首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As an important factor of scenic quality and biodiversity along a greenway, landscape diversity has yet to receive as much attention as it deserves. In the practice of greenway alignment planning, it usually gives way to the primary consideration of land suitability. In this article, we aim to make up this missing link. Upon the new concepts and measurement of linear landscape diversity and cellular landscape diversity, we proposed greenway potential index incorporating land suitability and landscape diversity. The greenway potential index was combined with connectivity analysis to connect path between a future greenway’s origin and destination that meets both land suitability and landscape diversity requirements. Specially, with Wuchang (Wuhan City, China) as a case study area, we proposed three greenway alignment planning scenarios respectively according to the criteria of suitability, diversity and the synthesis of them. Markedly differences were revealed between the results of suitability greenways and diversity greenways. The results indicate that the tripartite model we proposed is capable of planning a connecting path between a future greenway’s origin and destination that not only meets land suitability requirements for greenway construction, but also incorporates as many landscape types of significant difference as possible.  相似文献   

2.
Resource utilization scales and landscape pattern   总被引:4,自引:0,他引:4  
The spatial patterning of resources constrains the movement of consumers on the landscape. Percolation theory predicts that an organism can move freely if its critical resource or habitat occupies 59.28% of the landscape. Sparse resources require an organism to operate on larger resource utilization scales. Multiple critical resources necessitate larger scales, while substitutable resources ease the scale requirements. Contagious spatial patterns require larger scales to permit movement between resource clusters. The study indicates a strong link between spatial pattern and ecological processes on a landscape.  相似文献   

3.
风景园林与农业这两个差距甚远的行业貌似没有交集,笔者从风景园林与农业的渊源入手,分析风景园林学科教育与农业园区规划的关联,以身为风景园林毕业生并从事农业园区规划工作的实践出发,通过规划案例,阐述园林化构思在农业园区规划中演绎的精彩。  相似文献   

4.
通过对吕家村城乡一体化建设规划中景观环境规划的阐述,透析通过城乡一体化建设来加快村庄内造林绿化工作步伐,同时牢固树立"环境意识"和"资源意识",加大农村村庄环境建设,加大对村容村貌的整治,提高吕家村的绿化率,提升吕家村的村镇品味,改善农村生活环境,改善局部小气候,带动天水旅游产业的发展。  相似文献   

5.
Research performed on microlandscapes embodies the essence of landscape ecology by focusing on the ecological consequences of the mosaic structure of different landscape elements. As an illustration, observations and simulations were used to test whether the fractal structure of grassland microlandscapes affected the movement patterns of tenebrionid beeetles in natural environments. The significant tendency of beetles to avoid 1 m2 cells with fractal dimensions of 1.85 to 1.89 (indicating the area-filling tendency of bare ground) demonstrated the role of landscape structure as a modifier of beetle movements or diffusion in heterogeneous landscapes. Experiments in microlandscapes may accelerate the development of quantitative conceptual frameworks applicable to landscapes at all scales.  相似文献   

6.
7.
Structural dynamic of a hedgerow network landscape in Brittany France   总被引:3,自引:3,他引:0  
Changes in agricultural systems since the 50's led to considerable changes in rural hedgerow network landscapes. In these landscapes, ecological processes depend on the spatial structure of the network (length of hedgerows, connectedness, grain size). This paper reports on a study of the dynamics of such a landscape at four periods of time (1952, 1961, 1972, 1985) done on 26 contiguous 16 ha quadrats. A correspondence analysis of the data matrix yields a gradient of change from dense highly connected networks to heterogeneous landscapes with few hedgerows. The study of individual trajectories of the quadrats allowed them to be regrouped in various types of changes. It is possible for a quadrat to go through several pathways. Rates of change varied through time, the 1961–1972 period had most changes. The use of supplementary elements in correspondence analysis proves to be a useful way to approach spatial hierarchy and allows a better understanding of the differentiation of landscape units.  相似文献   

