首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Disease epizootics have negatively affected production and expansion of the shrimp culture industry. This, along with environmental concerns regarding limited water resources and contamination of receiving streams, has caused the industry to investigate more sustainable and biosecure management practices. A study was conducted to evaluate the effect of limited water exchange on water quality, growth and survival of the Pacific white shrimp Litopenaeus vannamei postlarvae (PL) in greenhouse-enclosed raceways. Concentrations of NH4-N did not exceed 2.0 mg l−1 during this period; whereas, NO2-N exceeded 26.4 mg l−1, indicating assimilation of primary amines by primary productivity. Periodic removal of suspended solids by a common pressurized sand filter and injection of oxygen into culture water resulted in high-survival rates for both raceways (97.5 and 106.0%) with an average biomass yield of 4.29 ± 0.06 kg m−3. Shrimp samples collected during the nursery trial and at harvest showed no signs of bacterial or viral pathogen infections.  相似文献   

2.
A simple indoor recirculating system for production of juvenile sea cucumber (Apostichopus japonicus) was operated on a commercial scale for 90 days during winter. The system consists of three 70 m3 sea cucumber rearing tanks and one biofilter tank where macroalgae (Ulva pertusa) was used as a biofilter in order to reduce water requirements. Effluent from the sea cucumber tanks drained into the macroalgae biofilter tank and were then returned to the sea cucumber tanks by a discontinuous-flow recirculation system. Survival and growth rates in the sea cucumber culture tanks were similar to those in the control tank (with one water exchange per day). The survival rate averaged about 87%. The average body weight increased from 3.5 ± 0.3 g to 8.1 ± 0.8 g and total sea cucumber biomass production over the experimental period was 745 g m−2 after initial stocking densities of 375 g m−2. The growth rate of U. pertusa was 3.3% day−1. U. pertusa was efficient in removing toxic ammonia and in maintaining the water quality within acceptable levels for sea cucumber culture; there were only small daily variations of temperature, pH and DO. The U. pertusa tank removed 68% of the TAN (total ammonia-nitrogen) and 26% of the orthophosphate from the sea cucumber culture effluent; the macroalgae biofilter removed ammonia at an average rate of 0.459 g N m−2 day−1. It would be efficient to use the U. pertusa biofilter in a recirculating system for production of A. japonicus juveniles in winter.  相似文献   

3.
Ecuadorian Penaeus vannamei were cultured in dirt ponds (each of approximately 163 m2) at four different stocking densities, i.e. 5 shrimp m−2, 10 shrimp m−2, 15 shrimp m−2 and 20 shrimp m−2. Experiments were carried out over three different periods during the year. Each experiment lasted for 11–14 weeks. No commercial feed was given to the shrimp. The only input to the ponds was about 30 kg of cattle manure per pond per week. Chemical composition of the cattle manure was analyzed. Water quality parameters such as temperature, pH, DO and turbidity were recorded twice daily for each experiment; nutrients (nitrite, nitrate, ammonium and phosphate), water ATP, sediment ATP, H2S and chlorophyll were measured twice weekly for each experiment. Shrimp were sampled either weekly or bi-weekly for body weight measurements.

The results showed a negative correlation between stocking density and growth. Weekly growth ranged from 0·44 to 1·58 g week−1. Survival was over 50% in all treatments and averaged at 70·8%. Under these stocking densities, shrimp production ranged from 4·4 to 18·8 kg ha−1 day−1. The stocking density of 15 shrimps m−2 provides better production than the other stocking densities.

Water quality data did not relate to any shrimp growth. Water nutrient levels in pond discharge water were less than or equal to the nutrients in the incoming water in spite of the weekly addition of cattle manure and did not increase with the addition of cattle manure. No coliform bacteria were detected in any pond water samples through the study period. This indicates digestion of cattle manure in marine shrimp ponds would not pollute the environment with high concentrations of dissolved nutrients.

