首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anti-vitamin K drugs are widely used as anticoagulant in human thromboembolic diseases. Similar compounds have also been used as rodenticides to control rodent population since 1950s. Massive use of first generation anticoagulants, especially warfarin, has lead to the development of genetic resistances in rodents. Similar resistances have been reported in human. In both cases, polymorphisms in VKORC1 (Vitamin K epoxide reductase subunit 1), the subunit 1 of the VKOR (Vitamin K epoxide reductase) complex, were involved. In rats (Rattus norvegicus), the Y139F mutation confers a high degree of resistance to warfarin. Little is known about the in vitro consequences of Y139F mutation on inhibitory effect of different anticoagulants available. A warfarin-susceptible and a warfarin-resistant Y139F strain of wild rats (Rattus norvegicus) are maintained in enclosures of the Lyon College of Veterinary Medicine (France). Using liver microsomes from susceptible or resistant rats, we studied inhibition parameters by warfarin (Ki = 0.72 ± 0.1 μM; 29 ± 4.1 μM), chlorophacinone (Ki = 0.08 ± 0.01 μM; 1.6 ± 0.1 μM), diphacinone (Ki = 0.07 ± 0.01 μM; 5.0 ± 0.8 μM), coumachlor (Ki = 0.12 ± 0.02 μM; 1.9 ± 0.2 μM), coumatetralyl (Ki = 0.13 ± 0.02 μM; 3.1 ± 0.4 μM), difenacoum (Ki = 0.07 ± 0.01 μM; 0.26 ± 0.02 μM), bromadiolone (Ki = 0.13 ± 0.02 μM; 0.91 ± 0.07 μM), and brodifacoum (Ki = 0.04 ± 0.01 μM; 0.09 ± 0.01 μM) on VKOR activity. Analysis of the results leads us to highlight different anticoagulant structural elements, which influence inhibition parameters in both susceptible and Y139F resistant rats.  相似文献   

2.
Proteinase inhibitors (AsPIs) with high activity against serine proteinases were purified from seeds of the tree legume, Acacia senegal by ammonium sulfate precipitation followed by DEAE-Sephadex A-25 column and evaluated against Helicoverpa armigera larvae by in vitro and in vivo methods. The molecular weight of AsPIs was found to be approximately 19.58 ± 1.00 and 21.23 ± 1.00 kDa for PI and 18.16 ± 1.00 kDa for PII on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The AsPIs (5 μg/ml) inhibited approximately 70% of midgut trypsin and 61% of elastase-like chymotrypsin. In vitro studies showed that AsPIs have remarkable inhibitory activity towards total gut proteolytic enzymes followed by trypsin and chymotrypsin. The IC50 of AsPIs for midgut trypsin was 0.1 μg/ml and for chymotrypsin was 2.0 μg/ml. The inhibition of gut proteinase enzymes was of the non-competitive type. In larval feeding studies, AsPIs were found to retard growth and development of H. armigera and also affects the fecundity of the pest. The results advocate the use of AsPIs in transgenic technology to develop plant resistance to H. armigera.  相似文献   

3.
A natural compound plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) was isolated from the leaves of Plumbago auriculata and found to inhibit the enzyme, 8-amino-7-oxononanoate synthase (AONS, also known as 7-keto-8-aminopelargonate synthase, KAPAS) an IC50 of 2.1 μM in vitro. Biotin supplement significantly rescued the plant injury caused by the plumbagin treatment, and this result confirmed the target site, AONS. Foliar application of 1000 ∼ 2000 μg/mL plumbagin in a greenhouse condition showed lethal activity against eight species of weeds, containing three grass species of Sorghum bicolor, Echinochloa crus-galli, Digitaria sanguinalis and five broad leaf species of Solanum nigrum, Aeschynomene indica, Abutilon avicennae, Xanthium strumarium, Calystegia japonica. Field trial of foliar application with plumbagin 2000 μg/mL have successfully controlled 10 ∼ 15 leaf-stages and 2 ∼ 3 m vine lengths of Sicyos angulatus at the natural habitats around riparian zone in the Nam-Han River in Korea. Visual symptom of desiccation might be induced by the physiological cellular leakage which was significantly dose dependent on the plumbagin treatment regardless of light.  相似文献   