8.
The parameters referring to landscape structure are essential in any evaluation for conservation because of the relationship that exists between the landscape structure and the ecological processes. This paper presents a study of the relationships between landscape structure and species diversity distribution (estimated in terms of richness of birds, amphibians, reptiles and butterflies) in the region of Madrid, Spain. The results show that the response of species richness to landscape heterogeneity varies depending on the group of species considered. For birds and lepidopterans, the most important factor affecting the distribution of richness of species is landscape heterogeneity, while other factors, such as the specific composition of land use, play a secondary role at this scale. On the other hand, richness of amphibians and reptiles is more closely related to the abundance of certain land-use types. The study highlights the importance of heterogeneity in Mediterranean landscapes as a criterion for landscape planning and for definition of management directives in order to maintain biodiversity.  相似文献   

9.
Management may influence abiotic environments differently across time and spatial scale, greatly influencing perceptions of fragmentation of the landscape. It is vital to consider a priori the spatial scales that are most relevant to an investigation, and to reflect on the influence that scale may have on conclusions. While the importance of scale in understanding ecological patterns and processes has been widely recognized, few researchers have investigated how the relationships between pattern and process change across spatial and temporal scales. We used wavelet analysis to examine the multiscale structure of surface and soil temperature, measured every 5 m across a 3820 m transect within a national forest in northern Wisconsin. Temperature functioned as an indicator – or end product – of processes associated with energy budget dynamics, such as radiative inputs, evapotranspiration and convective losses across the landscape. We hoped to determine whether functional relationships between landscape structure and temperature could be generalized, by examining patterns and relationships at multiple spatial scales and time periods during the day. The pattern of temperature varied between surface and soil temperature and among daily time periods. Wavelet variances indicated that no single scale dominated the pattern in temperature at any time, though values were highest at finest scales and at midday. Using general linear models, we explained 38% to 60% of the variation in temperature along the transect. Broad categorical variables describing the vegetation patch in which a point was located and the closest vegetation patch of a different type (landscape context) were important in models of both surface and soil temperature across time periods. Variables associated with slope and microtopography were more commonly incorporated into models explaining variation in soil temperature, whereas variables associated with vegetation or ground cover explained more variation in surface temperature. We examined correlations between wavelet transforms of temperature and vegetation (i.e., structural) pattern to determine whether these associations occurred at predictable scales or were consistent across time. Correlations between transforms characteristically had two peaks; one at finer scales of 100 to 150 m and one at broader scales of >300 m. These scales differed among times of day and between surface and soil temperatures. Our results indicate that temperature structure is distinct from vegetation structure and is spatially and temporally dynamic. There did not appear to be any single scale at which it was more relevant to study temperature or this pattern-process relationship, although the strongest relationships between vegetation structure and temperature occurred within a predictable range of scales. Forest managers and conservation biologists must recognize the dynamic relationship between temperature and structure across landscapes and incorporate the landscape elements created by temperature-structure interactions into management decisions.  相似文献   

10.
Bridging the gap between ecology and spatial planning in landscape ecology   总被引:1,自引:0,他引:1  
Opdam  Paul  Foppen  Ruud  Vos  Claire 《Landscape Ecology》2001,16(8):767-779
Landscapes are studied by pattern (the geographical approach) and by process (the ecological approach within landscape ecology). The future of landscape ecology depends on whether the two approaches can be integrated. We present an approach to bridge the gap between the many detailed process studies on species, and applied activities such as landscape evaluation and design, which require integrated knowledge. The approach consists of four components: 1) Empirical case studies of different scales, organisms and processes. 2) Modeling studies to extrapolate empirical studies across space and time. 3) Modeling studies to produce guidelines and standards for landscape conditions. 4) Methods and tools for integration to the landscape level, which can be built into multidisciplinary tools for design and evaluation. We conclude that in the landscape ecological literature, the steps 1 and 2 are well represented, whereas the steps 3 and 4 are mostly neglected. We challenge landscape ecologists to push landscape ecology to a higher level of maturation and to further develop its profile as a problem-oriented science.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

