首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Helical abdominal computed tomography (CT) was performed in nine normal beagle-mix dogs. Following cephalic vein injection of ionic iodinated contrast medium via power injector (rate 5 ml/s) dual-phase CT was performed in all dogs. A delayed scan was performed in five dogs between 5 and 13 min after the contrast medium injection. The median time of appearance of contrast medium in the aorta and gastroduodenal artery was 6.3 and 7 s, post start injection and 12 and 12.2 s in the gastroduodenal and portal vein, resulting in a purely arterial pancreatic time window of 5-6s. Pancreatic veins and parenchyma remained enhanced until the end of the dynamic scan (40s). The pancreatic parenchyma showed heterogeneous arterial and homogenous venous contrast enhancement which was slightly hypoattenuating compared to the liver. Delayed scans provided best delineation of the pancreas from the liver. The common bile duct could be identified ventral and to the right of the portal vein joining the dorsomedial aspect of proximal duodenum. Because of the very short time window and variable onset of pure arterial enhancement careful planning of dual-phase studies with previous dynamic CT is recommended. Dual-phase CT angiography enables assessment of the arterial supply, parenchymal perfusion and venous drainage of the canine pancreas.  相似文献   

2.
The objective of this study was to develop a simple, safe, minimally invasive protocol to evaluate the hepatic vasculature. Five purpose-bred Beagle dogs underwent noncontrast-enhanced computed tomographic scan of the entire abdomen. A dynamic, nonincremental computed tomography scan at the level of T11 was then performed using a test bolus of contrast medium to determine time to peak opacification and to aid in the calculation of scan delay. The time to peak arterial enhancement ranged from 2.0 to 7.0 s, with a median of 2.0 s. The time to peak portal venous enhancement ranged from 23.0 to 46.0 s, with a median of 32.0 s. Scan delay for arterial opacification ranged from 0 to 5.0 s, with a median of 0 s. Scan delay for the portal phase of opacification ranged from 6.0 to 21.0 s, with a median of 17.0 s. Using this information, two separate computed tomographic studies were used to image the arterial and portal venous phases of circulatory opacification, respectively. The dogs were hyperventilated to prevent breathing motion during the scan, each of which required approximately 20 s. A power injector was used to inject diatrizoate meglumine (128 mg I/kg) through an 18-gauge cephalic vein catheter at a rate of 5 ml/s. Scanning was initiated after the appropriate scan delay to optimize the specific phase of vascular filling. Maximum intensity projections allowed clear delineation of the hepatic arteries and the portal venous system, while eliminating overlying structures that might interfere with image analysis. Time/density curves were generated, and the time needed for each study was recorded. Hepatic arteries and portal veins were clearly visualized in all dogs. Parenchymal opacification was also observed.  相似文献   

3.
We evaluated transplenic injection of iodinated contrast medium for computed tomography (CT) assessment of the portal vasculature. Specific aims were to: (1) establish a protocol for transplenic transplenic CT portography using a 40-row multidetector scanner; (2) compare transplenic CT portography to dual-phase CT angiography in terms of image quality, opacification of the portal system, and contrast enhancement of the portal vasculature and liver; (3) compare personnel exposure during transplenic CT portography and transplenic portal scintigraphy. Seven juvenile dogs underwent transplenic portal scintigraphy, CT angiography, and transplenic CT portography. Transplenic portal scintigraphy and CT angiography were performed using previously established protocols. For transplenic CT portography, a 20- or 22 gauge needle attached to an extension set was placed into the splenic parenchyma using CT guidance. Iodinated contrast medium (175 mg I/ml) was administered, and CT acquisition was started at the time of the injection. Transplenic CT portography was simple, rapid and provided more intense enhancement of the splenic and portal veins, with a lower contrast medium dose (median dose: 525 mg I for transplenic CT portography, 7700 mg I for CT angiography), but caused inconsistent intrahepatic portal branches and parenchymal opacification due to streamlining and streak artifacts. Despite significantly lower attenuation values in the portal vein, CT angiography provided sufficient enhancement for vessel identification and more consistent parenchymal hepatic enhancement. Personnel radiation exposure rate was higher during transplenic CT portography (0.0725 mSv/min) compared with transplenic portal scintigraphy (0.000125 mSv/min). As transplenic CT portography requires an average injection time of 1 min per study; over 650 [corrected] studies must be performed before reaching the maximum permissible whole body dose of 0.05 [corrected] Sv.  相似文献   

