首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Milk proteins contain numerous potential bioactive peptides, which may be released by digestive proteases or by the proteolytic system of lactic acid bacteria during food processing. The capacity of Streptococcus thermophilus to generate peptides, especially bioactive peptides, from bovine caseins was investigated. Strains expressing various levels of the cell envelope proteinase, PrtS, were incubated with α(s1)-, α(s2)-, or β-casein. Analysis of the supernatants by LC-ESI-MS/MS showed that the β-casein was preferentially hydrolyzed, followed by α(s2)-casein and then α(s1)-casein. Numbers and types of peptides released were strain-dependent. Hydrolysis appeared to be linked with the accessibility of different casein regions by protease. Analysis of bonds hydrolyzed in the region 1-23 of α(s1)-casein suggests that PrtS is at least in part responsible for the peptide production. Finally, among the generated peptides, 13 peptides from β-casein, 5 from α(s2)-casein, and 2 from α(s1)-casein have been reported as bioactive, 15 of them being angiotensin-converting enzyme inhibitors.  相似文献   

2.
This study evaluated the inhibitory effects of plant-based extracts (grape seed, green tea, and white tea) and their constituent flavan-3-ol monomers (catechins) on α-amylase and α-glucosidase activity, two key glucosidases required for starch digestion in humans. To evaluate the relative potency of extracts and catechins, their concentrations required for 50 and 90% inhibition of enzyme activity were determined and compared to the widely used pharmacological glucosidase inhibitor, acarbose. Maximum enzyme inhibition was used to assess relative inhibitory efficacy. Results showed that grape seed extract strongly inhibited both α-amylase and α-glucosidase activity, with equal and much higher potency, respectively, than acarbose. Whereas tea extracts and catechin 3-gallates were less effective inhibitors of α-amylase, they were potent inhibitors of α-glucosidase. Nongallated catechins were ineffective. The data show that plant extracts containing catechin 3-gallates, in particular epigallocatechin gallate, are potent inhibitors of α-glucosidase activity and suggest that procyanidins in grape seed extract strongly inhibit α-amylase activity.  相似文献   

3.
α-Casozepine and f91-97, peptides from α(s1)-casein, display anxiolytic activity in rats and may have to cross the intestinal epithelium to exert this central effect. We evaluated their resistance to hydrolysis by the peptidases of Caco-2 cells and their ability to cross the cell monolayer. To mimic physiological conditions, two preparations of bile salts were used in noncytotoxic concentrations: porcine bile extract and an equimolar mixture of taurocholate, cholate, and deoxycholate. The presence and composition of bile salts appeared to modulate the peptidase activities of the Caco-2 cells involved (i) in the hydrolysis of α-casozepine, leading to much higher formation of fragments f91-99, f91-98, and f91-97, and (ii) in the hydrolysis of f91-97, leading to lower degradation of this peptide. Transport of α-casozepine across Caco-2 monolayer increased significantly, in the presence of bile extract, and of fragment f91-97, in the presence of bile salts.  相似文献   

4.
The importance of the linkage between nutrition and health is a hot issue. Like other food-related sectors, the meat industry is undergoing foremost transformations, driven among other things by changes in consumer requirements. The present study was designed to evaluate the lipid stability and antioxidative potential of leg and breast microsomal fraction of broiler meat fed on ALA and ATA. For the first 3 weeks of growth, broilers were fed on feed supplemented with ATA (200 mg/kg of feed) and during the last 3 weeks broilers were fed on feed supplemented with ALA (25, 75, 150 mg/kg of feed) and a constant level of ATA (200 mg/kg of feed). The body weight of the carcass was measured after every week of growth until 6 weeks. Positive correlation between the antioxidant activity and the TPC was observed. Higher values of TBARS were detected in leg muscles than in breast muscles. HPLC data revealed ALA and ATA contents were higher in T(4) (leg, 5.55 ± 0.19 and 3.87 ± 0.15 μg/mg of protein; breast, 5.63 ± 0.20 and 2.03 ± 0.10 μg/mg of protein, respectively) and lowest in T(5) (ALA, leg, 1.40 ± 0.06 μg/mg of protein; breast, 1.54 ± 0.05 μg/mg of protein; ATA, leg, 1.25 ± 0.06 μg/mg of protein; breast, 0.63 ± 0.008 μg/mg of protein), in which the only oxidized oil was used. Oxidized oil in feed reduced weight gain and increased TBARS, whereas TPC, DPPH, ALA, and ATA values decreased in both leg and breast meat.  相似文献   

