首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mycorrhizal and non-mycorrhizal holm oak (Quercus ilex L.) seedlings inoculated with black truffle (Tuber melanosporum) were grown under nursery conditions and subjected to drought hardening for 4 months in autumn and winter followed by irrigation for 10 days. Leaf water potential and stomatal conductance were monitored during the 4 months of drought. When the test was completed (March), measurements were made for each treatment (inoculated or non-inoculated), and watering regime (watered and water-stressed). Pressure–volume curves, osmotic potential at full turgor, osmotic potential at zero turgor and the tissue modulus of elasticity near full turgor were calculated. Mycorrhizal colonization and growth, and the content of the main mineral nutrients N, P, K, Ca and Mg were measured. Water stress affected plant growth, caused an elastic adjustment of the plant tissues, and decreased the P and K content, and inoculation improved the nitrogen content. Drought acclimation apparently achieved the goal of improving the drought tolerance of holm oak seedlings, without depressing ectomycorrhizal root colonization by T. melanosporum. José Antonio Rodríguez Barreal—Deceased  相似文献   

2.
Red oak (Quercus rubra), a mesic species, and chestnut oak (Quercus prinus), a xeric species, were grown in a greenhouse with and without fertilizer (F+ and F-, respectively) and subjected to a 10-week drydown (W-) or kept well watered (W+). In both species, fertilized seedlings exhibited greater reductions in mean net photosynthesis (A), leaf conductance (g(wv)), leaf water potential (Psi(leaf)) and water use efficiency (WUE) during the drydown than unfertilized seedlings. In the W- treatments, red oak showed greater reductions in A, g(wv) and Psi(leaf) than chestnut oak. Differential fertilization of the seedlings of both species had a greater effect on tissue water relations than differential watering. During the latter weeks of the drydown, there was no osmotic adjustment in red oak, but chestnut oak in the F+/W- treatment had significantly lower osmotic potentials at full and zero turgor than seedlings in any of the other treatments. The results indicate that high nutrient availability does not improve the drought tolerance of these two oak species.  相似文献   

3.
D. S. Thomas 《New Forests》2009,38(3):245-259
Forestry requires low mortality of transplanted seedlings. Mortality shortly after planting is often associated with inadequate hydration of transplants. Seedlings can be hardened to the drought conditions they may experience after transplanting by exposing them to controlled drought conditions in the nursery. Eucalyptus pilularis Sm. seedlings were drought hardened by providing nil (severe treatment) or half (mild treatment) the daily irrigation routinely received (control treatment) for up to two non-consecutive days per week during the last 4 weeks of growth in the nursery. Drought hardening reduced stem diameter, seedling leaf area, leaf area per root biomass and seedling quality measured by the Dickson quality index, but increased root:shoot ratio. Hardened seedlings had lower stomatal conductance and leaf water potential on the days they received less irrigation that the control treatment. Hardened seedlings had greater stomatal conductance and were less water stressed than seedlings experiencing drought for the first time indicating hardened seedlings had adjusted physiologically to drought. Survival after transplanting in the controlled drought environment in a glasshouse was enhanced by the hardening treatments. Non hardened seedlings that had had their upper leaves manually removed immediately prior to transplanting to reduce leaf area (top-clipped) had similar survival to hardened seedlings. Stomatal conductance and leaf water potential after transplanting were higher in hardened and top-clipped seedlings than unhardened control seedlings or vegetative cuttings. Survival in the field trial was over 95% for all treatments, possibly as rain fell within 4 days of planting and follow-up rain occurred in the subsequent weeks. Neither the hardened or top-clipped seedlings planted in the field trial had reduced growth, increased propensity to form double leaders or worse stem form than control seedlings when measured at age 3 years.  相似文献   