Thus, a marine shrimp pond can be considered a dissolved nutrient marine treatment plant converting unwanted cattle manure (1841 kg cattle manure ha−1 week−1 in this study) into a valuable commodity — shrimp.  相似文献   


4.
The growth and survival of three size classes of wild caught western rock lobster, Panulirus cygnus (post-pueruli: mean 2.14 ± 0.07 g, 13.2 ± 0.1 mm CL; year 1: post-settlement juveniles, 57.1 ± 1.1 g, 38.7 ± 0.28 mm CL; and year 2 post-settlement juveniles, mean 138.2 ± 2.26 g, 51.9 ± 0.25 mm CL) were examined at combinations of two stocking densities (post-pueruli: 50 and 100 m− 2; year 1: 11 and 23 m− 2; year 2: 10 and 19 m− 2) and two shelter types (a novel rigid plastic mesh shelter or bricks) over a period of 6 months. Survival of lobsters held at the lower densities (90–95%) was significantly greater than for lobsters held at higher densities (post-pueruli = 78%, year 1 = 86%, year 2 = 88%). Post-pueruli survival was significantly higher in tanks with mesh shelters (91.7%) than brick shelters (75.8%) with a similar trend exhibited by year 1 and year 2 lobsters. Densities tested did not significantly affect lobster growth for any size class. Growth of post-pueruli was considerably higher in tanks with mesh shelters (641.7% weight gain; specific growth rate 1.07 BW day− 1) (p < 0.05) but there was no difference in the growth of year 1 and year 2 lobsters between mesh and brick shelters. Feed intake (g pellet dry matter lobster− 1 day− 1) was not significantly different between densities. This study has shown that P. cygnus is well suited for aquaculture based on the collection and ongrowing of wild caught pueruli, as this species exhibits good survival at high densities (up to 100 m− 2) without adverse effects on growth, and shows no captivity-related health problems. We recommend mesh shelters, with stocking densities of 50 m− 2 for post-pueruli and between 20 and 25 m− 2 for year 1 and year 2 juveniles, to maximise survival and production.  相似文献   

5.
Data collected from 45 commercial channel catfish, Ictalurus punctatus, ponds were used to develop empirical models predicting sediment oxygen demand (SOD). Seven acceptable models were combined with a Monte-Carlo sampling distribution to predict industry-wide sediment oxygen demand (SODi). The SODi values obtained from the best equation were used in simulations to assess the effect of diurnally varying water column dissolved oxygen (DO) concentrations on SOD and the effect of pond water depth on the contribution of SOD to overall pond respiration. Estimated SODi ranged from 62 to 962 mg m−2 h−1, with a mean of 478 mg m−2 h−1. There was a 95% probability of mean SODi being ≥700 mg m−2 h−1. The effects of diurnal variation in DO concentration in the water column on expression of SOD was modeled by combining maximum SODi, an empirical relationship between DO and SOD, and simulated pond DO concentrations. At DO concentrations >15 mg l−1, diel SOD in catfish ponds exceeded 20 g O2 m−2 day−1. But when average diel DO was <4 mg l−1 and the range of DO concentration was 6–8 mg l−1, SOD decreased to 13 g O2 m−2 day−1 because DO availability limited the full expression of potential SOD. Respiration totals for sediment (average SODi), plankton, and fish respiration were calculated for pond water depths ranging from 0.25 to 4 m. Although whole-pond respiration increases as pond depth increases, the proportion of total respiration represented by sediment decreased from 48 to 10% by increasing water depth over this range. The results of these studies show that SOD is a major component of total pond respiration and that certain management practices can affect the impact of SOD on pond oxygen budgets. Mixing ponds during daylight hours, either mechanically or by orienting ponds for maximum wind fetch, will increase oxygen supply to sediments, thereby allowing maximum expression of SOD and maximum mineralization of sediment organic matter. Given a mixed condition caused by wind or other artificial means, the construction of deeper ponds increases the total mass of DO available for all respiration, causing nighttime DO concentrations to decline at a slower rate, reducing the need for supplemental aeration. Because a pond’s water volume decreases over time from sediment accumulation, annual aeration costs will increase with pond age. Constructing ponds with greater initial depth will therefore reduce long-term cost of aeration, allow more flexible management of pond water budget, and reduce the long-term expense associated with pond reconstruction.  相似文献   