5.
We studied the effect of sorghum decortication and protease treatment on starch hydrolysis before liquefaction with thermoresistant α-amylase and the generation of free amino nitrogen (FAN) in preparation for subsequent steps of ethanol production. A bifactorial experiment with a level of confidence of P < 0.05 was designed to study differences among maize, whole sorghum, and decorticated sorghum and the effectiveness of the protease treatment before starch liquefaction. Sorghum was decorticated 9.7% to remove most of the pericarp and part of the germ and increase starch concentration. Starch concentration increased in decorticated kernels, whereas total phenols, fiber, and fat decreased. The decorticated sorghum had significantly higher starch and protein hydrolysis compared with the whole kernel. Protease treatment before liquefaction improved the rate of starch hydrolysis, especially in mashes from whole and decorticated sorghums. Whole and decorticated sorghum hydrolyzates treated with protease contained ≈50% more reducing sugars than the untreated counterparts. Maize yielded hydrolyzates with the the highest amount of FAN, followed by decorticated and whole sorghums. The maize and both sorghum hydrolyzates treated with protease contained ≈60 and 30% more FAN compared with the untreated counterparts. Both sorghum decortication and protease treatments before hydrolysis with α-amylase are recommended to increase ethanol yields, save processing time (and therefore energy), and to produce mashes with higher FAN content, which is considered as an important yeast substrate.  相似文献   

6.
The berry fruits of highbush blueberry (Vaccinium corymbosum) contain bioactive compounds with potential health benefits. The objective was to evaluate blueberries grown in southern Illinois as well as the effect of fermentation, at two different temperatures, on chemical and physical parameters. Fruits from fifteen blueberry cultivars were analyzed. Fruit diameter ranged from 12.8 mm to 18.7 mm, pH from 2.6 to 3.7, reducing sugars from 6.4% to 15.2%, total sugars from 13.9% to 21.6%, total polyphenols from 0.39 to 1.00 mg gallic acid equivalents (GAE)/g blueberry and antioxidant capacity from 5.8 to 10.9 μM Trolox equivalents (TE)/g. In vitro α-amylase and α-glucosidase inhibitory capacity relative to the positive control acarbose, a known anti-diabetic drug, showed a range from 91.8 to 103.3% for α-amylase and from 103.2% to 190.8% for α-glucosidase. Wines prepared from several of these blueberry cultivars were analyzed throughout fermentation and compared at room temperature and cold temperature fermentation for pH (3.5 to 6.3), °Brix (13.6 to 29.7), total polyphenols (375.4 to 657.1 μg GAE/mL wine), and antioxidant capacity (4.5 to 25.1 mM TE). The wines were also tested for their in vitro capacity to inhibit α-amylase and α-glucosidase and maintained similar inhibitory action as the berries. Highbush blueberry cultivars and their fermented beverages are good natural sources of antioxidants and starch-degrading enzyme inhibitors important for type 2 diabetes management.  相似文献   