4.
以铸型方法观察了家禽肝门静脉的分支。其中,鸡有左、右肝门静脉各1支,左叶有左外叶颅侧支、左外叶尾侧支和左内叶支,右叶有右叶颅侧支及右叶尾侧支;鹅、鸭则有左肝门静脉2支,右肝门静脉1支。左叶有左外叶颅侧支和左外叶尾侧支,右叶有右叶颅侧支和尾侧支。左、右肝门静脉于横部汇集,并向颅侧及尾侧发出许多分支。此外,还强调和讨论了家禽肝门静脉系统在分布上的一些特点  相似文献   

5.
Paul  Frank  DVM  Mary  Mahaffey  DVM  MS  Christine  Egger  DVM  MVSC  Karen K.  Cornell  DVM  PHD 《Veterinary radiology & ultrasound》2003,44(4):392-400
Contrast enhanced helical computed tomography (CT) of the liver and portal system is routinely performed in human patients. The purpose of this project is to develop a practical protocol for helical CT portography in the dog. Ten clinically normal dogs were initially evaluated to develop a protocol. Using this protocol, ten dogs with confirmed portosystemic shunts (PSS) were then evaluated. Each patient was anesthetized, and a test dose of sodium iothalamate (400 mg I/ml) at 0.55 ml/kg was injected. Serial images were acquired at the level of T12-13 or T13-L1. The time to maximum enhancement of the portal vein was determined. This time period was used as the period between the second injection (2.2 ml/kg) and the start of the helical examination of the cranial abdomen. Delay times for normal dogs ranged from 34.5 s-66.0 s (median: 43.5 s) or 1.41 s/kg-4.12 s/kg (median: 2.09 s/kg). For patients with a PSS, the delay times were 16.5-70.5 s (median: 34.5 s) or 1.47-19.17 s/kg (median: 3.39 s/kg). The aorta, caudal vena cava, portal vein, shunt vessels, and their respective branches were well visualized on the CT images. Clinical case results were surgically confirmed. The surgeons reported that the information gained from the CT portography resulted in a subjective decrease in surgical time and degree of dissection necessary compared with similar surgeries performed without angiographic information. We believe that helical CT portography in the dog will be a useful adjunct in the diagnosis of PSS. The use of helical CT portography may allow clinicians to give clients a more accurate prognosis prior to surgery and will allow patients with lesions that are not surgically correctable to avoid a costly and invasive procedure.  相似文献   

6.
The investigators studied the hepatic angiographic technics used in human medicine with respect to their applicability for the investigation of circulatory liver diseases in the dog and cat. The technics were performed in 11 normal dogs and 2 normal cats, and the normal radiographic anatomy of the hepatic portal system and its tributaries was described. The potential indications for the angiographic technics were defined and their respective advantages and disadvantages discussed. Splenoportography was a valuable method for outlining the intrahepatic portal vein branches and for percutaneous prehepatic portal vein pressure determination. Percutaneous transhepatic portography was more difficult to perform, but it provided better detail of the intrahepatic portal veins than splenoportography. Transjugular transhepatic portography was the most versatile but also the most cumbersome of all technics tested. Percutaneous kinetic hepatography proved impractical in dogs and cats. The mesenteric tributaries to the hepatic portal system were best outlined by cranial mesenteric arterial portography or by operative mesenteric venous portography. Operative mesenteric venous portography, in contrast to cranial mesenteric arterial portography, was also useful for prehe-patic portal vein pressure determination. Free and wedged hepatic venography provided an opportunity for the functional and morphologic investigation of the hepatic sinusoid circula-tion.  相似文献   

7.
Liver contrast X-ray computed tomography (CT) has been used for evaluation of hepatic vessels for liver transplantation, liver lobectomy, interventional radiology and diagnosis of hepatocellular carcinoma in humans. However, there remains scant available anatomical information on normal hepatic vessels in the veterinary field. In this study, visualization of hepatic vessels was evaluated in 32 normal beagle dogs by X-ray contrast CT using triple phase images. The following hepatic vessels were clearly visualized: arterial, portal and hepatic veins. With regards to the running patterns of the portal vein and hepatic vein, there were no significant differences between the dogs. However, the hepatic artery exhibited some differences in each dog. In particular, the hepatic artery of the quadrate lobe and the right lateral lobe had many running patterns. The results of the present study could be useful for veterinary diagnosis, surgery and interventional radiology.  相似文献   

8.
Arterioportal fistulae are rare congenital anomalies of the hepatic vasculature. Diagnosis is conventionally made by selective angiography or ultrasonography. This report describes use of a dual-phase computed tomographic (CT) angiographic technique to diagnose arterioportal fistulae in four dogs. Advantages of this method include a noninvasive peripheral injection of contrast medium, ability to diagnose multiple acquired extrahepatic shunts, and observation of hemodynamic changes such as hepatofugal blood flow and reduced circulation to the caudal abdomen. The hepatic vasculature including arteries, veins, and portal veins can be completely evaluated. Dual-phase CT angiography is a safe and minimally invasive method of diagnosing arterioportal fistulae in dogs.  相似文献   