4.
Glutathione S-transferases (GSTs) are known to catalyze conjugations by facilitating the nucleophilic attack of the sulfhydryl group of endogenous reduced glutathione on electrophilic centers of a vast range of xenobiotic compounds, including insecticides and acaricides. Elevated levels of GSTs in the two-spotted spider mite, Tetranychus urticae Koch, have recently been associated with resistance to acaricides such as abamectin [Pestic. Biochem. Physiol. 72 (2002) 111]. GSTs from acaricide susceptible and resistant strains of T. urticae were purified by glutathione-agarose affinity chromatography and characterized by their Michaelis-Menten kinetics towards artificial substrates, i.e., 1-chloro-2,4-dinitrobenzene and monochlorobimane. The inhibitory potential of azocyclotin, dicumarol, and plumbagin was low (IC50 values > 100 μM), whereas ethacrynic acid was much more effective, exhibiting an IC50 value of 4.5 μM. GST activity is highest in 2-4-day-old female adults and dropped considerably with progressing age. Furthermore, molecular characteristics were determined for the first time of a GST from T. urticae, such as molecular weight (SDS-PAGE) and N-terminal amino acid sequencing (Edman degradation). Glutathione-agarose affinity purified GST from T. urticae strain WI has a molecular weight of 22.1 kDa. N-terminal amino acid sequencing revealed a homogeneity of ≈50% to insect GSTs closely related to insect class I GSTs (similar to mammalian Delta class GSTs).  相似文献   

5.
Here we investigated the in vitro and in vivo effects of the pesticides, deltamethrin, diazinon, propoxur and cypermethrin, on the activity of rainbow trout (rt) gill carbonic anhydrase (CA). The enzyme was purified from rainbow trout gills using Sepharose 4B-aniline-sulfanilamide affinity chromatography method. The overall purification was approx. 214-fold. SDS-polyacrylamide gel electrophoresis showed a single band corresponding to a molecular weight of approx. 29 kDa. The four pesticides dose-dependently inhibited in vitro CA activity. IC50 values for deltamethrin, diazinon, propoxur and cypermethrin were 0.137, 0.267, 0.420 and 0.460 μM, respectively. In vitro results showed that pesticides inhibit rtCA activity with rank order of deltamethrin > diazinon > propoxur > cypermethrin. Besides, in vivo studies of deltamethrin were performed on CA activity of rainbow trout gill. rtCA was significantly inhibited at three concentrations (0.25, 1.0 and 2.5 μg/L) at 24 and 48 h.  相似文献   

6.
7.
Phenoloxidase (PO) is a key enzyme in the developmental process of insects that is responsible for catalyzing the hydroxylation of monophenols and the oxidation of o-diphenols. In the present investigation, the PO of Plutella Xylostella (L.)(Lepidoptera Plutellidae) was partially purified with 40% saturated (NH4)2SO4 and Sephadex G-100 gel filtration, and the effects of 4-dodecylresorcinol on the monophenolase and o-diphenolase activity of PO were studied. The results showed that 4-dodecylresorcinol could inhibit monophenolase and o-diphenolase activity. In addition, following 4-dodecylresorcinol treatments, the lag time of PO for oxidation of l-tyrosine was obviously lengthened and the steady-state activity was decreased. The inhibitor was found to be competitively reversible with a Ki of 0.201 mM and an estimated IC50 (inhibition concentration showing 50% of the maximum inhibition) of 0.160 mM for monophenolase and 0.369 mM for diphenolase. The ability of 4-dodecylresorcinol to inhibit PO activity may be associated with its ability to directly affect copper at the active site  相似文献   