11.
Spatial scale is inherent in the definition of landscape heterogeneity and diversity. For example, a landscape may appear heterogeneous at one scale but quite homogeneous at another scale. In assessing the impact of burning and grazing on the Konza Prairie Research Natural Area (a tallgrass prairie), spatial scale is extremely important. Textural contrast algorithms were applied to various scales of remote sensing data and related to landscape units for assessment of heterogeneity under a variety of burning treatments. Acquired data sets included Landsat multispectral scanner (MSS), with 80 m resolution, Landsat thematic mapper (TM), with 30 m resolution, and high resolution density sliced aerial photography (with a 5 m resolution). Results suggest that heterogeneous areas of dense patchiness (e.g., unburned areas) must be analyzed at a finer scale than more homogeneous areas which are burned at least every four years.  相似文献   

12.
Moss  Michael R. 《Landscape Ecology》2000,15(3):303-311
The theme, the `Transformation of Agricultural Landscapes' is used as a context for examining the current status of landscape ecology and its ability to provide a critical set of responses to a defined range of environmental issues. The links between academic structures and the public demand for landscape-based information raises the potential for landscape ecology to provide solutions. Current approaches within landscape ecology are examined and the dominance of the interdisciplinary approach is found to be deficient. A solution is for the land(scape) system itself to become the initial focus of landscape research. A land system has its own systematic properties which extend beyond the biological dominance of ecosystem science which to many is the basis for landscape ecology. For knowledge of the landscape itself to emerge, landscape ecology must develop more as a discipline with its own theoretical bases and foci than as an interdisciplinary area.  相似文献   

13.
14.
科学技术的迅猛发展在创造世界经济奇迹的同时也使地球的资源和环境遭到前所未有的破坏。生态安全已在全球部分地区亮起红灯,代表人类与环境关系的生态健康正在受到严重威胁。筛选与培育高生态效益的园林植物并应用于生态园林建设,是维护生态安全、维系生态健康和建设低碳城市的重要组成部分。  相似文献   

15.
The distribution of woody vegetation was studied in forest edges and hedgerows in a 28 km2 southern Swedish agricultural area, characterised by species-rich edge zones. The occurrence of 21 selected woody species (taxa) was related to differences in both edge structure and landscape structure. All the species studied were represented in both edge types, but a higher frequency of animal-dispersed species was found in hedgerows.Animal dispersed species were more affected by edge width and density than wind dispersed species. A higher number of wind-dispersed species were more frequent in forest edges, in hedgerows near to forest, or with a high proportion of forest within 500 m. A clear relationship was found between the number of physically connected elements in hedgerow networks and increasing frequency of occurrence for Corylus avellana, Crataegus spp., Euonymus europaeus, and Quercus robur; which indicate the ecological significance of connectedness for certain animal dispersed species. The study supports the general principle that woody species distribution and landscape structure are linked in a positive feedback loop. The results match findings from studies in other countries and are interpreted in the context of landscape processes and the ecological characteristics of woody plant species. We emphasise the importance of understanding dispersal mechanisms of woody species for the design and improvement of edge habitats in agricultural landscapes.  相似文献   

16.
Neutral models for the analysis of broad-scale landscape pattern   总被引:47,自引:19,他引:28  
The relationship between a landscape process and observed patterns can be rigorously tested only if the expected pattern in the absence of the process is known. We used methods derived from percolation theory to construct neutral landscape models,i.e., models lacking effects due to topography, contagion, disturbance history, and related ecological processes. This paper analyzes the patterns generated by these models, and compares the results with observed landscape patterns. The analysis shows that number, size, and shape of patches changes as a function of p, the fraction of the landscape occupied by the habitat type of interest, and m, the linear dimension of the map. The adaptation of percolation theory to finite scales provides a baseline for statistical comparison with landscape data. When USGS land use data (LUDA) maps are compared to random maps produced by percolation models, significant differences in the number, size distribution, and the area/perimeter (fractal dimension) indices of patches were found. These results make it possible to define the appropriate scales at which disturbance and landscape processes interact to affect landscape patterns.  相似文献   