9.
Portal hypertension resulting in ascites and portosystemic shunts leading to hepatoencephalopathy are major clinical manifestations of hepatic circulatory disease. Diffuse liver disease impairing sinusoidal blood flow can induce portal hypertension, portosystemic shunts, or both. The liver may also be involved secondarily in posthepatic hypertension and become the site of ascitic fluid formation. Portosystemic shunts may or may not be associated with portal hypertension. Selective catheterization of the hepatic and portal veins permits one to record pressures and to outline gross and subgross vascular anomalies by injecting contrast medium. Sequential pressure recordings in the caudal vena cava, in a free and wedged hepatic vein position, in the splenic pulp, and directly in the portal vein are the bases for the differentiation of prehepatic, liver-induced, and posthepatic portal hypertension. In addition to localizing the disease process along the postcaval-portal vein axis, pressure measurements are a reliable basis for the prognosis and selection of the most appropriate therapy. In dogs with portacaval shunts, wedge hepatic vein pressure recordings assist in the detection of hepatic sinusoidal anomalies that limit blood flow and preclude surgical ablation of the shunts. The various technics and their suitability for direct and indirect portal vein pressure recording are described and evaluated. Normal portal vein pressure values in 11 dogs and two cats, using different technics, are provided. The clinical usefulness of the various technics of pressure recording and angiography was illustrated in ten dogs with ascites, hepatoencephalopathy, or both.  相似文献   

10.
We report a canine computed tomography (CT) pulmonary angiography technique using multidetector CT (MDCT). CT pulmonary angiography using a 16 slice MDCT was performed on five healthy, anesthetized beagles. A helical acquisition with pitch of 1.4 was used. The time delay for the angiographic study was determined using a bolus‐tracking program. A dose of 400 mg I/kg of nonionic contrast medium (Iohexol 300 mg I/ml) was administered to each dog via a cephalic catheter using an angiographic power injector at a rate of 5 ml/s. In two dogs a second study, using a contrast medium dose of 200 and 600 mg I/kg was performed. Arterial enhancement of transverse and reformatted images was classified subjectively as excellent, good, or poor, and assessed objectively by measuring Hounsfield units at the right main pulmonary artery. Angiographic studies were evaluated by two radiologists to determine the number of subsegmental arterial branches visualized. The median number of subsegmental arterial branches identified was five (range: 2–7). Based on the time attenuation curve obtained by the bolus‐tracking program, there was consistent enhancement of the right main pulmonary artery beginning at 6 s and peaking at 8 s in 4/5 dogs. The contrast medium dose of 400 mg I/kg produced good to excellent vascular enhancement in the same 4/5 dogs. A dose of 200 mg I/kg resulted in poor enhancement. CT pulmonary angiography using MDCT and an automated bolus‐tracking program allows rapid, consistent evaluation of the pulmonary vasculature using a single dose of 400 mg I/kg of contrast medium.  相似文献   

11.
Gross Anatomy of the Canine Portal Vein   总被引:1,自引:0,他引:1  
The gross anatomy of the portal vein of 21 dogs was studied by venous portography, corrosion casting, and gross dissection. The portal vein in all specimens originated by confluence of the cranial and caudal mesenteric veins. Its large tributaries were the splenic and gastroduodenal veins, which entered the portal vein between its origin and the hepatic porta. At the hepatic porta, the portal vein divided into a short right branch and a larger left branch. The right branch ramified in the caudate process of the caudate lobe and in the right lateral lobe of the liver. The left branch was essentially the continuation of the portal vein from which successive branches passed to each of the remaining lobes of the liver and the papillary process of the caudate lobe.  相似文献   

12.
Eight Beagle dogs were anesthetized and were imaged using a single channel helical CT scanner. The contrast medium used in this study was iohexol (300 mg I/ml) and doses were 0.5 ml/kg for a cine scan, 3 ml/kg for an enhanced scan. The flow rate for contrast material administration was 2 ml/sec for all scans. This study was divided into three steps, with unenhanced, cine and enhanced scans. The enhanced scan was subdivided into the arterial phase and the venous phase. All of the enhanced scans were reconstructed in 1 mm intervals and the scans were interpreted by the use of reformatted images, a cross sectional histogram, maximum intensity projection and shaded surface display. For the cine scans, optimal times were a 9-sec delay time post IV injection in the arterial phase, and an 18-sec delay time post IV injection in the venous phase. A nine-sec delay time was acceptable for the imaging of the canine hepatic arteries by CT angiography. After completion of arterial phase scanning, venous structures of the liver were well visualized as seen on the venous phase.  相似文献   