8.
Rhyzopertha dominica causes extensive damage to stored wheat grains. α-Amylase, the major insect digestive enzyme, can be an attractive candidate to control the insect damage by inhibiting the enzyme through α-amylase inhibitors. R. dominica α-amylase (RDA) was purified to homogeneity by differential ammonium sulphate fractionation, Sephadex G-25 and Sephadex G-100 column chromatography. The homogenous α-amylase has a molecular weight of 52 kDa. The pH optima was 7.0 and temperature optima was 40 °C. Activation energy of RDA was 3.9 Kcal mol−1. The enzyme showed high activity with starch, amylose and amylopectin whereas dextrins were the poor substrates. The purified enzyme was identified to be α-amylase on the basis of products formed from starch. The enzyme showed Km of 0.98 mg ml−1 for starch as a substrate. Citric acid, oxalic acid, salicylic acid, HgCl2, tannic acid and α-amylase inhibitors from wheat were inhibitors whereas; Ca2+ and Mg2+ were the activators of RDA. Ki values calculated from Dixon graphs with salicylic acid, citric acid, oxalic acid and wheat α-amylase inhibitors were 6.9, 2.6-8.2, 3.2 mM and 0.013-0.018 μM, respectively. The Lineweaver-Burk plots with different inhibitors showed mixed type inhibition. Wheat α-amylase inhibitor showed mainly competitive inhibition with some non-competitive behaviour and other inhibitors showed mainly non-competitive inhibition with some un-competitive behaviour. Feeding trials with salicylic acid, citric acid, oxalic acid and wheat α-amylase inhibitor showed significant effect of salicylic acid and oxalic acid along with wheat α-amylase inhibitor in controlling the multiplication of R. dominica.  相似文献   

9.
A hydrophilic form of acetylcholinesterase (AChE) was purified from N-methyl carbamate susceptible (SA) and highly N-methyl carbamate-resistant (N3D) strains of the green rice leafhopper (GRLH), Nephotettix cincticeps Uhler. Both of purified AChE from SA and N3D strains displayed the highest activities toward acetylthiocholine (ATCh) at pH 8.5. In the SA strain, the optimum concentrations for ATCh, propionylthiocholine (PTCh), and butyrylthiocholine (BTCh) were about 1 × 10−3, 2.5 × 10−3, and 1 × 10−3 M, respectively. However, in the N3D strain, substrate inhibition was not identified for ATCh, PTCh, and BTCh to 1 × 10−2 M. The Km value in the SA strain was 51.1, 39.1, and 41.6 μM and that in the N3D strain was 91.8, 88.1, and 85.2 μM for ATCh, PTCh, and BTCh, respectively. The Km value in the N3D strain indicated about 1.80-, 2.25-, and 2.05-fold lower affinity than that of the SA strain for ATCh, PTCh, and BTCh, respectively. The Vmax value in the SA strain was 70.2, 30.5, and 4.6 U/mg protein and that in the N3D strain was 123.0, 27.0, and 14.5 U/mg protein for ATCh, PTCh, and BTCh, respectively. The Vmax value in the N3D strain was 1.75- and 3.15-fold higher for ATCh and BTCh than that in the N3D strain. However, it was 1.13-fold lower for PTCh. The increased activity of AChE in the N3D strain is due to the qualitatively modified enzyme with a higher catalytic efficiency. The bimolecular rate constant (ki) for propoxur was 27.1 × 104 and 0.51 × 104 M−1 min−1 in the SA and N3D strain and that for monocrotophos was 0.031 × 104 and 2.0 × 104 M−1 min−1 in the SA and N3D strain. AChE from the N3D strain was 53-fold less sensitive than SA strain to inhibition by propoxur. In contrast, AChE from the N3D strain was 65-fold more sensitive to inhibition by monocrotophos than AChE from the SA strain. This indicated negatively correlated cross-insensitivity of AChE to propoxur and monocrotophos.  相似文献   

