首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An analytical approach for the detection and quantification of cocoa butter equivalents (CBEs) in milk chocolate is presented. It is based on (i) a comprehensive standardized database covering the triacylglycerol composition of a wide range of authentic milk fat (n=310), cocoa butter (n=75), and CBE (n=74) samples and 947 gravimetrically prepared mixtures thereof, (ii) the availability of a certified cocoa butter reference material (IRMM-801) for calibration, (iii) an evaluation algorithm, which allows a reliable quantification of the milk fat content in chocolate fats using a simple linear regression model, (iv) a subsequent correction of triacylglycerols deriving from milk fat, (v) mathematical expressions to detect the presence of CBEs in milk chocolate, and (vi) a multivariate statistical formula to quantify the amount of CBEs in milk chocolate. The detection limit was 1% CBE in chocolate fat (0.3% CBE in milk chocolate, having a fat content of 30%). For quantification, the average error for prediction was 1.2% CBE in chocolate fat, corresponding to 0.4% in milk chocolate (fat content, 30%).  相似文献   

2.
Molecular changes in milk proteins during storage of UHT-treated milk have been investigated using two-dimensional electrophoresis (2-DE) coupled to MALDI-TOF mass spectrometry. UHT-treated samples were stored at three different temperatures, 4 °C, 28 °C, and 40 °C, for two months. Three main changes could be observed on 2-DE gels following storage. They were (1) the appearance of diffuse staining regions above the position of the monomeric caseins caused by nondisulfide cross-linking of α and β-caseins; (2) the appearance of additional acidic forms of proteins, predominantly of α(S1)-casein, caused by deamidation; and (3) the appearance of "stacked spots" caused by lactosylation of whey proteins. The extent of the changes increased with increased storage temperature. Mass spectrometric analysis of in-gel tryptic digests showed that the cross-linked proteins were dominated by α(S1)-casein, but a heterogeneous population of cross-linked forms with α(S2)-casein and β-casein was also observed. Tandem MS analysis was used to confirm deamidation of N(129) in α(S1)-casein. MS analysis of the stacked spots revealed lactosylation of 9/15 lysines in β-lactoglobulin and 8/12 lysines in α-lactalbumin. More extensive analysis will be required to confirm the nature of the cross-links and additional deamidation sites in α(S1)-casein as the highly phosphorylated nature of the caseins makes them challenging prospects for MS analysis.  相似文献   

3.
Mass spectrometry has been used to map chymosin from a fermentative source. The copresence of the two known genetic variants A (Asp(244)) and B (Gly(244)) was ascertained in bovine chymosin. By contrast, either the A or the B genetic variant occurred in the three commercial samples of recombinant calf chymosin (RCC). Specific biomarker proteins were searched to identify the enzyme source, in both bovine chymosin and RCC samples. Analyzing the derived tryptic peptides, evidence was provided that RCC and bovine chymosin are mainly formed by (1-323), (3-323), and (40p-323) (suffix "p" denotes residues in the pro-segment region of chymosin), whereas the minor components, (4-323), (5-323), and (6-323), were only detected in bovine chymosin. Additionally, the three commercial RCC samples contained the protein species (1-323), (38p-323), (39p-323), and (40p-323) and the shorter form (3-323). Differentiation of the natural and bioengineered enzyme is based upon the detection of these unique minor components by mass spectrometry.  相似文献   

4.
The sphingolipid composition of food as well as of physiological samples has received considerable interest due to their positive biological activities. This study quantified the total amount of sphingomyelin (SM) in 20 human breast milk samples from healthy volunteers and determined the structures of SM by detailed mass spectrometric studies in combination with enzymatic cleavage. The quantification of SM was performed by hydrophilic interaction liquid chromatography coupled to electrospray ionization-tandem mass spectrometry (HILIC-HPLC-ESI-MS/MS) measuring the characteristic fragment ion of the phosphorylcholine group at m/z 184.2 and by using hexanoylsphingomyelin (C6-SM) and heptadecanoylsphingomyelin (C17-SM) as internal standards. The structures of SM species were identified after enzymatic cleavage with alkaline sphingomyelinase (SMase) to the corresponding ceramides. Structure elucidation of the sphingoid base and fatty acid backbone was performed by reversed-phase HPLC-ESI-MS/MS. The method includes the sphingoid bases dihydrosphingosine (d18:0), sphingosine (d18:1(Δ4)), 4,8-sphingadienine (d18:2(Δ4,8)), 4-hydroxysphinganine (phytosphingosine (t18:0)), and 4-hydroxy-8-sphingenine (t18:1(Δ8)) and fatty acids with even-numbered carbon atoms (C12-C26) as well as their (poly)unsaturated and monohydroxylated analogues. The total amount of SM in human breast milk varied from 3.87 to 9.07 mg/100 g fresh weight. Sphingosine (d18:1) was the predominant sphingoid base, with 83.6 ± 3.5% in human breast milk, followed by 4,8-sphingadienine (d18:2) (7.2 ± 1.9%) and 4-hydroxysphinganine (t18:0) (5.7 ± 0.7%). The main SM species contained sphingosine and palmitic acid (14.9 ± 2.2%), stearic acid (12.7 ± 1.5%), docosanoic acid (16.2 ± 3.6%), and tetracosenoic acid (15.0 ± 3.1%). Interestingly, the fatty acid composition of SM species in this study differs from the total fatty acids in human breast milk, and the fatty acids are not consistently distributed among the different sphingoid bases.  相似文献   