6.
Natural phytoplankton populations were cultured in outdoor continuous cultures using fish-farm effluents as the source of nutrients. The dilution rate was assumed to be the integrating factor of phytoplankton growth and biomass development (flux and stock). In this context, the combined effects of (i) dilution rates of the outdoor culture and (ii) ambient conditions were tested on phytoplankton growth, biomass and cycling of the major nutrient elements (C, N and P). Experiments were carried out in outdoor polyester tanks (0.7 m deep), homogenised by gentle aeration. Si/P ratio was balanced at around 5 in the inflow in order to induce diatom domination while maintaining high N and P assimilation by phytoplankton. Nutrient cycling was assessed through analyses of the different forms of particulate and dissolved nutrients in the inflow and the outflow. Culture dilution rates determined the longevity of the culture and the assimilation efficiency of nutrients. Dissolved phosphorus was the most limiting nutrient. The optimal dilution rate was approximately 0.5 day−1 at 10 °C and 1.5 day−1 at 20 °C with a mean diatom biomass of 9 μM P. Under these conditions, 80% of the dissolved nutrients provided to the tanks were transformed, a production of 8 g C m−2 day−1 and an assimilation rate of 0.3 g P m−2 day−1 were recorded. Assimilation by diatoms was the major pathway of nutrient cycling. During the experiment, a bottom sediment developed progressively and this also played an important role in denitrifying the excess dissolved nitrogen in the fish-farm effluent. However, the results showed that diatom biomass can collapse and we hypothesize that this was the consequence of an increase in cellular sinking rates due to cell aggregation under nutrient or light stress. Modelling approaches are needed in future research in order to determine optimal dilution rates taking into account phytoplankton growth rates, nutrient inputs and ambient conditions (e.g. light and temperature).  相似文献   

7.
A hydraulically integrated serial turbidostat algal reactor (HISTAR) for the mass production of microalgae was designed, constructed and preliminarily evaluated. The 9266-l experimental system consists of two enclosed turbidostats hydraulically linked to a series of six open continuous-flow, stirred-tank reactors (CFSTRs). The system was monitored and controlled using GENESIS process control software. A production study was preformed using Isochrysis sp. (C-iso) to assess system stability and production potential under commercial-like conditions. The study was performed at the following target system parameters: system dilution rate of 0.49 per day, pH 7.6, NITROGEN=10 mg l−1, PHOSPHORUS=2 mg l−1, and artificial illumination (photosynthetic photon flux density) from 1000 W metal halide LAMPS=800 μmol s−1 m−2. At steady state conditions, daily harvested algal paste was 1454 g (wet), mean areal system PRODUCTIVITY=47.8±3.04 g m−2 per day (17.1±1.09 g C m−2 per day) and mean CFSTR6 DENSITY=105.5±6.71 mg l−1.  相似文献   

8.
The culture of the mulloway (Argyrosomus japonicus), like many other Sciaenidae fishes, is rapidly growing. However there is no information on their metabolic physiology. In this study, the effects of various hypoxia levels on the swimming performance and metabolic scope of juvenile mulloway (0.34 ± 0.01 kg, mean ± SE, n = 30) was investigated (water temperature = 22 °C). In normoxic conditions (dissolved oxygen = 6.85 mg l− 1), mulloway oxygen consumption rate (M·o2) increased exponentially with swimming speed to a maximum velocity (Ucrit) of 1.7 ± < 0.1 body lengths s− 1 (BL s− 1) (n = 6). Mulloway standard metabolic rate (SMR) was typical for non-tuna fishes (73 ± 8 mg kg− 1 h− 1) and they had a moderate scope for aerobic metabolism (5 times the SMR). Mulloway minimum gross cost of transport (GCOTmin, 0.14 ± 0.01 mg kg− 1 m− 1) and optimum swimming velocity (Uopt, 1.3 ± 0.2 BL s− 1) were comparable to many other body and caudal fin swimming fish species. Energy expenditure was minimum when swimming between 0.3 and 0.5 BL s− 1. The critical dissolved oxygen level was 1.80 mg l− 1 for mulloway swimming at 0.9 BL s− 1. This reveals that mulloway are well adapted to hypoxia, which is probably adaptive from their natural early life history within estuaries. In all levels of hypoxia (75% saturation = 5.23, 50% = 3.64, and 25% = 1 .86 mg l− 1), M·o2 increased linearly with swimming speed and active metabolic rate (AMR) was reduced (218 ± 17, 202 ± 14 and 175 ± 10 mg kg− 1 h− 1 for 75%, 50% and 25% saturation respectively). However, Ucrit was only reduced at 50% and 25% saturation (1.4 ± < 0.1 and 1.4 ± < 0.1 BL s− 1 respectively). This demonstrates that although the metabolic capacity of mulloway is reduced in mild hypoxia (75% saturation) they are able to compensate to maintain swimming performance. GCOTmin (0.09 ± 0.01 mg kg− 1 m− 1) and Uopt (0.8 ± 0.1 BL s− 1) were significantly reduced at 25% dissolved oxygen saturation. As mulloway metabolic scope was significantly reduced at all hypoxia levels, it suggests that even mild hypoxia may reduce growth productivity.  相似文献   