10.
N-[4-Chloro-2-fluoro-5-{3-(2-fluorophenyl)-5-methyl-4,5-dihydroisoxazol-5-yl-methoxy}-phenyl]-3,4,5,6-tetrahydrophthalimide (EK-5385) is an experimental substituted bicyclic herbicide. Soil-applied EK-5385 showed good rice selectivity and potent herbicidal activity on barnyardgrass (Echinochloa crus-galli var. oryzicola) at rates of 3.9-250 g a.i./ha. Barnyardgrass was exhibited normal growth under dark condition, however, the growth of shoot and root was severely inhibited under light condition (14/10 h of light/dark, 50 μmol/m2/s of photosynthetically active radiation) when treated with EK-5385, oxadiazon, and oxadiargyl. IC50 of EK-5385 and oxadiargyl to chlorophyll loss in cucumber cotyledons was approximately 0.3 and 0.7 μM, respectively. IC50 of EK-5385 and oxadiargyl to carotenoids loss in cucumber cotyledons was about 0.26 and 0.1 μM, respectively. IC50 concentration of EK-5385 and oxadiargyl on Protox activity was approximately 5.5 and 8 nM, respectively. Cellular leakage occurred without lag period from cucumber leaf squares treated with 1 μM of EK-5385 and oxadiargyl under light exposure.  相似文献   

11.
An extracellular chitinase was purified from Bacillus subtilis. The lethal concentration (LC50) was determined by using chitinase in first, second, and third instars of Spodoptera litura Fab. Chitinase showed the highest insecticidal activity at 6 μM concentration within 48 h. The nutritional indices were also significantly affected by the 6 μM concentration (P < 0.05). Food consumption, efficiency of conversion of ingested and digested food, relative growth rate, and consumption values declined significantly while approximate digestibility was increased. Our study indicates that treatment of host plant leaves with the chitinase can regulate (reduce) larval growth and weight, and enhance the mortality. This may serve as an effective biocide and alternative to Bt toxin.  相似文献   

12.
The silphinenes are tricyclic sesquiterpenes that have antifeedant and toxic effects in insects and structural similarity to the known GABA antagonist, picrotoxinin. In murine synaptoneurosomes, silphinenes block GABA-stimulated influx of 36Cl with EC50s in the range of 10-30 μM. In insects, silphinenes were tested in neurophysiological recordings of central neurons from third instar Drosophila melanogaster larvae. Silphinenes reversed the blockage of neuronal firing induced by GABA, but had little effect below 100 μM. The structure-activity profile observed in the murine chloride flux assay was also observed in the larval neurophysiological assay, indicating little selectivity for the silphinenes. A reference silphinene was equally active on nerve preparations from the rdl strain of D. melanogaster, which is resistant to channel-blocking antagonists via an altered GABA receptor. This latter finding suggests that silphinenes interact with the insect GABA receptor in a manner somewhat different from PTX, and that rdl resistance in the field may have little effect on silphinene efficacy.  相似文献   

13.
Huanong AVM is a novel nematicide, which was synthesized from avermectin by selective oxidization of the hydroxyl group at C-4, followed by the reaction with glacial acetic acid. Effects of Huanong AVM on Bursaphelechus xylophilus are reported in this paper. Huanong AVM had strong nematicidal activity against B. xylophilus, with LC50 values of 14.84 μg/mL, 12.49 μg/mL and 11.05 μg/mL, respectively, at 48 h, 72 h and 96 h after treatment. The proteins that responded to Huanong AVM were identified by proteomic analysis. 2-DE analysis revealed eighteen differentially accumulated protein spots. Five spots were successfully identified by MS analysis, and three Huanong AVM induced proteins were annotated in the database as LEVamisole resistant family member (lev-11), ACTin family member (act-4) and Hypothetical protein Y52B11A.10. Two Huanong AVM-up-regulated proteins were assigned as PIP Kinase family member (ppk-3) and Hypothetical protein B0432.6. These proteins are involved in signal transduction, maintaining cytoskeletal structure and LEVamisole resistance. These results point to pathways that are important for the mode of the action of Huanong AVM on B. xylophilus.  相似文献   