5.
The effects of heat treatment and limited kappa-casein hydrolysis on the micelle/serum distribution of the heat-induced whey protein/kappa-casein aggregates were investigated as a possible explanation for the gelation properties of combined rennet and acid gels. Reconstituted skim milk was submitted to combinations of 0-67% hydrolysis of the kappa-casein at 5 degrees C and heat treatment at 90 degrees C for 10 min. The protein composition of the ultracentrifugal fractions was obtained by reverse-phase high-performance liquid chromatography (RP-HPLC). The aggregates contained in each phase were isolated by size-exclusion chromatography and analyzed by RP-HPLC and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Upon heating only, 20-30% of the total kappa-casein dissociated, while 20-30% of the total whey protein attached to the micelles. When heated milk was renneted, little changes were observed in the distribution and composition of the aggregates. Conversely, the heat treatment of partially renneted milk induced the formation of essentially micelle-bound aggregates. The results were discussed in terms of the preferred interaction between hydrophobic para-kappa-casein and denatured whey proteins.  相似文献   

6.
The reaction mechanism of the coagulation of soy protein isolates (SPIs) induced by subtilisin Carlsberg was investigated. Formation of the coagula was monitored by measuring the turbidity (OD660) of the SPI solution, which decreased at the initial stage (phase 1 or digestion phase) of the reaction, and then increased (phase 2 or coagulation phase) and finally reached the plateau level. The velocity of the coagulation increased with increasing enzyme concentration. The coagulation was inhibited dramatically by adding a serine protease inhibitor (phenylmethanesulfonyl fluoride, PMSF) when the turbidity reached the minimum value. This indicates that the SPI digests participating in the coagulation are produced mainly in phase 2; in other words, production of the coagulating fragments and their coagulation occur simultaneously in phase 2. Structural changes of SPI during proteolysis were measured by observing fluorescence changes of aromatic amino acids of SPI and an externally added hydrophobic probe. It was suggested that the hydrophilic surface areas of SPIs might be cleaved preferentially in phase 1, and that the hydrophobic inner areas might be cleaved in phase 2 with extensive decomposition of the 3-D structure of SPI proteins. The fragments formed in phase 2 are considered to coagulate through hydrophobic interactions.  相似文献   

7.
Protein fractions were isolated from coconut: coconut skim milk protein isolate (CSPI) and coconut skim milk protein concentrate (CSPC). The ability of these proteins to form and stabilize oil-in-water emulsions was compared with that of whey protein isolate (WPI). The solubility of the proteins in CSPI, CSPC, and WPI was determined in aqueous solutions containing 0, 100, and 200 mM NaCl from pH 3 to 8. In the absence of salt, the minimum protein solubility occurred between pH 4 and 5 for CSPI and CSPC and around pH 5 for WPI. In the presence of salt (100 and 200 mM NaCl), all proteins had a higher solubility than in distilled water. Corn oil-in-water emulsions (10 wt %) with relatively small droplet diameters (d32 approximately 0.46, 1.0, and 0.5 mum for CSPI, CSPC, and WPI, respectively) could be produced using 0.2 wt % protein fraction. Emulsions were prepared with different pH values (3-8), salt concentrations (0-500 mM NaCl), and thermal treatments (30-90 degrees C for 30 min), and the mean particle diameter, particle size distribution, zeta-potential, and creaming stability were measured. Considerable droplet flocculation occurred in the emulsions near the isoelectric point of the proteins: CSPI, pH approximately 4.0; CSPC, pH approximately 4.5; WPI, pH approximately 4.8. Emulsions with monomodal particle size distributions, small mean droplet diameters, and good creaming stability could be produced at pH 7 for CSPI and WPI, whereas CSPC produced bimodal distributions. The CSPI and WPI emulsions remained relatively stable to droplet aggregation and creaming at NaCl concentrations of < or =50 and < or =100 mM, respectively. In the absence salt, the CSPI and WPI emulsions were also stable to thermal treatments at < or =80 and < or =90 degrees C for 30 min, respectively. These results suggest that CSPI may be suitable for use as an emulsifier in the food industry.  相似文献   