4.
Two-year-old Corsican pine (Pinus nigra ssp. laricio var. Corsicana) seedlings were either well watered or subjected to a moderate drought for one month before being lifted from the nursery bed on October 9 and transplanted. Well-watered, non-transplanted seedlings served as controls. Needle predawn water potential (Psi(wp)), non-structural carbohydrate concentrations and plant development (survival, bud break, shoot elongation) were assessed before and during the first growing season after transplanting. On April 16, just before bud break, Psi(wp) was lower for the well-watered + transplanted and drought-conditioned + transplanted seedlings (Psi(wp) = -1.45 and -1.83 MPa, respectively) than for the controls (Psi(wp) = -0.56). There was a close relationship between the Psi(wp) measured on April 16 and bud break, shoot elongation and plant survival during the following growing period. Above a Psi(wp) of -1.1 MPa, all plants developed normally. Between -1.1 MPa and -1.6 MPa, bud break, and thus shoot elongation, did not occur in all plants. Between -1.6 MPa and -2.1 MPa, the plants were characterized by the absence of shoot growth, but mortality was zero. Below -2.1 MPa, there was a large increase in plant mortality. On April 16, starch concentrations were markedly lower in the roots of transplanted seedlings than in the controls. There was a positive correlation between Psi(wp) and root starch concentration. The Psi(wp) (-2.3 MPa) at which complete starch depletion was observed in the roots corresponded to the Psi(wp) below which plants did not survive. These results suggest that mechanisms specifically linked to altered water status and metabolic processes associated with altered carbohydrate status are involved in transplanting stress; however, it was not possible to disentangle the two effects. Drought conditioning did not lead to a marked increase in soluble carbohydrate concentrations, as reported for other species, and did not increase plant tolerance to transplanting stress.  相似文献   

5.
We analysed the physiological bases that explain why large and high nitrogen (N) concentration seedlings frequently have improved survival and growth relative to small seedlings in Mediterranean woodland plantations. Large seedlings of Aleppo pine (Pinus halepensis Mill.) and holm oak (Quercus ilex L.) with high N concentration (L+), and small seedlings with either high (S+) or low (S−) N concentration, were planted on two sites of different weed competition intensity that created contrasting stress conditions. Seedling survival, growth, gas exchange, N remobilization (NR) and uptake (NU), and water potential were assessed through the first growing season. Weeds reduced survival and growth, but seedling response to weed competition varied among phenotypes and between species. At the end of the first growing season, L+ Aleppo pine seedlings had higher survival than both small seedling types in presence of weeds but no differences were observed in absence of weeds. Mortality differences among phenotypes occurred in spring but not in summer. L+ Aleppo pines grew more than small Aleppo pines independently of weed competition. No holm oak seedling type survived in presence of weeds and no mortality differences among phenotypes where observed in absence of weeds, although L+ holm oak seedlings grew more than small seedlings. Mortality and growth differences in Aleppo pine were linked to marked physiological differences among phenotypes while physiological differences were small among holm oak phenotypes. L+ Aleppo pines had greater root growth, gas exchange, NR, and NU than small seedlings, irrespective of their N concentration. Seedling size in Aleppo pine had a greater role in the performance of transplanted seedlings than N concentration. The functional differences among oak phenotypes were small whereas they were large in pine seedlings, which led to smaller differences in transplanting performance in holm oak than in pine. This suggests that the nursery seedling quality improvement for planting in dry sites could depend on the species-specific phenotypic plasticity and functional strategy. Improved transplanting performance in large Aleppo pine seedlings relative to small seedlings was linked to greater gas exchange, root growth and N cycling.  相似文献   

6.
In a greenhouse study we quantified the gradual change of gas exchange, water relations and root reserves of aspen (Populus tremuloides Michx.) seedlings growing over a 3-month period of severe water stress. The aim of the study was to quantify the complex interrelationship between growth, water and gas exchange, and root carbon (C) dynamics. Various growth, gas exchange and water relations variables in combination with root reserves were measured periodically on seedlings that had been exposed to a continuous drought treatment over a 12-week period and compared with well-watered seedlings. Although gas exchange and water relations parameters significantly decreased over the drought period in aspen seedlings, root reserves did not mirror this trend. During the course of the experiment roots of aspen seedlings growing under severe water stress showed a two orders of magnitude increase in sugar and starch content, and roots of these seedlings contained more starch relative to sugar than those in non-droughted seedlings. Drought resulted in a switch from growth to root reserves storage which indicates a close interrelationship between growth and physiological variables and the accumulation of root carbohydrate reserves. Although a severe 3-month drought period created physiological symptoms of C limitation, there was no indication of a depletion of root C reserve in aspen seedlings.  相似文献   