14.
Effects of insecticide acetamiprid on photosystem II (PSII) activity of Synechocystis sp. were investigated by a variety of in vivo chlorophyll fluorescence tests. Acetamiprid exposure increased the proportion of inactivated PSII reactive centers (PSIIX) and led to loss of active centers (PSIIA). High concentration (1.0 mM) acetamiprid decreased amplitude of the fast phase and increased the slow phase of fluorescence decay during reoxidation. The electron transport after QA was hindered by high concentration acetamiprid and more QA had to be reoxidized through S2(QAQB) charge recombination. Acetamiprid decreased the density of the active reaction centers, electron transport flux per cross section and the performance of PSII activity but had little effect on dissipated energy flux per reaction center, antenna size and the maximum quantum yield for primary photochemistry (Fv/Fm). The target site of acetamiprid toxicity to the PSII of Synechocystis sp. was electron transfer on the acceptor side.  相似文献   

15.
Aquatic environments of the pampasic region of Argentina are severely affected by agricultural contamination due to an increase in a glyphosate tolerant transgenic variety of soybean crops. The present study is aimed to determine the effects of a commonly used Cyfluthrin commercial formulation (CCF) on growth, some physiological and biochemical parameter of four species of green algae. Significant inhibition of algal growth was observed from 0.1 mg Cyf/l. 96 h IC50 were between 0.92 and 4.85 mg Cyf/l. CCF caused algicidal effects. Photosynthesis was stimulated by 50% in Scenedesmus quadricauda cultures exposed to the lowest concentration (hormesis). Algal photosynthesis inhibition was observed at higher concentrations with IC50 values between 1.7 and 8.9 mg Cyf/l. Similar toxicity endpoints were found as a consequence of applying the traditional methodology of short-term chronic toxicity test of 96 h of exposition and the methodology developed using the Clark type photosynthetic oxygen evolution method. CAT activity was significantly increased between 23% and 33% considering the four species, at a lower concentration than those affecting algal growth and photosynthesis, indicating a potential biomarker. Taking into account that the extent of the soybean crops in the region is about fourteen million hectares, the improvement and extension of environmental tools for early detection of the action of pesticides on this essential group of organisms are discussed.  相似文献   

16.
Ecdysteroid signal transduction is a key process in insect development and therefore an important target for insecticide development. We employed an in vitro cell-based reporter bioassay for the screening of potential ecdysone receptor (EcR) agonistic and antagonistic compounds. Natural ecdysteroids were assayed with ecdysteroid-responsive cell line cultures that were transiently transfected with the reporter plasmid ERE-b.act.luc. We used the dipteran Schneider S2 cells of Drosophila melanogaster and the lepidopteran Bm5 cells of Bombyx mori, representing important pest insects in medicine and agriculture. Measurements showed an EcR agonistic activity only for cyasterone both in S2 (EC50 = 3.3 μM) and Bm5 cells (EC50 = 5.3 μM), which was low compared to that of the commercial dibenzoylhydrazine-based insecticide tebufenozide (EC50 = 0.71 μM and 0.00089 μM, respectively). Interestingly, a strong antagonistic activity was found for castasterone in S2 cells with an IC50 of 0.039 μM; in Bm5 cells this effect only became visible at much higher concentrations (IC50 = 18 μM). To gain more insight in the EcR interaction, three-dimensional modeling of dipteran and lepidopteran EcR-LBD was performed. In conclusion, we showed that the EcR cell-based reporter bioassay tested here is a useful and practical tool for the screening of candidate EcR agonists and antagonists. The docking experiments as well as the normal mode analysis provided evidence that the antagonist activity of castasterone may be through direct binding with the receptor with specific changes in protein flexibility. The search for new ecdysteroid-like compounds may be particularly relevant for dipterans because the activity of dibenzoylhydrazines appears to be correlated with an extension of the EcR-LBD binding pocket that is prominent in lepidopteran receptors but less so in the modeled dipteran structure.  相似文献   

