首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A commercially available polyester resin was reinforced with cabuya fibers. The experimental variables were the fiber loading and the length of the fiber. Tensile strength, flexural strength, and the Izod impact resistance were measured for the samples and compared to the polyester resin performance without reinforcement. Mechanical properties of the cabuya fiber reinforced material were also compared with the same resin but reinforced with glass fibers. An increase in fiber load decreases the tensile strength for the cabuya reinforced composite, where a value of 52.6 MPa corresponded to the tensile stress of the resin without reinforcement and a value of 34.5 MPa for the best reinforcement achieved with cabuya. An increase in both fiber load and length increases the Young’s modulus of the cabuya reinforced material, and a maximum value of 2885 MPa was obtained. The Young’s modulus and impact resistance values for the cabuya composite (2885 MPa and 100.87 J/m, respectively) reached higher values than those obtained for non-reinforced polyester material (2639 MPa and 5.82 J/m, respectively), and lower than the glass fiber composite (5526 MPa and 207.46 J/m, respectively); while the tensile and flexural strength obtained for the cabuya composite (34.5 MPa and 32.6 MPa, respectively) were lower than the unreinforced (52.6 MPa and 62.9 MPa, respectively) and glass fiber reinforced polyester (87.3 MPa and 155 MPa, respectively).  相似文献   

2.
Sericin (SS) is a protein that is secreted by silkworms, but it is usually discarded during the degumming process. To obtain and make use of the sericin, we prepared sericin/glycerol/graphene oxide nanocomposite film. The inherent brittleness of pure sericin film was improved by the addition of glycerol (Glc) as a plasticizer. To compensate for the reduced stiffness, we added graphene oxide (GO) into the SS/Glc film. At concentrations of up to 0.8 wt% relative to SS, GO dispersed evenly in the SS matrix without any agglomeration. The maximum tensile strength (9.5±0.7 MPa) and Young’s modulus (414.4±23.2 MPa) were obtained when the GO content was 0.8 wt% relative to SS. The elongation of SS/Glc/GO nanocomposite film also increased by approximately 40 % compared to SS/Glc film. The strong interfacial interaction between the SS and the GO was responsible for the increased stiffness. The increased elongation was due to the reduced crystallinity of the sericin matrix in the presence of GO.  相似文献   

3.
Most plastics, at present, are petroleum-based and do not degrade over many decades under normal environmental conditions. As a result, efforts towards developing environment-friendly and biodegradable ‘green’ plastics for various commercial applications have gained significant momentum in recent years. Soy protein isolate (SPI)-based ‘green’ plastics have been shown to suffer from high moisture sensitivity and low strength. These properties have limited their use in most commercial applications. They are also difficult to process into sheets without any plasticizer. The commonly used plasticizer, glycerol, tends to leach out over time producing time-dependent properties, which is highly undesirable for commercial applications. The objectives of the current research are to reduce the moisture sensitivity and simultaneously improve the tensile properties of SPI by incorporation of stearic acid without affecting its biodegradability. The effect of stearic acid and glycerol on the tensile and thermal properties of SPI has been characterized using various techniques to determine the interaction mechanisms between stearic acid and soy protein. Mechanical properties were characterized using Instron tensile tester. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA) and X-ray diffraction (XRD) techniques have been used to determine the effects of stearic acid and glycerol on the surface chemistry, thermal transitions and thermal degradation of the stearic acid modified SPI plastic (resin). The tensile test results show that Young’s modulus increased on increasing the stearic acid content, reaching the maximum value at about 25% (by weight of SPI powder) stearic acid. Further increase in stearic acid content from 25 to 30% led to a reduction in Young’s modulus. The moisture content, fracture stress, strain, and energy at break decreased steadily on increasing the stearic acid from 0 to 30% for SPI containing 30% glycerol. At 25% stearic acid content, the modulus and the fracture stress increased significantly, whereas the fracture strain, energy at break and the moisture content decreased on reducing glycerol content. Scanning electron microscopy photomicrographs of fractured surfaces showed a layered structure for stearic acid modified-SPI resin. TGA measurements showed that the thermal degradation of stearic acid modified-SPI resin initiated at higher temperature than the SPI resin. DSC scans indicated that stearic acid modified-SPI resin had a small degree of crystallinity, which was confirmed by X-ray diffraction patterns. Modifying SPI resin with stearic acid has been successful in obtaining better tensile and thermal properties as well as reduced moisture sensitivity without any processing problems.  相似文献   