9.
An experiment was conducted for 8 weeks at the Cantho University, Vietnam, to determine the acceptable level of mangrove leaf litter load and its effect on water quality, growth and survival rate of tiger shrimp (Penaeus monodon). Shrimps were cultured in plastic tanks containing 50 L of brackish water (salinity of 15‰). Leaf litter of Rhizophora apiculata, Avicennia officinalis, Excoecaria agallocha and Acacia auriculiformis were loaded to tanks at rates of 0.0 (control), 0.125, 0.25, 0.5, 1.0 and 2.0 g L− 1 with and without aeration. Tiger shrimp post-larvae (PL; 0.05 ± 0.01 g) obtained from the shrimp hatchery of Cantho University were stocked at a density of 20 PL per tank and fed with pelleted feed containing 38% protein at a rate of 10% body weight (BW) day− 1.

The high leaf-loading rates significantly reduced dissolved oxygen (DO) and survival rates of shrimp in the non-aerated treatments, and all shrimps died after 2 days in the treatments with loading rates above 0.5 g L− 1. Leaf litter loads significantly increased tannin content, chemical oxygen demand (COD), H2S and pH in the aerated treatments. Stepwise regression analysis showed COD, tannin and H2S concentrations had negative effects on shrimp growth in the aerated treatments. Tannin concentration was found to be highest in the treatments with Excoecaria (32 mg L− 1) and Avicennia (24 mg L− 1) leaves. However, there were no significant differences in growth and survival rates of shrimp among the aerobic treatments loaded with different leaf types. The results of this study showed that moderate load of mangrove leaves could play an important role in promoting shrimp growth and survival in aerobic condition. Mangrove leaves at a loading rate of 1 g L− 1 positively influenced both the survival and growth rate of shrimps.  相似文献   


10.
Rainbow trout (Oncorhynchus mykiss) maintained in crowded (100 kg m− 3) and uncrowded (20 kg m− 3) conditions were fed 42 days with five experimental diets having different levels of vitamin E (25.6 and 275.6 mg kg diet− 1), C (0 and 1000 mg kg diet− 1) and HUFA (highly unsaturated fatty acids, 12.5 and 320.5 g kg diet− 1): −E−HUFA, −E+HUFA, +E−HUFA, +E+HUFA, −C+E+HUFA. Cortisol, plasma metabolites, tissue glycogen, fish composition, and tissue fatty-acid profile were evaluated at the end of the experimental period. In general, no changes in cortisol levels were associated with crowding, although +E+HUFA and −C+E+HUFA fish showed higher levels (mean ± SE, 55.5 ± 11.1 and 78.0 ± 11.3 ng ml− 1) as a consequence of a possible interaction between chronic crowding and diet composition. Protein and glucose con-centration in plasma displayed no effect of crowding, but liver glycogen showed a general tendency to decrease in −E−HUFA, −E+HUFA, +E−HUFA, +E+HUFA, −C+E+HUFA crowded groups (70.2 ± 2.1, 52.1 ± 2.5, 73.4 ± 7.4, 91.7 ± 3.3, 74.2 ± 8.4 mg g− 1 tissue, respectively) compared to uncrowded groups (108.9 ± 14.2, 82.7 ± 8.8, 92.4 ± 10.7, 99.1 ± 10.0, 103.5 ± 15.6 mg g− 1 tissue, respectively), thus proving significant in −E+HUFA fish. Variations in total lipids, triglycerides, total cholesterol and HDL as well as LDL cholesterol in plasma were manifested under crowding conditions, displaying a certain influence of vitamin E and HUFA dietary content. Final body composition, in general, showed no change attributable to fish density, but some differences associated with diet composition were found in lipid and moisture percentages of crowded fish. Liver and muscle fatty-acid profile revealed a clear effect of the dietary lipid source that was more evident in muscle than in liver at normal fish density, and in some cases this effect was modulated by dietary vitamin E and C content and fish-culture conditions.  相似文献   

11.
A 2-year survey in six commercial shrimp hatcheries of the states of Sonora and Sinaloa, in the Mexican northwest, aiming to investigate the variability of the outdoor biomass production and composition of microalgae showed wide differences in daily mean yields, from 0.68 to 1.71×1012 cells m−3 and between 23.9 and 73.9 g m−3 of dry organic biomass.