7.
Recovery and characterization of α-zein from corn fermentation coproducts   总被引:1,自引:0,他引:1  
Zeins were isolated from corn ethanol coproduct distiller's dried grains (DDG) and fractionated into α- and β γ-rich fractions. The effects of the ethanol production process, such as fermentation type, protease addition, and DDG drying temperature on zein recovery, were evaluated. Yield, purity, and molecular properties of recovered zein fractions were determined and compared with zein isolated from corn gluten meal (CGM). Around 29-34% of the total zein was recovered from DDG, whereas 83% of total zein was recovered from CGM. Process variations of cooked and raw starch hydrolysis and fermentation did not affect the recovery, purity, and molecular profile of the isolated zeins; however, zein isolated from DDG of raw starch fermentation showed superior solubility and film forming characteristics to those from conventional 2-stage cooked fermentation DDG. Protease addition during fermentation also did not affect the zein yield or molecular profile. The high drying temperature of DDG decreased the purity of isolated zein. SDS-PAGE indicated that all the isolated α-zein fractions contained α-zein of high purity (92%) and trace amounts of β and γ-zeins cross-contamination. Circular dichroism (CD) spectra confirmed notable changes in the secondary structure of α-zeins of DDG produced from cooked and raw starch fermentation; however, all the α-zeins isolated from DDG and CGM showed a remarkably high order of α-helix structure. Compared to the α-zein of CGM, the α-zein of DDG showed lower recovery and purity but retained its solubility, structure, and film forming characteristics, indicating the potential of producing functional zein from a low-value coproduct for uses as industrial biobased product.  相似文献   

8.
α-Casozepine is a peptide, corresponding to the sequence 91-100 of the bovine α(s1)-casein, displaying anxiolytic activity in the rat. The α(s1)-casein tryptic hydrolysate containing this peptide decreases stress effects after oral administration in various species including man. Therefore, the stability of this peptide toward gastric and pancreatic proteases has been assessed by using pepsin, chymotrypsin/trypsin, Corolase PP, pepsin followed by chymotrypsin/trypsin or pepsin followed by Corolase PP. α-Casozepine was slowly degraded by chymotrypsin, much more sensitive to pepsin and Corolase PP but not completely destroyed after 4 h kinetics. The bonds in the region 91 to 95 of the α-casozepine were totally resistant to hydrolysis by all studied proteases. Surprisingly, a fragment, corresponding to the sequence 91-97 and found in all the hydrolysis media in significant amount, possessed an anxiolytic activity in three behavioral tests measuring this parameter. This peptide could participate in the in vivo activity of α-casozepine.  相似文献   

9.
Partial acid hydrolysis of the tetrasaccharide (lycotetraose) side chain of the tomato glycoalkaloid α-tomatine resulted in the formation of four products with three, two, one, and zero carbohydrate side chains, which were separated by high-performance liquid chromatography (HPLC) and identified by thin-layer chromatography (TLC) and liquid chromatography ion-trap time-of-flight mass spectrometry (LCMS-IT-TOF). The inhibitory activities in terms of IC(50) values (concentration that inhibits 50% of the cells under the test conditions) of the parent compound and the hydrolysates, isolated by preparative HPLC, against normal human liver and lung cells and human breast, gastric, and prostate cancer cells indicate that (a) the removal of sugars significantly reduced the concentration-dependent cell-inhibiting effects of the test compounds, (b) PC3 prostate cancer cells were about 10 times more susceptible to inhibition by α-tomatine than the breast and gastric cancer cells or the normal cells, (c) the activity of α-tomatine against the prostate cancer cells was 200 times greater than that of the aglycone tomatidine, and (d) the activity increased as the number of sugars on the aglycone increased, but this was only statistically significant at p < 0.05 for the normal lung Hel299 cell line. The effect of the alkaloids on tumor necrosis factor α (TNF-α) was measured in RAW264.7 macrophage cells. There was a statistically significant negative correlation between the dosage of γ- and α-tomatine and the level of TNF-α. α-Tomatine was the most effective compound at reducing TNF-α. The dietary significance of the results and future research needs are discussed.  相似文献   