8.
黄泥田是我国南方主要的中低产水稻土类型之一,采用定位试验的方法,研究了单施化肥(NPK)、化肥+紫云英(12 000、24 000、36 000、48 000 kg·hm-2)5个处理下土壤磷组分的变化。结果表明,与单施化肥相比,紫云英翻压与化肥配施的土壤有效磷增幅达10.23%~22.69%,全磷含量增加3.09%~13.31%,以化肥配施24 000 kg·hm-2紫云英(NPK+MV2)增幅最为明显;其中,有机磷占总磷含量的36.52%~43.14%,无机磷占56.86%~63.48%;无机磷组分主要以Fe-P和O-P为主,不等量紫云英翻压与化肥配施土壤无机磷组分含量与NPK相比都有所增加,当翻压量小于NPK+MV2处理时,增加幅度均表现为显著水平,大于NPK+MV2处理时,则差异不显著;紫云英翻压与化肥配施处理水稻产量较NPK增产达12.51%~23.01%,以NPK+MV2处理增产最为明显,增产1 345.7 kg·hm-2。表明在黄泥田中紫云英翻压配施化肥比单施化肥能提高土壤磷组分及其含量,水稻产量与土壤磷含量密切相关,以翻压紫云英24 000 kg·hm-2与化肥配施为较适宜的施肥模式。  相似文献   

9.
龙葵是典型的重金属超富集植物,但是我们对其重金属耐受和超富集的分子机理仍不完全清楚。为了从蛋白组学层面探究重金属超富集植物龙葵如何响应金属镉,本研究采用双向电泳和MALDI-TOF MS分析方法,鉴定了重金属超富集植物龙葵叶片和根中Cd胁迫下差异表达的蛋白。双向电泳在根和叶片中分别至少得到927和1 025个蛋白点,其中Cd胁迫下差异表达的蛋白点在根中有45个,叶片中有57个。采用MALDITOF MS分析,在根和叶片中分别鉴定了9个和12个蛋白点,分别代表了9个和6个差异表达的蛋白。生物信息学分析表明,这些蛋白涉及到激素合成、防御响应、能量代谢和细胞结构等。这些结果为进一步揭示重金属超富集植物龙葵响应Cd胁迫的分子调节机制,以及为通过现代生物技术手段进行重金属污染的植物修复提供了理论依据。  相似文献   

10.
N-Linked glycans of skim human milk proteins were determined for three mothers. N-Linked glycans are linked to immune defense, cell growth, and cell-cell adhesion, but their functions in human milk are undetermined. Protein-bound N-linked glycans were released with peptidyl N-glycosidase F (PNGase F), enriched by graphitized carbon chromatography, and analyzed with Chip-TOF MS. To be defined as N-glycans, compounds were required, in all three procedural replicates, to match, within 6 ppm, against a theoretical human N-glycan library and be at least 2-fold higher in abundance in PNGase F-treated than in control samples. Fifty-two N-linked glycan compositions were identified, and 24 were confirmed via tandem mass spectra analysis. Twenty-seven compositions have been found previously in human milk, and 25 are novel compositions. By abundance, 84% of N-glycans were fucosylated and 47% were sialylated. The majority (70%) of total N-glycan abundance was composed of N-glycans found in all three milk samples.  相似文献   

11.
Changes in protein structures as a result of riboflavin-induced photo-oxidation were studied for six milk proteins: alpha-casein, beta-casein, kappa-casein, lactoferrin, alpha-lactalbumin, and beta-lactoglobulin. The milk proteins showed significant variability in sensitivity to photo-oxidation. After photo-oxidation, an increase in carbonyl content because of oxidation of tryptophan, histidine, and methionine, as well as formation of dityrosine, was observed for all proteins studied, although at very different levels. Generally, the increment was highest for alpha- and beta-casein and was lowest for lactoferrin. Loss of tryptophan because of photo-oxidation was well-correlated with the formation of the tryptophan oxidation products, N-formylkynurenine and kynurenine. Changes at the tertiary protein structure level were observed after photo-oxidation of the globular proteins, where tryptophan fluorescence emission indicated unfolding of alpha-lactalbumin and beta-lactoglobulin, whereas lactoferrin achieved a more compact tertiary structure. Changes in secondary structure were observed for alpha-lactalbumin and beta-lactoglobulin, whereas the secondary structure of lactoferrin did not change. Polymerization of alpha- and beta-casein and of lactoferrin was observed, whereas kappa-casein, alpha-lactalbumin, and beta-lactoglobulin showed little tendency to polymerize after photo-oxidation. Lability toward photo-oxidation is discussed according to the structural stabilities of the globular proteins.  相似文献   