These differences were mostly related to the type of culture containers and consequent differences in light penetration. The best yields were in 0.7 m deep polyethylene tanks and the lowest in 1 m deep concrete tanks with a small surface to volume ratio.

Protein, carbohydrate and lipid yields followed the same trends as biomass production and were mostly associated with the design of the culture containers and, in part, with the geographic location of the hatcheries.

Variability was high also within laboratories, and this was related to seasonal climatic differences. In Sonora, cell concentrations were negatively related to temperature, but organic biomass production increased with the increase of this climatic variable, probably because of larger cell sizes. In contrast, the data obtained in Sinaloa showed that cell concentration and organic biomass are directly related to temperature and inversely to light.

Proteins and lipids were negatively related to temperature in Sonora but not in Sinaloa, where high carbohydrates were associated with low temperatures.

Fatty acid profiles were highly variable in all cases and were not associated with the type of culture containers or, with the possible exception of 18C unsaturates, with the geographic location of the laboratories, indicating as probable sources of variability between and within hatcheries either the handling routines or the composition of the growth media.  相似文献   


12.
A culture trial was performed using five levels of ascorbic acid 2-monophosphate (AmP at 0, 10, 100, 1000 and 2000 mg kg−1 diet, expressed as active ascorbic acid, AA) in a semipurified diet for early postlarval Penaeus vannamei. The experiment started 10 days after metamorphosis of the mysid larvae into postlarvae (=PL10). Each treatment was run in four replicates. P. vannamei postlarvae showed significantly better growth according to dietary AA level after 25 days of feeding, i.e. at PL36 stage. Whereas the dry weight of PL36 in the control treatment (0 mg AA kg−1 diet) was only 2 mg, supplementation of 1000 mg AA kg−1 increased the shrimp dry weight up to 18 mg. However, the growth in the other treatments was not significantly different from the control. Fitting a broken-line regression to the biomass yield demonstrated an optimal dietary level of 130 mg AA kg−1 diet. There were no differences observed among the treatments in stress resistance of postlarval P. vannamei to a salinity shock.  相似文献   

13.
This study evaluated the effects of isonitrogenous feeding (60 g dietary protein per kilogram of body weight per day) using experimental feeds with 25%, 30%, 35% and 40% protein on the nitrogen budget, ammonia efflux rate, growth and survival of juvenile Litopenaeus vannamei raised in a low-salinity (4 g L−1) zero-water exchange culture system for 4 weeks. No significant differences in weight gain or instantaneous growth rate were observed between the dietary treatments with 35% and 40% protein after 3 weeks of study, or between treatments with 25% and 30% protein after 4 weeks of study. High mortality rates were observed for the 35% and 40% protein treatments, probably associated with high nitrite levels (4.80 and 7.36 mg NO2-NL−1 respectively) in water. Among the various dietary treatments, 39–46.3% of feed nitrogen was converted to shrimp biomass, 32.8–38.0% and 14.4–39.9% remained within the system as organic and inorganic nitrogen, respectively, and 32.5–39.3% was unaccounted for. The results of the present study showed high nitrogen utilization efficiencies. However, as the nitrogen loading of the zero-water exchange system increased, so did the nitrogen excretion of shrimp, causing a deteriorated general condition of the shrimp, demonstrated by the low ammonia efflux rates recorded at the end of the trial. This study confirms that low-salinity closed systems are particularly susceptible to nitrogen loading. Thus, in these culture systems, low-protein feeds may perform better as they provide more carbon for heterotrophic bacteria and less nitrogen to be degraded and transformed into nitrogenous wastes.  相似文献   

14.
White shrimp Litopenaeus vannamei held in 25‰ seawater at 27 °C or 28 °C were injected with TSB-grown Vibrio alginolyticus at 1 × 104 colony-forming units (cfu) shrimp− 1 or 1 × 105 cfu shrimp− 1, and then cultivated onward at water temperatures varying from 20 to 34 °C. Over 24–144 h, mortality of V. alginolyticus-injected shrimp held at 34 °C or 32 °C was significantly higher than that of shrimp held at lower temperatures. In a separate experiment, shrimp held in 25‰ seawater at 28 °C and then cultured onward at 20 to 32 °C were examined for immune parameters at 24–96 h. THC, phenoloxidase activity, respiratory burst, and SOD activity decreased significantly at 24 h after transfer to 32 °C. Shrimp held in 25‰ seawater at 27 °C and then cultured onward at 20 to 34 °C showed a significant reduction in phagocytic activity and clearance efficiency for V. alginolyticus at 24 h after transfer to 34 °C. It was concluded that transfer of shrimp from 27 or 28 °C to higher temperatures (32 and 34 °C) reduced their immune capability and decreased resistance to V. alginolyticus infection.  相似文献   