10.
The major Ricinus communis allergens are the 2S albumins, Ric c 1 and Ric c 3. These proteins contain a trypsin/α-amylase inhibitor family domain, suggesting that they have a role in insect resistance. In this study, we verified that Ric c 1 and Ric c 3 inhibited the α-amylase activity of Callosobruchus maculatus, Zabrotes subfasciatus, and Tenebrio molitor (TMA) larvae as well as mammalian α-amylase. The toxicity of 2S albumin was determined through its incorporation in C. maculatus larvae as part of an artificial diet. Bioassays revealed that 2S albumin reduced larval growth by 20%. We also analyzed the tridimensional structures of Ric c 1 and Ric c 3 by (a) constructing a comparative model of Ric c 1 based on Ric c 3 NMR structure and (b) constructing the theoretical structure of the Ric c 1-TMA and Ric c 3-TMA complexes. Our biological and theoretical results revealed that Ric c 1 and Ric c 3 are a new class of α-amylase inhibitors. They could potentially be used to help design inhibitors that would be useful in diverse fields, ranging from diabetes treatment to crop protection.  相似文献   

11.
Inhibitory effects of the Noble muscadine grape extracts and the representative phytochemicals for anthocyanins (i.e., cyanidin and cyanidin-3,5-diglucoside) on two enzymes, that is, α-glucosidase and pancreatic lipase, were investigated regarding their antidiabetic activities. The study demonstrated that the anthocyanin extracts and the selected chemicals obeyed the competitive mode against the enzymes. The methanolic extracts of whole fruit and skin of the muscadine showed inhibitory activities against the α-glucosidase with their IC(50) values at 1.50 and 2.73 mg/mL, and those against the lipase at 16.90 and 11.15 mg/mL, respectively, which indicated that the muscadine extracts possessed strong antidiabetic activities. Particularly, the ethyl acetate (EtoAc) extract and the butanol (BuOH) extract exhibited much higher inhibitory activities against both enzymes than the CHCl(3) and water extracts, while the majority of anthocyanins existed in the BuOH fractions. Moreover, cyanidin exhibited a much stronger antidiabetic activity than cyanidin-3,5-diglucoside, suggesting that anthocyanins may have higher inhibitory activities after being digested. Further chromatographic analysis by high-performance liquid chromatography-mass spectrometry identified five individual anthocyanins, including cyanidin, delphinidin, petunidin, peonidin, and malvidin glycosides.  相似文献   

12.
Glycosylated α-galactosidase (melibiase) has been purified from white chickpea ( Cicer arietinum ) to 340-fold with a specific activity of 61 units/mg. Cicer α-galactosidase showed a M(r) of 45 kDa on SDS-PAGE and by MALDI-TOF. The optimum pH and temperature with pNPGal were 4.5 and 50 °C, respectively. The K(m) for hydrolysis of pNPGal was 0.70 mM. Besides hydrolyzing the pNPGal, Cicer α-galactosidase also hydrolyzed natural substrates such as melibiose, raffinose, and stachyose very effectively; hence, it can be exploited commercially for improving the nutritional value of soy milk. Galactose was found to be a competitive inhibitor. The property of this enzyme to cleave the terminal galactose residues can be utilized for converting the group B erythrocytes to group O erythrocytes.  相似文献   

13.
Rotenone and rotenoids (deguelin, beta-rotenolone (12a beta-hydroxyrotenone), tephrosin (12a beta-hydroxydeguelin), 12a alpha-hydroxyrotenone, and dehydrorotenone) were determined in cubè resins and formulations. Cubè resins from Lonchocarpus contain large quantities of deguelin (ca. 21.2%) and smaller quantities of tephrosin (ca. 3.5%) and beta-rotenolone (ca. 3.0%). The composition of commercial formulations may present very different rotenoid contents depending on the extracts used to prepare them. Because these rotenoids also present insecticide activity, the efficacy of these formulations may be very different. The storage stability and photodegradation of some rotenone formulations were studied. Rotenone and rotenoids are very sensitive to solar radiation, which degrades them rapidly, with half-lives in the order of a few tens of minutes. Some formulations show greater disappearance rates than that of cubè resin, indicating that not much attention has been paid to protecting the active ingredients from photodegradation in the formulation. A study on the residues on olives was also carried out to assess not only the rotenone content, but also that of the main rotenoids. At harvest, the residues of deguelin, tephrosin, and beta-rotenolone were 0.10, 0.06, and 0.10 mg/kg, respectively, very similar to rotenone (0.08 mg/kg), and though a few data indicate similar acute toxicity values for deguelin, only rotenone is taken into consideration in the legal determination of the residue.  相似文献   