17.
Studies of the endangered Kirtland's warbler in relation to landscape ecosystems were conducted from 1986–1988 on a large wildfire-burn surrounding Mack Lake in southeastern Oscoda County, Michigan. A landscape ecosystem approach was used to distinguish low- and high-elevation segments of the landscape, as well as 11 local ecosystem types. The ecosystems were distinguished by physiography, microclimate, soil, and vegetation. The early occurrence of the warblers was strongly related to landscape structure, i.e., to the broad low- and high-elevation areas and the local ecosystem types within them. Territories of male warblers were observed in 5 of the 11 ecosystems. The five ecosystem types where warblers were observed were characterized by (1) a physiography of level or rolling terrain; (2) soil series of Grayling, Graycalm, Montcalm, or Rubicon; (3) uplands with relatively warm temperature during the breeding season; (4) vegetation dominated by low sweet blueberry, bearberry, wintergreen, northern pin oak, blue stem grasses, and hair cap moss; and (5) canopy of relatively tall, dense, and patchy jack pine and oak. Landscape structure appears to be an important factor affecting the occurrence of the warbler in its summer habitat in northern Lower Michigan.  相似文献   

18.
The interaction between physical environment and land ownership in creating spatial heterogeneity was studied in largely forested landscapes of northern Wisconsin, USA. A stratified random approach was used in which 2500-ha plots representing two ownerships (National Forest and private non-industrial) were located within two regional ecosystems (extremely well-drained outwash sands and moderately well-drained moraines). Sixteen plots were established, four within each combination of ownership and ecosystem, and the land cover on the plots was classified from aerial photographs using a modified form of the Anderson (U.S. Geological Survey) land use and land cover classification system.Upland deciduous forests dominated by northern hardwoods were common on the moraines for both ownerships. On the outwash, the National Forest was dominated by pine plantations, upland deciduous forests, and upland regenerating forests (as defined by <50% canopy coverage). In contrast, a more even distribution among the classes of upland forest existed on private land/outwash. A strong interaction between ecosystem and ownership was evident for most comparisons of landscape structure. On the moraine, the National Forest ownership had a finer grain pattern with more complex patch shapes compared to private land. On the outwash, in contrast, the National Forest had a coarser grain pattern with less complex patch shapes compared to private land. When patch size and shape were compared between ecosystems within an ownership, statistically significant differences in landscape structure existed on public land but not on private land. On public land, different management practices on the moraine and outwash, primarily related to timber harvesting and road building, created very different landscape patterns. Landscape structure on different ecosystems on private land tended to be similar because ownership was fragmented in both ecosystems and because ownership boundaries often corresponded to patch boundaries on private land. A complex relationship exits between ownership, and related differences in land use, and the physical environment that ultimately constrains land use. Studies that do not consider these interactions may misinterpret the importance of either variable in explaining variation in landscape patterns.  相似文献   

19.
Framework, concepts, and methods of Environmental Management Planning (EMP) are discussed. A landscape-ecological approach was taken to integrate the environmental indices. EMP focuses on regional factors- natural, social, amenity related — and becomes more sensitive as the scale of study increases. The processes of EMP include a vertical aspect, dealing with pollution, conservation, and amenities, and a more general horizontal component which involves zoning and land use planning. Environmental impacts may be assessed by modeling exercises using all available data and considering all land use options. To keep up with the rapid change of environment and its perception, EMP should be process-oriented rather than purpose-oriented. The concepts of EMP were applied to the middle basin of the Tamagawa River and it was shown that mulvariate analysis is useful for the regional subdivision and environmental modeling.  相似文献   

20.
The vascular plant species richness of upland urban forest patches in St. Paul and Minneapolis, Minnesota, was found to be positively related to their size. There was no significant relationship between species richness and the distance of these patches to other patches. Mowing and trampling reduced species richness of patches, whereas planting increased richness. Landscape richness can be maintained at a relatively high level by leaving even small unmown forested patches within a more disturbed matrix. However, maximizing landscape diversity would require leaving large forest stands unmown. It is suggested that cultivation be deliberately used as a mechanism for increasing native species richness in urban forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号