12.
The effect of xanthine oxidase, lactoperoxidase, and transition metals [Fe(III), Cu(II)] on the oxidation of ascorbate in raw milk was investigated. Data clearly showed that iron(III) (200 microM) does not accelerate ascorbate oxidation in raw milk in concentrations relevant for raw milk. In contrast, addition of copper(II) (10 microM) to the raw milk accelerated oxidation of ascorbate. Furthermore, both xanthine oxidase and peroxidase activity were found to accelerate ascorbate oxidation dramatically in raw milk, indicating that xanthine oxidase and lactoperoxidase might be some of the most obvious candidates for mediation of ascorbate oxidation in raw milk. The present data are discussed in relation to using the fate of ascorbate in raw milk as an indicator of the oxidative stability of the milk.  相似文献   

13.
Effect of pH on the thermal denaturation of whey proteins in milk   总被引:5,自引:0,他引:5  
The effect of pH on thermal denaturation of four main whey protein fractions in skim milk was examined by gel permeation FPLC. On heating skim milk at 80 degrees C for 0.5-20.0 min over the pH range 5.2-8.8, the extent of denaturation, based on loss of solubility at pH 4.6, increased with heating time and was usually in the order immunoglobulins > serum albumin/lactoferrin > beta-lactoglobulin > alpha-lactalbumin. Rates of denaturation of the immunoglobulins and the serum albumin/lactoferrin fraction were highest at the lower end of this pH range, whereas those of beta-lactoglobulin and alpha-lactalbumin increased over most of the pH range. The effects of pH, addition of Ca, and reduction of disulfide bonds on the rates of the unfolding and aggregation stages of denaturation are discussed.  相似文献   

14.
Effect of pulsed-light treatment on milk proteins and lipids   总被引:1,自引:0,他引:1  
Pulsed-light treatment offers the food industry a new technology for food preservation. It allows the inactivation of numerous micro-organisms including most infectious foodborne pathogens. In addition to microbial destruction, one can also question whether pulsed-light treatment induced conformational changes in food components. To investigate this question, the influence of pulsed-light treatment on protein components of milk was evaluated by using UV spectroscopy, spectrofluorometry, electrophoresis, and determination of amino acid composition. Pulsed-light treatment resulted in an increase of UV absorbance at 280 nm. The intrinsic tryptophan fluorescence of beta-lactoglobulin (BLG) showed a 7 nm red shift after 10 pulses. SDS-PAGE showed the formation of dimers after treatment of BLG by 5 pulses and more. No significant changes in the amino acid composition of proteins and lipid oxidation were observed after pulsed-light treatment. The obtained results indicated changes in the polarity of the tryptophanyl residue microenvironment of BLG solutions or changes in the tryptophan indole structure and some aggregation of studied proteins. Hence, pulsed-light treatment did not lead to very significant changes in protein components; consequently, it could be applied to process protein foods for their better preservation.  相似文献   

15.
Emission and excitation spectra of intrinsic fluorophores present in milk were used to evaluate changes in milk following thermal treatments in the 57-72 degrees C temperature range from 0.5 min up to 30 min. Alternatively, the concentrations of native alkaline phosphatase, lactoferrin, immunoglobulin G, bovine serum albumin, beta-lactoglobulin, and alpha-lactalbumin were determined in the same samples by enzymatic and immunochemical techniques. As principal component analysis applied to the normalized fluorescence spectra successfully discriminated different milk samples according to the temperature and time of thermal treatment, principal component regression was applied to predict the amounts of the native proteins investigated using fluorescence data. The results showed strong correlations between measured and predicted data for alkaline phosphatase and beta-lactoglobulin. This study has demonstrated that front-face fluorescence spectroscopy has a promising potential to become a rapid and nondestructive analytical technique for the evaluation of physicochemical changes in milk induced by low thermal treatment.  相似文献   