7.
Seedlings of Pinus pinea L. growing in plastic containers were treated with seaweed concentrate (SWC). Different concentrations of SWC were applied, 0 to 3 times, to the roots or shoots of the seedlings. Shoot application increased plant weight mainly by increasing shoot growth. This was manifested as increased shoot length and weight and a decrease in the root/shoot ratio. Root drenches did not change the total plant weight but it accelerated root growth and increased lateral root dry weight. Root growth capacity (RGC) tests for both shoot and root applications indicated an increase in root length and some increases in root number when applied as a root drench. This study indicates that root application of SWC improved seedling quality and increased the ability of seedlings to survive transplanting into pots.Abbreviations GC-MS Gas Chromatography-Mass Spectrometry - RGC root growth capacity - SWC seaweed concentrate  相似文献   

8.
Ecotypic variations in leaf conductance, soil-to-leaf hydraulic conductance, components of tissue water potential, hydraulic architecture parameters and xylem embolism were examined in greenhouse-grown two-year-old Aleppo pine (Pinus halepensis Mill.) seedlings from six origins representing the geographic range of the species in Italy. Cortical resin composition of the seedlings was also determined. Measurements were made on well-watered seedlings and on seedlings subjected to recurring severe drought. Drought-stressed seedlings had lower mean leaf conductances, transpiration rates and soil-to-leaf hydraulic conductances than well-watered seedlings. They also exhibited more negative osmotic potentials, higher relative water deficit at incipient plasmolysis, but a similar maximum modulus of elasticity. Drought-stressed seedlings showed a higher degree of xylem embolism, a lower Huber value, lower leaf specific conductivity and lower specific conductivity than well-watered seedlings. Drought-stressed seedlings of provenances from more xeric habitats (Tremiti, Porto Pino and Mottola) had greater leaf conductances, transpiration rates and soil-to-leaf hydraulic conductances than drought-stressed seedlings of provenances from more mesic habitats (Imperia, Otricoli and Vico del Gargano). They also showed higher osmotic adjustment and a lower degree of xylem embolism. Among provenances, there were no significant differences in hydraulic architecture parameters in response to the drought treatment; however, Tremiti and Porto Pino seedlings displayed smaller drought-induced reductions in specific conductivity and leaf specific conductivity, respectively, than seedlings from other provenances. These differences suggest that seedlings from xeric provenances, especially Tremiti, have greater resistance to desiccation than seedlings from mesic provenances. No clear association was found between terpene variability and the other traits investigated, although terpene composition was related to the geographical distribution of the provenances. We conclude that the drought-tolerance responses of Tremiti make it a more suitable provenance than the others for establishment on sites prone to severe soil water deficits.  相似文献   

9.
Genotypic variation in photosynthesis and plant water relations during drought, and in leaf and seedling morphology were examined in greenhouse-grown Fraxinus pennsylvanica Marsh. (green ash) from five populations located along an east-west transect from New York State to South Dakota. During a 17-day drought, South Dakota seedlings, from the most xeric habitat, maintained the highest net photosynthesis and leaf conductance, and New York seedlings, from the most mesic habitat, exhibited the lowest net photosynthesis and leaf conductance. All populations except New York adjusted osmotically during the 17-day drought, by the end of which New York seedlings had the highest osmotic potentials at full and zero turgor. Tissue elasticity increased in New York seedlings, but decreased in Nebraska seedlings during the drought. Leaves of South Dakota seedlings were the most xerophytic. They were smaller in area and greater in thickness and specific mass than leaves of other sources. Leaves of New York seedlings were thinner than those of the other genotypes and among the largest. Seedlings from South Dakota were smaller than those of the other populations.  相似文献   

10.
Forest restoration projects with Holm oak (Quercus ilex) have had limited success, mostly due to water stress after planting and poor plant quality. Recent studies indicated that large and nutrient rich plants perform better in Mediterranean areas, suggesting that late-season fertilization may improve plant quality and field performance. The purpose of this study was to assess the effect of late-season fertilization on the quality of Holm oak seedlings, as determined by morphological, nutritional, and water relations analyses. We grew Holm oak nursery seedlings under 5 different late-season fertilization regimes and then analyzed morphological characteristics, nutritional status, and water relations parameters of the fertilization groups at the end of the nursery period. We also analyzed the effect of fertilization on nutritional status by use of vector nomograms. Our results indicated that late-season NPK fertilization improved shoot and root growth, and the overall nutritional status of seedlings. The lack of late-season fertilization leads to nutrient deficiency in plants, whilst the application of imbalanced fertilization treatments may trigger nutrient luxury consumption and nutrient dilution, pointing out the importance of NPK proportions in the fertilizer. Moreover, late-season fertilization with nitrogen might improve the drought resistance of seedling by enhancing their osmotic adjustment.  相似文献   