4.
This article describes a new process for strengthening natural silk fibers. This process is simple yet effective for mass production of high strength silk fibers, enabled by drawing at a lower temperature and immediately heat setting at a higher temperature. The processing conditions were investigated and optimized to improve the strength. Silk fibers drawn to the maximum ratio at room temperature and then heat set at 200 °C show best tensile properties. Some salient features of the resulting fibers are tensile strength at break reaching 533±10.2 MPa and Young’s modulus attaining 12.9±0.57 GPa. These values are significantly higher than those of natural silk fibers (tensile strength increased by 44 % and Young’s modulus by 135 %). Wide-angle X-ray diffraction and FTIR confirm the transformation of silk I to silk II crystalline structure for the fiber obtained from this process. DSC and TGA data also provide support for the structural change of the silk fiber.  相似文献   

5.
Thermoplastic films from wheat proteins   总被引:1,自引:0,他引:1  
We show that the wheat proteins gluten, gliadin and glutenin can be compression molded into thermoplastic films with good tensile strength and water stability. Wheat gluten is inexpensive, abundantly available, derived from renewable resource and therefore widely studied for potential thermoplastic applications. However, previous reports on developing thermoplastics from wheat proteins have used high amounts of glycerol (30-40%) and low molding temperature (90-120 °C) resulting in thermoplastics with poor tensile properties and water stability making them unsuitable for most thermoplastic applications. In this research, we have developed thermoplastic films from wheat gluten, gliadin and glutenin using low glycerol concentration (15%) but high molding temperatures (100-150 °C). Our research shows that wheat protein films with good tensile strength (up to 6.7 MPa) and films that were stable in water can be obtained by choosing appropriate compression molding conditions. Among the wheat proteins, wheat gluten has high strength and elongation whereas glutenin with and without starch had high strength and modulus but relatively low elongation. Gliadin imparts good extensibility but decreased the water stability of gluten films. Gliadin films had strength of 2.2 MPa and good elongation of 46% but the films were unstable in water. Although the tensile properties of wheat protein films are inferior compared to synthetic thermoplastic films, the type of wheat proteins and compression molding conditions can be chosen to obtain wheat protein films with properties suitable for various applications.  相似文献   

6.
We report a novel method of developing thermoplastics from steamed soyproteins with good tensile properties. Soyproteins are generally made thermoplastic by using plasticizers or by chemical modifications. However, soyprotein thermoplastics developed using plasticizers have poor tensile properties when wet and chemical modifications make soyproteins expensive and/or environmentally unfriendly. In this research, soyproteins were steamed at various temperatures and time and the steamed proteins were compression molded into thermoplastic films. The effect of steaming on the molecular weight and thermal behavior and tensile properties of the films at different steaming and compression conditions were studied. Steaming substantially reduced the molecular weights, decreased the melting temperature and increased the melting enthalpy. Thermoplastics developed from steamed soyproteins had good tensile strength (5 MPa) and modulus (193 MPa) but moderate elongation (14.5%). Although glycerol was necessary to improve the thermoplasticity, soyprotein thermoplastics developed in this research required lower glycerol to form thermoplastic films compared to films reported in literature. Steaming of soyproteins shows promise to be an inexpensive and environmentally friendly process to develop biothermoplastics.  相似文献   