16.
Protein release from rice grains during high-pressure treatment was investigated. When polished rice grains were immersed in distilled water and pressurized at 100-400 MPa, a considerable amount of proteins (0.2-0.5 mg per gram of grains) was released. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analyses, the major proteins released were identified as 16 kDa albumin, alpha-globulin, and 33 kDa globulin, which were known as major rice allergens. By scanning electron microscopic observation of rice grains pressurized at 300 MPa, partial morphological changes in endosperm cells but no apparent structural changes in protein bodies were detected. The content of these allergenic proteins decreased by pressurization and almost completely disappeared from rice grains by the pressurization in the presence of proteolytic enzyme. These results suggest that partial destruction of endosperm cells caused by pressurization enhances permeability of a surrounding solution into rice grains and that a part of the proteins are solubilized and subsequently released into a surrounding solution.  相似文献   

17.
Esterified milk proteins [methylated (Met) or ethylated (Et) alpha-lactalbumin (ALA), beta-lactoglobulin (BLG), and beta-casein (BCN)], unmodified native milk proteins, and native basic proteins (calf thymus histone and hen egg white lysozyme) were tested for their antiviral activity against the bacteriophage M13 and for their influence on its replication (except BCN). All esterified milk proteins showed an antiviral activity against the bacteriophage M13, proportional to the extent of esterification and, hence, to the increased basicity of the modified proteins. Antiviral activity of 100% Met-BLG disappeared after its pepsinolysis but not after its trypsinolysis. The antiviral activity of Met-BLG was much higher than that of native basic proteins (histone and lysozyme). One hundred percent Met-BLG and 73% Et-BLG inhibited the replication of bacteriophage M13 completely, whereas 60% Met-ALA inhibited phage replication partially. Calf thymus histone inhibited the replication of bacteriophage M13 at a lower extent (20%) than Met- and Et-BLG (100% inhibition). Protein concentration, pH, and concentration of the Escherichia coli culture in the preincubation medium of the virus were other factors influencing antiviral activity. Interactions of esterified proteins with the phage DNA (phenol extracted) followed the same pattern as observed during studies of the inhibition of the phage replication: Met-BLG > Et-BLG > or = Met-ALA.  相似文献   

18.
The low prices of some nonmilk proteins make them attractive as potential adulterants in dairy products. An optical biosensor (BIACORE 3000) was used to develop a direct and combined biosensor immunoassay (BIA) for the simultaneous detection of soy, pea, and soluble wheat proteins in milk powders. Affinity-purified polyclonal antibodies raised against the three protein sources were immobilized in different flow channels (Fcs) on the biosensor chip (CM5). Dissolved milk powders were injected (20 microL injections at 20 microL min(-1)) through the serially connected Fcs, and the antibody-bound plant proteins were detected directly. The total run time between samples, including a regeneration step with 5 microL of 10 mM HCl, was 5 min. The limits of detection in milk powder were below 0.1% of plant protein in the total milk protein content. The antibodies also recognized some proteins from other plant sources, which made this BIA even more suitable as a broad screening assay for nonmilk proteins.  相似文献   

19.
The effect of high-pressure (HP) treatment (300 MPa, 10 min) on the volatile profile of semihard ewe milk cheeses was investigated. The HP treatment was applied at two different stages of ripening (1 and 15 days; 3P1 and 3P15) and microbiota, proteolysis indexes (soluble nitrogen and total free amino acid content), and volatile compounds were assayed at 15, 60, 90, and 150 days of ripening. The intensity of odor and aroma of cheeses was also assayed. 3P1 cheeses presented the highest content of free amino acids and were characterized by the lowest amounts of aldehydes, ketones, short-chain free fatty acids, and terpenes and higher levels of ethanol and ethyl esters. 3P15 cheeses were characterized by the highest content of short-chain free fatty acids and pyruvaldehyde and the lowest abundance of secondary alcohols and were more similar to control cheeses than those HP-treated on the first day. Intensities of odor and aroma were not significantly influenced by the HP treatment. However, the panellists found some differences in 3P1 as compared with control and 3P15 cheeses in what they perceived as lower odor and aroma quality.  相似文献   

20.
This study was designed to develop a novel sandwich enzyme-linked immunosorbent assay (ELISA) for the detection and quantification of coconut milk proteins in processed foods. The developed sandwich ELISA was able to detect coconut milk proteins from various coconut milk products and did not show any cross-reactivity with 41 of 42 kinds of popularly used food ingredients, thus reflecting great specificity for coconut milk proteins. In addition, the established ELISA is highly sensitive and allowed the detection of 0.31 μg/g of coconut milk protein in complex food matrices. This proposed assay could serve as a useful tool for the detection of the presence of hidden coconut milk proteins in processed foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号