11.
We compared seedling water relations of three Mediterranean Quercus species (the evergreen shrub Q. coccifera L., the evergreen tree Q. ilex L. subsp. ballota (Desf.) Samp. and the deciduous or marcescent tree Q. faginea L.). We also explored seedling potential for acclimation to contrasting growing conditions. In March, 1-year-old seedlings of the three species were planted in pots and grown outdoors in a factorial combination of two irrigation regimes (daily (HW) and alternate day watering (LW)) and two irradiances (43 and 100% of full sunlight). At the end of July, predawn and midday water potentials (Psi(pd), Psi(md)) were measured, and pressure-volume (P-V) curves were obtained for mature current-year shoots. Species exhibited similar Psi(pd) and Psi(md) values, but differed in leaf morphology and water relations. The evergreens possessed larger leaf mass per area (LMA) and were able to maintain positive turgor pressure at lower water potentials than the deciduous species because of their lower osmotic potential at full turgor. However, the three species had similar relative water contents at the turgor loss point because Q. faginea compensated for its higher osmotic potential with greater cell wall elasticity. Values of Psi(pd) had a mean of -1.12 MPa in LW and -0.63 MPa in HW, and Psi(md) had a mean of -1.13 MPa in full sunlight and -1.64 MPa in shade, where seedlings exhibited lower LMA. However, the P-V curve traits were unaffected by the treatments. Our results suggest that Q. faginea seedlings combine the water-use characteristics of mesic deciduous oak and the drought-tolerance of xeric evergreen oak. The ability of Q. coccifera to colonize drier sites than Q. ilex was not a result of higher drought tolerance, but rather may be associated with other dehydration postponement mechanisms including drought-induced leaf shedding. The lack of treatment effects may reflect a relatively low contrast between treatment regimes, or a low inherent responsiveness of these traits in the study species, or both.  相似文献   

12.
The effects of root damage associated with Phytophthora cinnamomi on water relations, biomass accumulation, mineral nutrition and vulnerability to water deficit were investigated in pedunculate oak (Quercus robur), red oak (Quercus rubra) and holm oak (Quercus ilex) saplings over two years. Comparison was made with sweet chestnut (Castanea sativa), a susceptible species to infection by P. cinnamomi, and with a resistant hybrid chestnut (Castanea crenata × C. sativa). Trees were inoculated in 1998 and were subjected to water shortage in 1999. All inoculated sweet chestnuts died before the application of water shortage. Hybrid chestnut, pedunculate oak and red oak displayed low root susceptibility to P. cinnamomi. In these species, water relations, aerial growth and mineral nutrition were slightly affected by inoculation. By contrast, holm oak was the most susceptible oak species to P. cinnamomi as inoculated well‐watered trees displayed the highest root loss (67%) and a 10% mortality. Root loss was associated with a decrease in predawn leaf water potential, a 61% reduction in stomatal conductance, a 55% reduction in aerial biomass, a decrease in leaf carbon isotope discrimination and reduced leaf N and P contents in comparison with controls. In hybrid chestnut and pedunculate oak, water shortage resulted in a similar decrease of predawn leaf water potential, stomatal conductance and aerial biomass in inoculated and non‐inoculated trees. In red and holm oaks, soil volumetric water content of inoculated trees subjected to water shortage remained high. The effects observed in those trees were similar to those of inoculated well‐watered trees and were probably the result of root infection only.  相似文献   

13.
Root characteristics and field performance of container and bare-root seedlings of red oak (Quercus rubra L.) were compared during the first growing season after planting. Sixty seedlings of each stock type were planted on a clearfell and weed-free site near Restoule, Ontario. Twenty-four additional seedlings from each stock type were compared at the start of the study in terms of shoot and root parameters. Measurement of root and shoot parameters were repeated at three dates during the first growing season in the field. The root systems of container stock had a larger number of first order lateral long roots and were significantly more fibrous than bare-root stock. These differences were sustained throughout the first growing season. In terms of field performance, container seedlings had 100% survival and achieved significant increases in both biomass and shoot extension. Bare-root seedlings suffered 25% mortality, significant shoot dieback and more variable growth. The mean relative growth rate (RGR) of container seedlings increased throughout the study period to a maximum of 30 mg/g/day, whereas the mean RGR of bare-root stock remained close to or below zero. Overall, the container seedlings proved less prone to transplanting shock than the bare-root seedlings, most likely due to favourable root architecture and the pattern of root development. Further work may be warranted in container design, growing regimes and root architecture to fully realise the potential of container systems for the production of high quality red oak seedlings across a range of site conditions.  相似文献   