15.
Several studies have shown that food ration can affect the growth of cultured fish. Determining the optimal food ration would help to achieve better growth and also provide direct economic benefits due to reduced food wastage, which would lead to commercial success. Therefore, we studied the effects of ration levels on growth performance of 0+ juvenile yellowtail flounder to determine the optimal food ration. Two experiments were conducted; the first experiment as a preliminary using ration levels of 1%, 2%, 4%, 6% body weight per day (% bw day−1) held at 7.0 °C with a stocking density of 0.95 kg m−2 (45% bottom coverage). Results of this preliminary experiment indicated that fish fed with 1% bw day−1 had significantly lower growth (weight, length, body depth and specific growth rates (SGR)) than those fed with 2%, 4% and 6% ration. However, fish fed with rations of 1% and 2% showed significantly lower gross food conversion ratios (GFCR) than fish fed with 4% and 6% rations. Survival was not significantly affected by different ration levels. Based on these preliminary results, we used ration levels of 1%, 1.5%, 2% and 3% for the main experiment. Fish were held at 10 °C with a stocking density of 1.45 kg m−2 (34% bottom coverage). Results indicated that fish fed with 1%, 1.5% and 2% bw day−1 had significantly lower growth than fish fed with 3% bw day−1. GFCR was significantly different for all four rations. It was lower for 1% than 1.5%, 2% and 3% rations. Survival was not significantly different between any treatments. We discuss our results with emphasis on growth and economics (i.e., feed wastage) and stress the need to balance both components in a commercial operation.  相似文献   

16.
This paper describes the performance characteristics of an industrial-scale air-driven rotating biological contactor (RBC) installed in a recirculating aquaculture system (RAS) rearing tilapia at 28 °C. This three-staged RBC system was configured with stages 1 and 2 possessing approximately the same total surface area and stage 3 having approximately 25% smaller. The total surface area provided by the RBC equaled 13,380 m2. Ammonia removal efficiency averaged 31.5% per pass for all systems examined, which equated to an average (± standard deviation) total ammonia nitrogen (TAN) areal removal rate of 0.43 ± 0.16 g/m2/day. First-order ammonia removal rate (K1) constants for stages 1–3 were 2.4, 1.5, and 3.0 h−1, respectively. The nitrite first-order rate constants (K2) were higher, averaging 16.2 h−1 for stage 1, 7.7 h−1 for stage 2, and 9.0 h−1 stage 3. Dissolved organic carbon (DOC) levels decreased an averaged 6.6% per pass across the RBC. Concurrently, increasing influent DOC concentrations decreased ammonia removal efficiency. With respect to dissolved gas conditioning, the RBC system reduced carbon dioxide concentrations approximately 39% as the water flowed through the vessel. The cumulative feed burden – describes the mass of food delivered to the system per unit volume of freshwater added to the system daily – ranged between 5.5 and 7.3 kg feed/m3 of freshwater; however, there was no detectable relationship between the feed loading rate and ammonia oxidation performance.  相似文献   

17.
The effects of feed intake level on energy and nitrogen partitioning were studied in juvenile Atlantic cod (250 g) fed two fish meal based diets differing in protein and lipid content (54:31 and 65:16) at 10 °C. Replicate groups of cod were feed deprived for 32 days or fed one of the two diets at 25, 50, 75 or 100% of group satiation for 60 days. Feed intake and oxygen consumption were measured daily and weights and chemical composition of carcass, liver, viscera and whole body were measured at start and end. Diet digestibilities were assessed in a separate experiment.

The whole body and carcass growth rates at a given feed intake did not differ between dietary groups, but the liver grew faster in the fish fed the low protein diet, resulting in higher hepatosomatic indices at the end of the experiment in the groups fed this diet.