13.
A method for systematic examination of the livers was developed, based on identification of the hepatic and portal veins in sixteen dogs. The right medial, quadrate, left medial and lateral hepatic veins and the hepatic branches of the portal veins were easily located with the dog in dorsal recumbency. The right lateral and caudate hepatic veins were identified more easily from the right side with the transducer positioned between the ninth to the eleventh intercostal spaces. Visibility was affected by the fullness of the stomach but this effect could be minimized by changing the position of the transducer to select a more suitable anatomical approach. Identification of the two systems depended on their echogenicity, the anatomical position of the main branches and their pattern of distribution. As in humans, the portal veins were in general, more echogenic than the hepatic veins and the hepatic veins could be traced from their junctions with the caudal vena cava. Identification of the branches of the hepatic and portal veins was complicated by the anatomical shape, the nutritional status and respiratory stage of the animal. A systemic approach based on a knowledge of the distribution patterns produced by the hepatic and portal veins ensures that all liver lobes are identified and all important structures are assessed.  相似文献   

14.
To establish a protocol for a multi-phase computed tomography (CT) of the canine pancreas using the bolus-tracking technique, dynamic scan and multi-phase CT were performed in six normal beagle dogs. The dynamic scan was performed for 60 sec at 1-sec intervals after the injection (4 ml/sec) of a contrast medium, and intervals from aortic enhancement appearance to aortic, pancreatic parenchymal and portal vein peaks were measured. The multi-phase CT with 3 phases was performed three times using a bolus-tracking technique. Scan delays were 0, 15 and 30 in first multi-phase scan; 5, 20 and 35 in second multi-phase scan; and 10, 25 and 40 sec in third multi-phase scan, respectively. Attenuation values and contrast enhancement pattern were analyzed from the aorta, pancreas and portal vein. The intervals from aortic enhancement appearance to aortic, pancreatic parenchymal and portal vein peaks were 3.8 ± 0.7, 8.7 ± 0.9 and 13.3 ± 1.5 sec, respectively. The maximum attenuation values of the aorta, pancreatic parenchyma and portal vein were present at scan sections with no scan delay, a 5-sec delay and a 10-sec delay, respectively. When a multi-phase CT of the canine pancreas is triggered at aortic enhancement appearance using a bolus-tracking technique, the recommended optimal delay times of the arterial and pancreatic parenchymal phases are no scan delay and 5 sec, respectively.  相似文献   

15.
The computed tomography (CT) imaging findings of a celiacomesenteric trunk (CMT) in a 1‐year‐old dog with primary hypoplasia of the portal vein (PHPV) are described. Computed tomography angiography revealed acquired porto‐systemic shunts secondary to portal hypertension and a common origin of the celiac and cranial mesenteric arteries. The imaging findings and the association of a CMT with other vascular diseases have never been reported in dogs. The recognition of this rare arterial anomaly should prompt to investigate possible concurrent vascular diseases and may influence the planning of abdominal surgeries.  相似文献   

16.
Rapid contrast injection is recommended for triple‐phase helical computed tomography (CT) of the liver. However, a large‐gauge catheter is needed for faster contrast injection and this is not practical for small breed dogs or cats. The purpose of this crossover group study was to evaluate applicability of a lower injection rate with a small‐gauge (G) catheter for triple‐phase hepatic CT in small dogs. Triple‐phase CT images were acquired for six beagle dogs using three protocols: an injection rate of 1.5 ml/s with a 24 G catheter, 3.0 ml/s with a 22 G catheter, and 4.5 ml/s with a 20 G catheter. Enhancement of the aorta, portal vein, and hepatic parenchyma was measured in each phase (arterial, portal, and delayed) and image quality was scored subjectively by two observers. Injection duration, time to scan delay, and time to peak enhancement were also recorded. Contrast injection duration decreased with a higher injection rate (n = 6, P ≤ 0.01), but time to peak enhancement and time to scan delay were not significantly affected by injection rates and catheter sizes. Contrast injection rate did not significantly affect aortic, portal, and hepatic enhancement. In addition, separation between each phase and quality of images was subjectively scored as good regardless of injection rate. Findings from the current study supported using an injection rate of 1.5 ml/s with a catheter size of 24 G for triple‐phase hepatic CT in small dogs (weight < 12 kg).  相似文献   