14.
Forest restoration programs using Holm oak (Quercus ilex ssp. ballota [Desf.] Samp.) have had limited success. The effect of plant provenance on plantation success is uncertain, although some previous studies suggest that some provenances may be better able to tolerate stress. We studied the tolerance to drought in seedlings from two Spanish provenances of Holm oak before and after outplanting. One provenance was from a continental climate with cold winters (GR) and the other was from a xeric climate (HU). Seedlings were subjected to a water stress test in the nursery during the summer and survival was visually assessed after 2?weeks. In addition, 35 healthy seedlings of each provenance that were not subjected to the water stress tests were used for outplanting experiment. In these plants the seasonal changes in water potential at dawn (Ψ), specific leaf area (SLA), cuticular transpiration (Ec), and loss of xylem hydraulic conductance of twigs (PLC) were measured over 18?months. After the water stress test in summer, mortality was 44.3?% for GR seedlings and 12.6?% for HU seedlings. In addition there were differences between the two provenances in plant water status after planting. The HU provenance had a better water status and was more water conservative in the summer (higher Ψ, lower Ec, lower PLC), but not in the winter. The different drought tolerance and water relations parameters of these two provenances indicate that provenance should be considered in forest restoration and conservation programs involving Holm oak.  相似文献   

15.
The present study was carried out to elucidate the drought growth responses of Quercus ilex L., Phillyrea latifolia L., Arbutus unedo L., and other accompanying woody species of the Mediterranean holm oak forest. We submitted holm oak forest stands in Prades mountains (NE Spain) to a 2-year experimental drought. We reduced soil water availability about 15% by plastic strips and funnels that partially excluded rain throughfall and by ditch interception of water runoff. Mean stem diameter increment showed a great variation depending on the species. A. unedo had larger growth rates than Q. ilex and P. latifolia, but it was also the species that experimented the highest growth reduction in the drought plots (77%), suggesting a higher drought sensitivity than Q. ilex (55%) and P. latifolia (no drought effect). The growth reduction was specially marked in the larger trees. Aboveground stand biomass increment, estimated from stem diameter by allometric relationships, was 1.9 Mg ha−1 per year in the control plots. The 15% reduction in the upper soil moisture produced 42% reduction in this biomass increment. In the drier conditions predicted in this Mediterranean area in the frame of climate change, an important reduction of growth rates can be hence expected, accompanied by a gain of dominance of drought-tolerant species such as P. latifolia in detriment of more mesic species such as Q. ilex.  相似文献   

16.
Provenance-specific growth responses to experimentally applied drought and air warming were studied in saplings of three European oak species: Quercus robur, Quercus petraea and Quercus pubescens. Four provenances of each species were grown in large open-top chambers and subjected to four climates: control, periodic drought, air warming or their combination in 3 subsequent years. Overall growth responses were found among species and provenances, with drought reducing shoot height growth and stem diameter growth and air warming stimulating shoot height growth but reducing stem diameter growth and root length growth. Differential growth responses in shoots, stems and roots resulted in altered allometric growth relations. Root length growth to shoot height growth increased in response to drought but decreased in response to air warming. Stem diameter growth to shoot height growth decreased in response to air warming. The growth responses in shoots and stems were highly variable among provenances indicating provenance-specific sensitivity to drought and air warming, but this response variability did not reflect local adaptation to climate conditions of provenance origin. Shoot height growth was found to be more sensitive to drought in provenances from northern latitudes than in provenances from southern latitudes, suggesting that genetic factors related to the postglacial immigration history of European oaks might have interfered with selective pressure at provenance origins.  相似文献   