The efficiency of utilisation of digestible nitrogen for growth (kDNg) was higher for the low protein diet (0.73 ± 0.02) than for the high protein diet (0.53 ± 0.05), resulting in higher nitrogen retention at a given nitrogen intake. No difference in percentage nitrogen retention was seen in full-fed fish however (31.2 ± 2.5 and 28.4 ± 1.6% for the low protein and high protein diets, respectively). This can be explained by higher nitrogen intake in the fish fed the high protein diet, resulting in a smaller proportion of the intake being used for maintenance.

There was no difference in energy utilisation between dietary groups. The digestible energy requirement for maintenance (DEmaint) was 53.8 ± 0.9 kJ kg− 1 d− 1 (42.3 ± 0.7 kJ kg− 0.8 d− 1) and the utilisation efficiency for growth (kDEg) was 0.80 ± 0.02. The energy retention in full-fed fish was 31.3 ± 3.5 and 31.7 ± 1.0% for the low protein and high protein diets, respectively. The deposited energy was distributed in approximately equal proportions in the liver and carcass, whereas viscera accounted for a minor proportion. At a given energy intake, the fish fed the high protein diet deposited more energy in the carcass and less in the liver than did those fed the low protein diet.  相似文献   


18.
Temperature is recognized to be the most important environmental factor affecting growth in fish. Barramundi are cultured over a wide range of temperatures some of which approach the upper thermal tolerance for this species. A growth trial was conducted on juvenile barramundi to examine the effects of high temperatures ranging from the minimum optimal temperature (27 °C) for growth efficiency to the extreme upper thermal limits (39 °C) for feed intake, growth and growth efficiency. Juveniles (4.87 ± 0.32 g) were held at four different temperatures 27, 33, 36 and 39 °C and fed twice daily to satiation (503.5 g kg− 1 crude protein, 182.5 g kg− 1 lipid, 150.1 g kg− 1 ash, 20.52 GE MJ kg− 1). Feed intake (g·day− 1) and SGR (%·day− 1) increased with increasing temperature up to 36 °C. At 39 °C feed intake, growth, feed efficiency ratio, protein efficiency ratio and productive energy value were significantly lower than at the other temperatures. This demonstrates that growth was optimized at temperatures from 27 to 36 °C and that barramundi have a much wider range for maximum growth efficiency than previously thought.  相似文献   

19.
l -ascorbyl-2-polyphosphate (ApP) was used as a vitamin C source to investigate the ascorbic acid (AsA) requirements on growth performance and stress resistance of the larval white shrimp, Litopenaeus vannamei . Five isoenergetic and isonitrogenous fish meal-fish protein hydrolysate-based diets with five levels of ApP, AsA equivalent to 91.8, 188, 271, 360 and 436 mg kg−1 diet were fed to triplicate groups of L. vannamei (mean initial wet weight 1 mg) for 32 days. The diet with AsA 91.8 mg kg−1 showed high cumulative mortality after 10 days of feeding. After the 32-day trial, the shrimp that fed the diet had significantly lower survival and weight gain (WG, %) than those that fed 188, 271, 360 and 436 mg AsA kg−1 diets. Specific growth rate (SGR, % day−1) and final body wet weight (FBW, mg) showed the same pattern as WG (%). There were no significant differences in growth performance (FBW, WG and SGR) among the groups that fed 188, 271, 360 and 436 mg kg−1 of AsA at the termination of feeding trial. Broken-line regression analysis on WG indicated that 191 mg AsA kg−1 in the diet was the optimum for larval L. vannamei . On the contrary, dietary level of more than 360 mg AsA kg−1 was needed to ensure high resistance to stressful conditions such as low dissolved oxygen stressors.  相似文献   

20.
At the end of the exponential growth phase, the cell concentrations of batch cultures of Tetraselmis suecica and Dunaliella tertiolecta grown in f medium added with 5, 10 and 20 mg l−1 of the zeolitic products Zestec 56, Zesep 56 and Zeben 06 (ZT56, ZS56 and ZB06) were similar to those obtained with the same medium without zeolites. At the end of the following period of slow growth, all the experimental media gave significantly higher concentrations of T. suecica than the control cultures, but only the addition of 20 mg l−1 of ZT56 and ZB06 gave significantly better results with D. tertiolecta. However, in all cases the final harvests of total and ash-free biomass were similar to those of the controls, indicating the presence of smaller or lighter cell in the experimental cultures. The effect of these products is to enhance cell division rates in the phase of slow growth, with no advantage in terms of biomass production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号