectively. After hot water treatment, leeks were cooled in water at ambient temperature for 10 min and then cut at 22 cm from the compressed stem of the root base, weighed, had color measured and stored at 4 °C for 9 days. Untreated stalks (without immersion in a hot water bath) were used as controls. Hot water treatments at 50 °C for 40–60 min, 52.5 °C for 25–35 min, 55 °C for 17.5–20 min and 57.5 °C for 10–15 min efficiently controlled postharvest leaf extension growth in stalks stored for 9 days. However, treatments that controlled leaf extension growth showed fresh weight loss significantly higher than the control. There was only a slight effect of heat treatment on color attributes of stored minimally processed leek.  相似文献   

15.
The main problem affecting the quality of fresh-cut sunchoke tubers is cut surface discoloration. Pre- and post-cutting hot water and ethanol treatments were evaluated for their potential to inhibit discoloration, color changes, and associated phenolic metabolism in tuber slices stored in air at 5 °C. Some of the treatments tested inhibited discoloration and changes in a* and hue color values. Slices that were post-cut treated with hot water at 50 °C for 6–8 min or 55 °C for 3–4 min and pre-cut treated with water at 50 °C for 20–25 min maintained good color for 8–12 days at 5 °C. Post-cut ethanol fumigation (150–750 μL/L for 5 h at 5 °C) can prevent discoloration for 30 d at 5 °C. Post-cut dips with ethanol solutions (3, 5, 8 or 10% for 5 min) increased shelf-life twofold or longer compared to untreated slices. Ethanol fumigation retarded the onset of wound-induced respiration rates as well as reducing maximum rates. A post-cut 10% ethanol dip also reduced respiration rates and reduced PAL activity and total phenolics. Ethanol dips had no effect and hot water treatments had no persistent effect on microbial loads over 12 d.  相似文献   

16.
The antifungal activities of cinnamon extract (CE), piper extract (PE) and garlic extract (GE) were evaluated on banana crown rot fungi (Colletotrichum musae, Fusarium spp. and Lasiodiplodia theobromae) in vitro. The assay was conducted with extracts of CE, PE and GE with concentrations of 0, 0.1, 0.5, 1.0, 5.0, 10.0 and 0.75 g L−1 of carbendazim (CBZ) on potato dextrose agar at room temperature. CE completely inhibited conidial germination and mycelial growth of all fungi at 5.0 g L−1. PE totally suppressed mycelial growth of all fungi at 5.0 g L−1 and conidial germination at 10.0 g L−1 except for Fusarium spp. GE had no significant effects but low concentrations (0.1 and 0.5 g L−1) enhanced germ tube elongation of the three fungi. The ED50 values were higher for mycelial growth than for conidia except for Fusarium spp. Combined treatments were investigated on crown rot development in banana fruit (Musa AAA group ‘Kluai Hom thong’). Treatments included 5.0 g L−1 CE, 1% (w/v) chitosan solution, hot water treatment (HWT, 45 °C for 20 min), CE plus chitosan, CE plus HWT and 0.75 g L−1 of CBZ, applied before and after inoculation of the fruit. Crown rot development was assessed during storage at 13 °C for 7 weeks. Disease development was least (25%) on CE treated fruit after inoculation compared to CBZ but was higher when CE was applied before inoculation. Chitosan significantly delayed ripening as in terms of peel color, firmness, soluble solids and disease severity. CE showed no negative effects on quality of fruit. CE plus HWT caused unacceptable peel browning.  相似文献   

17.
Tomatoes (Lycopersicon esculentum Mill., cv. Rapsodie) were harvested at the mature green stage and treated with 250 nl l−1 1-methylcyclopropene (1-MCP) for 24 h at 20 °C. The fruit were then stored for 24 days at 15, 20 or 25 °C at 90–95% relative humidity. Sampling was carried out at 0, 6, 12, 18 and 24 days after treatment. Treatment with 1-MCP delayed ripening as measured by changes in lycopene, chlorophyll, hue angle, polygalacturonase (PG) activity and tissue firmness. Ripening was delayed by 6 days at 25 °C, by 12 days at 20 °C, and by 18 days at 15 °C in 1-MCP-treated fruit. In general, 1-MCP only delayed the onset of ripening-related changes and did not significantly alter final values for measures of firmness, color (hue angle), PG activity, and lycopene and chlorophyll contents at a particular storage temperature. The results suggest that 1-MCP is most effective at delaying ripening of mature-green tomatoes when they are stored near the currently recommended temperature range of 12.5–15 °C.  相似文献   