17.
Preoperative knowledge of the renal vascular anatomy is important for selection of the appropriate feline renal donor. Intravenous urograms (IVUs) have been performed routinely to screen potential donors at the Veterinary Hospital of the University of Pennsylvania (VHUP), but the vascular phase views lack sufficient detail of the renal vascular anatomy. Computed tomography angiography (CTA), which requires a helical computed tomography (CT) scanner, has been found to provide superior renal vascular anatomic information of prospective human renal donors. The specific aims of this study were as follows: 1) develop the CTA technique for the feline patient; and 2) obtain preliminary information on feline renal vessel anatomy in potential renal donors. Ten healthy, potential feline renal donors were anesthetized and imaged using a third-generation helical CT scanner. The time delay between i.v. contrast medium injection and image acquisition, and other parameters of slice collimation, slice interval, pitch, exposure settings, and reconstruction algorithms were varied to maximize contrast medium opacification of the renal vascular anatomy. Optimal CTA acquisition parameters were determined to be: 1) 10-sec delay post-i.v. bolus of iodinated contrast medium; 2) two serially acquired (corresponding to arterial and venous phases) helical scans through the renal vasculature; 3) pitch of 2 (4 mm/sec patient translation, 2 mm slice collimation); and 4) 120-kVp, 160-mA, and 1-sec exposure settings. Retrospective reconstructed CTA transverse images obtained at a 2-mm slice width and a 1-mm slice interval in combination with two-dimensional reformatted images and three-dimensional reconstructed images were qualitatively evaluated for vascular anatomy; vascular anatomy was confirmed at surgery. Four cats had single renal arteries and veins bilaterally; four cats had double renal veins. One cat had a small accessory artery supplying the caudal pole of the left kidney. One cat had a left renal artery originating from the aorta at a 90 degrees angle with the cranial mesenteric artery. CTA of the feline renal vascular anatomy is feasible, and reconstruction techniques provide excellent anatomic vascular detail. CTA is now used routinely at VHUP to screen all potential feline renal donors.  相似文献   

18.
The objective of this study was to define, in detail, the anatomy of the portal and hepatic veins in the dog in order to establish a procedure for the systematic evaluation of the liver by ultrasonography. Anatomical details were obtained from the formalin fixed livers of ten dogs. The hepatic and portal veins were removed intact from these livers so that a detailed pattern of distribution could be established and the numbers of branches could be counted. Silastic casts were also made of the hepatic and portal veins of two livers, one in situ and one in which it had been removed. The former was to enable the relationship of the portal to the hepatic veins to be established as closely as possible within the animal and the other to provide a model of the distribution of each venous system within the liver. Contrast medium was infused into two other livers and radiographs taken to establish the relationship of each branch to each lobe. It was found that there was a consistent pattern of venous branching to each lobe of the liver in the dog with little variation between individual specimens. All liver lobes contained definite venous branches so that the left lateral and medial, quadrate, right medial and lateral, caudate and papillary veins could be distinguished in each venous system. We believe that an appreciation of this venous distribution will aid in the systematic evaluation of the liver during ultrasonography by enabling identification of each liver lobe. It should be of value for differentiating portal from hepatic veins and veins from dilated bile ducts.  相似文献   

19.
The normal flow velocity profile and duplex Doppler waveform of the major abdominal blood vessels (aorta, caudal vena cava and the portal vein as well as their major branches) were examined by Doppler ultrasound. The flow velocity profile of an artery is largely determined by its diameter. The pulsatility of the waveform is related to the vascular impedance downstream to the point of measurement. Early systolic peak is present in the Doppler pattern of some vessels in some dogs. The waveform of the veins is mainly affected by the pressure conditions of the right atrium and the intrathoracic and intraabdominal pressure changes due to the respiration. Simultaneous electrocardiogram was used to reveal the effect of the heart beats on the Doppler patterns of the veins.  相似文献   

20.
The purpose of this study was to provide an atlas of the normal anatomy of the canine abdomen using helical computed tomographic (CT) images of the abdomen in four mature cross-breed dogs. The dogs were supported in sternal recumbency under general anaesthesia and scans were performed with 5 mm collimation and a pitch of 1. All sections were imaged with soft-tissue window settings and the cranial abdomen was also imaged with mediastinum-vascular window settings. CT scans were performed immediately after iodinated contrast medium was injected into the cephalic vein at 2 mL/kg. Iodinated contrast medium (10 mL/kg) was administered orally 2 h before the scan with a further 3 mL/kg administered immediately prior to scanning. A cross-sectional anatomy atlas was used to identify the structures of the abdominal cavity. Clinically relevant anatomical structures were identified and labelled in the CT images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号