7.
Denim, a twilled cotton fabric, was used to enhance the mechanical and thermal properties of poly(lactic acid) (PLA). The denim fabric reinforced composites with different numbers of denim layers were fabricated by using a hand layup method. The impact, tensile, and dynamic mechanical properties of the composites were observed with increasing denim layers to examine the reinforcing effect of denim fabrics. Numerical analysis was carried out to model the elastic modulus of the composite by using a commercial software. Three-dimensional geometry of the denim fabric reinforced PLA composite was generated through a CAD program, and the elastic modulus was calculated by applying uniform deformation on one surface. The impact strength, tensile strength, and thermal properties of the composites were improved by piling denim fabrics. The denim fabric reinforced composites exhibited outstanding impact strength due to the retarded crack propagation as well as large energy dissipation. The 3 layer denim reinforced composite showed best results among all specimens, and its impact strength, tensile strength, and tensile modulus were measured to be 82 J/m, 75.76 MPa, and 4.65 GPa, respectively. The PLA/denim composites have good mechanical properties and can substitute traditional composites such as glass fiber or carbon fiber reinforced composites.  相似文献   

8.
Research and development of biodegradable bio-composite can replacement the synthetic polymer materials, which is used for automobile interior materials, finishing materials of air conditioner and refrigerator. To develop both components as biodegradable bio-composite, this research used natural polymer starch as matrix and kenaf fiber as a filler. Various plasticizer(polyvinyl alcohol, polyethylene glycol, glycerol) were added and examined the mechanical properties of the kenaf/starch bio-composites according to these plasticizer. The kenaf bast which cultivated in Korea was retted with 2 % NaOH solution. The plasticizer weighting 10 % of that of matrix was added. kenaf/starch composites were molded with hot press for 30 minutes at 130 °C and 3,500 PSI molding condition. The mechanical properties such as tensile strength, elongation, and young modulus of the kenaf/starch composites were measured. Also, we measured the SEM cross-section images in order to investigate interfacial adhesion properties of fractured surfaces. The order of strength size of composites were G (12.42 MPa) > PVA (9.72 MPa) > PEG (4.73 MPa) samples respectively. The tensile strength of PEG sample is lower than the control sample (5.40 MPa).  相似文献   

9.
Multi-functional comonomer from pentaerythritol (PE) and terephthaloyl chloride (TPC) was synthesized and used for polymerization of poly(p-phenylene benzobisoxazole) (PBO) copolymer. PBO copolymer fibers were prepared from PBO copolymers using a dry-jet wet spinning. The tensile strength of PBO copolymer fibers was higher than that of PBO, and showed 42 % increase at 0.5 mol% loading of comonomer. The tensile modulus of PBO copolymer fiber at 0.5 mol% loading showed 192 % increase compared to PBO fiber. The compressive strength of PBO copolymer fiber had values between 0.46 GPa and 0.6 GPa with the comonomer content. 64-114 % increase in compressive strength of PBO copolymer fibers was observed compared to PBO fiber.  相似文献   

10.
The bleached jute fabric (BJF) reinforced polypropylene (PP) composites with various contents of acrylic acid (AA)-treated BJF and un-AA-treated BJF were fabricated by compression moulding method at 190 °C. The AA-grafted BJF reinforced PP composites were then irradiated by γ-ray at various doses. The mechanical properties of neat PP (N-P), ungrafted-BJF and PP composites (UG-BJFPC), AA-grafted-BJF and PP composites (AA-BJFPC) and γ-ray cum AA-grafted-BJF and PP composites (γAA-BJFPC) show maximum tensile strength (TS) of 30, 46, 47 and 51 MPa, maximum flexural strength (FS) of 34, 49, 50 and 54 MPa and maximum Young’s modulus (E) of 280, 428, 436, and 680 MPa, respectively. The increase of TS, FS and E from UG-BJFPC are 2 %, 2 %, and 2 % for AA-BJFPC and 11 %, 10 % and 59 % for γAA-BJFPC. The TS, FS and E are found to increase with radiation dose up to 500Krad and then decrease. The water absorption (WA) for UG-BJFPC, AA-BJFPC and γAA-BJFPC is respectively about 14, 10 and 9 %, indicating a gradual development of hydrophobic character of the composites first by AA-treatment and then by γ-ray-treatment. AA treatment on jute fabric and gamma irradiation on composite result in significant change of morphology of the jute fabric composites surface and better mechanical bonding between fabric and polymer matrix, as a result improved mechanical properties are found.  相似文献   