17.
Seedlings of Eucalyptus globulus Labill subsp. globulus grown in soil in pots in the greenhouse grew faster than seedlings of E. globulus subsp. bicostata, and responded better to added nutrients and water. However, water stress caused a greater reduction in the growth of shoots and roots, and in the root/shoot ratios of fertilized seedlings of subsp. globulus than in those of bicostata. More leaf surface wax was produced by seedlings grown in the presence of fertilizer and an adequate supply of water than by seedlings subjected to nutrient or water stress. Despite larger amounts of leaf surface wax, seedlings of subsp. bicostata had higher epidermal conductances than seedlings of subspecies globulus. However, epidermal conductances were reduced more by water stress and by fertilization in seedlings of subsp. bicostata than in subsp. globulus. Tissue osmotic potentials at full and zero turgor were reduced by water stress only in seedlings of subsp. bicostata and were increased by fertilizer only in seedlings of subsp. globulus. The results indicate that although seedlings of subsp. globulus have inherently higher growth rates, seedlings of subsp. bicostata are better adapted to drought.  相似文献   

18.
Holm oak (Quercus ilex L.) seedlings were exponentially (E) nutrient loaded using incremental increases in fertilizer addition or conventionally (C) fertilized using a constant fertilizer rate during nursery culture. The fertility treatments (mg N plant−1) were control (0), 25E, 100E, and 100C. Subsequently, 1-year-old plants were transplanted under simulated soil fertility gradients in a greenhouse to evaluate effects of nutrient loading and post-transplant fertility on seedling performance. Post-transplant fertility consisted of fertilizing plants at two rates (0 vs. 200 mg N plant−1). A water-soluble fertilizer 20-20-20 was supplied in both nursery and post-transplant experiments. Nutrient loading increased plant N content by 73% in 100E and by 75% in 100C relative to controls, although no significant differences were detected between constant and exponential fertilization regimes at the 100 mg N plant−1 rate. When transplanted, nutrient loading promoted post-transplant root growth relative to shoot, implicating potential to confer competitive advantage to loaded holm oak seedlings after trans-planting. In contrast, post-transplant fertility increased new shoot dry mass by 140% as well as N, P and K content relative to controls. Results suggest that holm oak seedlings can be successfully nutrient loaded in the nursery at higher fertility rates, improving its potential to extend new roots, but alternative fertilization regimes and schedules that better fit nutrient availability to the growth rhythm and conservative strategy of this species must be tested.  相似文献   

19.
Oak decline that was affecting three holm oak sites in the province of Huelva (south‐western Spain) was studied during 1998–1999. The syndromes of dieback and sudden death have been observed and, in both cases, foliar symptoms were associated with root rot. Characterization of the fungal isolates from necrotic roots led us to identify Phytophthora cinnamomi A2 as consistently associated with the disease. The optimum growth temperatures of these isolates were very high (30°C). Inoculation tests under controlled conditions demonstrated the pathogenicity of the isolates on holm and cork oak seedlings. None of the other biotic factors of Mediterranean oak decline that have been previously described were found in the present study and so, in this case, the forest decline model does not seem to be necessary in order to explain the disease observed. The defoliation and mortality of the oaks was primarily caused by P. cinnamomi, although some abiotic factors such as alternating periods of drought and wet weather in the region may play an important role.  相似文献   

20.
Root and shoot characteristics related to drought resistance were compared among cultivated peach (Prunus persica (L.) Batsch.), P. andersonii (Nevada Desert almond), P. besseyi (western sand cherry), P. maritima (beach plum), P. subcordata (Sierra or Pacific plum), and P. tomentosa (Nanking cherry). In all species, shoot characteristics were more closely associated with drought adaptation than root characteristics. The most xeric species, P. andersonii, had the lowest specific leaf area, smallest leaves, highest stomatal conductance (before stress), highest rate of carbon assimilation (A), high root length/leaf area and root weight/leaf area ratios, and the highest leaf nitrogen content on an area basis. Root hydraulic conductivity was similar for all species, indicating a lack of importance of this parameter for drought resistance. During a 5-7 day drought, water use efficiency (WUE) increased as shoot water potentials (Psi) declined to -3.0 to -4.0 MPa for the xeric P. andersonii and P. subcordata, whereas after an initial increase, WUE decreased with declining Psi in the -1.5 to -3.0 MPa range for the more mesic P. maritima, P. persica and P. tomentosa as a result of non-stomatal limitations to A. Carbon assimilation rate decreased linearly with Psi during drought in all species, but the Psi at which A reached zero was not associated with drought adaptation. We conclude that the variation in leaf characteristics among Prunus species could be exploited to improve the drought resistance of commercial cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号