14.
Andosols and the soil components (allophanes, humic acids, and goethite) had been autoclaved to destroy the nuclease activity of soil microflora. DNA adsorption by allophanes and Andosols was decreased by increasing the amount of α-casein added to the allophanes and to soils up to casein concentration of 5 mg ml?1. DNA adsorption by humic acids was significantly increased by increasing the amount of α-casein up to 1.0 mg ml?1, whereas the addition of 20 mg α-casein ml?1 completely blocked DNA adsorption. These results can explain why the addition of excess skim milk is operationally needed for effective DNA extraction from Andosols. The amount of DNA adsorbed by Andosols treated with dephosphorylated α-casein was significantly higher than that of not treated Andosols (p?相似文献   

15.
Microbial biomass, β-glucosidase and β-glucosaminidase activities, and availability, storage, and age of soil organic C were investigated after 26 years of conversion from sugarcane (Saccharum officinarum) to forest (Eucaliptus robusta or Leucaena leucocephala), pasture (mixture of tropical grasses), and to vegetable cropping (agriculture) in a vertisol in Puerto Rico. Soil organic C (SOC) at 0–100 cm was similar under Leucaena (22.8 kg C/m2), Eucalyptus (18.6 kg C/m2), and pasture (17.2 kg C/m2), which were higher than under agriculture (13.0 kg C/m2). Soil organic N (SON) at 0–100 cm was similar under the land uses evaluated which ranged from 1.70 (under agriculture) to 2.28 kg N/m2 (under Leucaena forest). Microbial biomass C (MBC) and N (MBN) of the 0–15-cm soil layer could be ranked as: pasture > Leucaena = Eucalyptus > agriculture. The percentages of SOC and SON present as MBC and MBN, respectively, were nearly 1% in pasture and less than 0.50% in forest under Leucaena or Eucalyptus and agricultural soil. The activity of β-glucosidase of the 0–15-cm soil layer could be ranked as: Leucaena = Eucalyptus > pasture > agriculture; while β-glucosaminidase activity was ranked as: Eucalyptus > Leucaena = pasture > agriculture. The soil δ 13C changed from 1996 to 2006 in forest under Eucalyptus (18.7‰ to 21.2‰), but not under Leucaena (20.7‰ to 20.8‰). The soil under Leucaena preserved a greater proportion of old C compared to the forest under Eucalyptus; the former had an increased soil mineralizable C from the current vegetation inputs. The soil under agriculture had the lowest enzyme activities associated with C cycling, lowest percentage of SOC as MBC, highest percentage of SOC present as mineralizable C, and highest percentage of MBC present as mineralizable C compared to the other land uses.  相似文献   

16.
This study was performed to evaluate the antioxidant and α-glucosidase inhibitory effects from the extract, fractions, and isolated compounds of sea buckthorn leaves. Six compounds, kaempferol-3-O-β-D-(6'-O-coumaryl) glycoside, 1-feruloyl-β-D-glucopyranoside, isorhamnetin-3-O-glucoside, quercetin 3-O-β-D-glucopyranoside, quercetin 3-O-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside, and isorhamnetin-3-O-rutinoside, were isolated from sea buckthorn leaf extracts. The butanol fraction (EC(50) = 1.81 μg/mL) along with quercetin 3-O-β-D-glucopyranoside (EC(50) = 1.86 μg/mL) had a higher DPPH radical-scavenging activity and showed stronger reducing power (OD(700) = 1.83 and 1.78, respectively). The butanol fraction (477 mg GAE/g) contained the highest amount of phenolic compounds and also the most powerful α-glucosidase inhibitory effect (86%) at 5 μg/mL. The results indicate that sea buckthorn leaf extracts could potentially be used for food additives and the development of useful natural compounds.  相似文献   