17.
The cotton bollworm, Helicoverpa armigera is a polyphagous pest of several crops in Asia, Africa, and the Mediterranean Europe. Organophosphate and carbamate insecticides are used on a large-scale to control Helicoverpa. Therefore, we studied the effect of methylparathion and carbofuran, an organophosphate and carbamate insecticide, respectively, on oxidative phosphorylation and oxidative stress in H. armigera larvae to gain an understanding of the different target sites of these insecticides. It was observed that state III and state IV respiration, respiratory control index (RCI), and P/O ratios were inhibited in a dose-dependent manner by methylparathion and carbofuran under in vitro and in vivo conditions. Methylparathion and carbofuran inhibited complex II by ∼45% and 30%, respectively. Lipid peroxidation, H2O2 content, and lactate dehydrogenase (LDH) activity increased and glutathione reductase (GR) activity decreased in a time- and dose-dependent manner in insecticide-fed larvae. However, catalase activity was not affected in insecticide-fed larvae. Larval growth decreased by ∼64% and 67% in larvae fed on diets with 100 μM of methylparathion and carbofuran. The results suggested that both the insecticides impede the mitochondrial respiratory functions and induced lipid peroxidation, H2O2, and LDH leak, leading to oxidative stress in cells, which contribute to deleterious effects of these insecticides on the growth of H. armigera larvae, along with their neurotoxic effects.  相似文献   

18.
19.
Brucea javanica (L.) Merr. is a medicine plant distributed widely throughout Asia where its bitter fruits have been used traditionally in medicine for treating various ailments and controlling some pests. In recent years, concerns over the potential impact of synthetic pesticides on human health and environment have now become more pressing to develop environmentally friendly pesticides. In this paper, brusatol, a quassinoid, was isolated from the fruit of B. javanica, and identified using X-ray crystallographic analysis. Results showed that brusatol has potent contact toxicity (LD50, 2.91 μg/larva, 72 h) and anfieedant activity (AFC50, 17.4 mg/L, 48 h) against the third-instar larvae of Spodoptera exigua. Brusatol demonstrated cytotoxic effects to the tested insect cell lines, IOZCAS-Spex-II and Sf21, in a time- and dose-dependent manner. After brusatol treatment, apoptotic cell death with the DNA fragmentation, activation of caspase-3 and release of cytochrome c was preliminarily observed in both IOZCAS-Spex-II and Sf21. These results indicated the existence of apoptotic death with the mitochondrial-dependent pathway induced by brusatol in Sf21 and IOZCAS-Spex-II cell lines. Our studies will provide important knowledge to understand mechanisms of action of brusatol and to develop brusatol and its derivatives as insecticides.  相似文献   

20.
Diethyl phthalate (DEP) enter into aquatic environment from industries manufacturing cosmetics, plastic and many commercial products and can pose potential fish and human health hazard. This experiment evaluated effects of DEP in adult male (89 g) common carp (Cyprinus carpio) by exposing them to fractions of LC50 (1/500-1/2.5) doses with every change of water for 28 days. Vitellogenin induction metabolic enzymes, somatic indices and bioaccumulation were studied on 7th, 14th, 21st and 28th day. The 96th hour LC50 of DEP in fingerlings was found to be 48 mg/L. Compared to control, except increase (P < 0.01) in alkaline phosphatase activity (EC 3.1.3.1) and liver size, there was decrease (P < 0.01) in activity of acid phosphatase (EC 3.1.3.2), aspartate aminotransferase (EC 2.6.1.1), alanine aminotransferase (EC 2.6.1.2) and testiculosomatic index following exposure to 1, 5 and 20 ppm DEP. Significant (P < 0.01) dose dependant vitellogenin induction was observed with exposure of fish to 0.1, 1 and 5 ppm DEP. The bioaccumulation of DEP in testis, liver, brain, gills and more importantly in muscle tissues of fish increased significantly (P < 0.01) with increase of dose from 1 to 5 ppm. Significant interaction (P < 0.01) of dose and duration of exposure indicated that exposure period of a week to two was sufficient to bring about changes in quantifiable parameters studied. Fish exposed to 20 ppm DEP became lethargic and discolored during onset of the 4th week. This is the first report describing metabolic changes and vitellogenin induction following exposure of C. carpio to DEP dose that is as low as 1/500th fraction of LC50.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号