18.
This study compared the effectiveness of practical grade chitosan when used in solution with acetic, glutamic, formic and hydrochloric acids, and a water-soluble commercial chitosan formulation, in controlling postharvest diseases of strawberry. The commercial chitosan formulation and other resistance inducers based on benzothiadiazole, oligosaccharides, soybean lecithin, calcium and organic acids, and Abies sibirica and Urtica dioica extracts were also tested. The commercial chitosan formulation was as effective as the practical grade chitosan solutions in the control of gray mold and Rhizopus rot of strawberries immersed in these solutions and kept for 4 days at 20 ± 1 °C. Moreover, the treatment with commercial and experimental resistance inducers reduced gray mold, Rhizopus rot and blue mold of strawberries stored 7 days at 0 ± 1 °C and then exposed to 3 days shelf-life. The highest disease reduction was obtained with the commercial chitosan formulation, followed by benzothiadiazole, calcium and organic acids. The compounds that provided the best results in postharvest applications to control storage decay of strawberries, should be tested in further trials through preharvest treatments, applied at flowering and a few days before harvest.  相似文献   

19.
In this study, the changes in vitamin C, l-ascorbic acid (AA) and l-dehydroascorbic acid (DHA) levels in broccoli flower buds were examined during pre-storage and storage periods, simulating refrigerated transport with wholesale distribution and retail, respectively. Broccoli heads were pre-stored for 4 or 7 days at 0 °C or 4 °C in the dark and then stored for 3 days at 10 °C or 18 °C. During storage the broccoli heads were exposed for 12 h per day to three different levels of visible light (13, 19 or 25 μmol m−2 s−1) or a combination of visible light (19 μmol m−2 s−1) and UV-B irradiation (20 kJ m−2 d−1), or they were stored in the dark. The vitamin C content in broccoli flower buds during storage was significantly affected by pre-storage period and temperature. Higher vitamin C levels in flower buds after storage were observed for broccoli heads pre-stored for 4 days or at 0 °C as compared to those pre-stored for 7 days or at 4 °C. Storage temperature also affected vitamin C in broccoli flower buds, with higher levels observed for broccoli stored at 10 °C than at 18 °C. Hence, vitamin C in broccoli flower buds was demonstrated to decrease together with increasing pre-storage period, pre-storage temperature and storage temperature. AA in broccoli flower buds was influenced mainly by storage temperature and to a minor extent by pre-storage temperature. The DHA level and DHA/AA ratio were stable in flower buds of broccoli pre-stored for 7 days, whereas increasing tendencies for both DHA level and ratio were observed after pre-storage for 4 days. These results indicate a shift in the ascorbate metabolism in broccoli flower buds during storage at low temperatures, with its higher rate observed for broccoli pre-stored for shorter time. There were no effects of the light and UV-B irradiation treatments on vitamin C, AA and DHA levels in broccoli flower buds.  相似文献   

20.
This study investigated the effects of passive modified atmosphere packaging (MAP), storage temperature (5, 10 and 15 °C) and duration of 14 days on the postharvest quality attributes, compositional change in flavour attributes and microbiological quality of minimally processed pomegranate arils (Punica granatum L.), cvs ‘Acco’ and ‘Herskawitz’. Volatile compounds were extracted via headspace solid phase micro-extraction (HS-SPME) and analyzed by gas chromatography–mass spectrometry (GC–MS). A total of 17 and 18 volatiles were detected and identified in the headspace of pomegranate juices of ‘Acco’ and ‘Herskawitz’, respectively. Based on the physicochemical attributes and microbial evaluation, the postharvest life of MA-packaged ‘Acco’ and ‘Herskawitz’ was limited to 10 days due to fungal growth ≥2 log CFU g−1 at 5 °C. However, the concentration (%) and compositional changes in volatile compounds indicated that the flavour/aroma life (7 days) was shorter than the postharvest shelf-life based on appearance and other physicochemical (10 days) for both cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号