17.
α-Lactalbumin was glycated via the Maillard reaction in the dry state using various mono- and oligosaccharides. The reaction resulted not only in coupling of the saccharides to α-lactalbumin but also in cross-linked proteins. The glycation rate and the extent of cross-link formation were highly dependent on the saccharide used. Glycation by arabinose and xylose led to a very fast protein cross-link formation, whereas glucose showed a relatively low protein cross-linking ability. The stability of foams, created using the various glycated protein samples, depended on the type of saccharide used, the extent of glycation, and possibly the amount of cross-linked protein. Compared to nonmodified α-lactalbumin, glycation with rhamnose and fucose improved foam stability, whereas application of glucose, galacturonic acid, and their oligosaccharides did not exert a clear effect. Mass spectrometric analysis revealed that dehydration of the Amadori products is an indicator of the formation of protein cross-links.  相似文献   

18.
Abstract

The study reported herein was intended to determine the effect of (i) wet‐incubation and subsequent air‐drying, and (ii) oven‐drying on DTPA‐Fe, Zn, Mn, and Cu.

Analysis of wet‐incubated soils showed significant decreases in DTPA‐Fe, Mn, and Cu at the 1% and Zn at the 10% level of probability. Air‐drying of these moist‐incubated soils increased the levels of Fe, Zn, and Cu to values close to their original levels. Levels of Mn sharply deviated from their original values after air‐drying of incubated soils. Correlation coefficients (r) between the amounts of extractable nutrients in original air‐dry soils and wet‐incubated soils were 0.54, 0.87, 0.91, and 0.13 for Fe, Zn, Cu, and Mn, respectively. Oven‐drying increased the levels of DTPA‐extractable micronutrients from 2 to 6 fold.  相似文献   

19.
1,3-β-Glucans are a class of natural polysaccharides with unique pharmacological properties and the ability to form single- and triple-helical structures that can be formed into resilient gels with the application of heat and humidity. The pharmacological capabilities of 1,3-β-glucans include the impartation of tumor inhibition, resistance to infectious disease, and improvements in wound healing. Curdlan is a linear 1,3-β-glucan that has been used extensively to study the nature of these helical structures and gels, and Curdlan sulfates have found ongoing application in the inhibition of HIV infection. 1,3-β-Glucan gels have been used in food science as stabilizers and encapsulating agents, in nanoscience as scaffolds to build nanofibers and nanowires, and in drug delivery to form nanoparticles and create helical micelles encapsulating polynucleotides. 1,3-β-Glucans are beginning to have enormous significance due to their dual nature as structure-forming agents and pharmacological substances, and research is especially focused on the application of these polymers in animal nutrition and drug delivery.  相似文献   

20.
Pre‐ and post‐transplant growth of bedding plants is affected by seedling nutrition. However, there is little information available on how seedling nutrition affects the growth of ornamental bedding plants. In this study, we quantified the effects of nitrogen (N) (8 to 32 mM) and phosphorus (P) and potassium (K) concentration (0.25 to 1 mM) of the seedling fertilizer on pre‐ and post‐transplant growth and nutrient element content of salvia (Salvia splendens F. Sellow ex Roem. & Schult.) and vinca (Catharanthus roseus L.) seedlings. Shoot growth of salvia and vinca increased with increasing concentrations of N in the pre‐transplant fertilizer and these differences lasted until the end of the study at 15 days after transplanting. Pre‐transplant root dry mass of these species was not affected by the N concentration of the fertilizer, but root dry mass at 12 days after transplanting was positively correlated with the N concentration of the pre‐transplant fertilizer. Increasing N concentrations in the seedling fertilizer increased tissue N levels of salvia and decreased tissue K level of vinca at transplanting. Increasing P and K concentrations in the pre‐transplant fertilizer increased tissue P level of salvia and P and K levels of vinca, but had little effect on seedling growth. Leaf area and root dry mass at transplanting decreased slightly with increasing P and K concentration in the fertilizer. There were no lasting effects of pre‐transplant P and K concentration of the fertilizer. These results indicate that salvia and vinca seedlings can benefit from high concentrations of N (up to 32 mM) in the fertilizer, while only low concentrations of P and K (0.25 mM) are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号