11.
A systematic study has been carried out to investigate the mechanical and physical properties of jute, bamboo and coir (brown and white) single fibers. The tensile properties (tensile strength, Young’s modulus and strain to failure) were determined by varying span length. Scanning electron microscopic analysis was also carried out to determine the physical properties of fibers in order to correlate with its strength, Young’s modulus and strain to failure. The Young’s modulus and strain to failure were corrected using newly developed equations. The study revealed that with increasing test span length the Young’s modulus increased and tensile strength as well as strain to failure decreased. This is because no extensometer could be used in this test set-up and machine displacement (denoted by α) was used for the modulus determination. It is also attributed that larger span length helps to minimize the machine displacement compared to smaller ones due to the reduced relative effect of slippage in the clamps. Among all fibers, the Young’s modulus of bamboo fiber was the highest. Jute fiber had smoother surface compared to other three examined fibers.  相似文献   

12.
Natural fibers are largely divided into two categories depending on their origin: plant based and animal based. Plant based natural jute fiber reinforced polypropylene (PP) matrix composites (20 wt% fiber) were fabricated by compression molding. Bending strength (BS), bending modulus (BM), tensile strength (TS), Young’s modulus (YM), and impact strength (IS) of the composites were found 44.2 MPa, 2200 MPa, 41.3 MPa, 750 MPa and 12 kJ/m2, respectively. Animal based natural B. mori silk fiber reinforced polypropylene (PP) matrix composites (20 wt% fiber) were fabricated in the same way and the mechanical properties were compared over the silk based composites. TS, YM, BS, BM, IS of silk fiber reinforced polypropylene composites were found 55.6 MPa, 760 MPa, 57.1 MPa, 3320 MPa and 17 kJ/m2 respectively. Degradation of composites in soil was measured upto twelve weeks. It was found that plant based jute fiber/PP composite losses its strength more than animal based silk fiber/PP composite for the same period of time. The comparative study makes it clear that mechanical properties of silk/PP composites are greater than those values of jute/PP composites. But jute/PP composites are more degradable than silk/PP composites i.e., silk/PP composites retain their strength for a longer period than jute/PP composites.  相似文献   

13.
1-Ally-3-methylimidazolium chloride ([AMIM]Cl) was successfully synthesized and was used as a green spinning solvent for cellulose. The celluloses of various degrees of polymerization (DP) were dissolved in the [AMIM]Cl to obtain 5 % (w/w) cellulose solutions, which were regenerated to cellulose fibers through wet spinning process. Of three different regenerated cellulose fibers with different DPs, a DP of 2,730 was gave the strongest regenerated fiber without drawing having a tensile strength of 177 MPa and an elongation at break of 9.6 % respectively, indicating that celluloses of higher molecular weight can be entangled and oriented more easily. Also maximum draw ratio of the as-spun fibers increased from 1.2 to 1.7 with increasing degree of polymerization leading to a tensile strength and modulus of 207 MPa and 48 GPa, respectively. Particularly the tensile modulus was substantially higher than those of lyocell and high performance viscose fibers of 20 GPa or less. The higher DP of pristine cellulose was critical in increasing the mechanical properties such as tensile strength and elongation at break of the as-spun fibers coupled with higher tensile modulus after drawing.  相似文献   

14.
Environmentally friendly green composites were prepared by conventional blending wheat gluten (WG) as matrix, methylcellulose (MC) microfibers as filler and glycerol as plasticizer followed by compression molding of the mixture at 127 °C to crosslink the matrix. Morphology, dynamic mechanical analysis (DMA), tensile properties (Young’s modulus E, tensile strength σb and elongation at break ?b), and moisture absorption (MA) and weight loss (WL) in water as well as thermogravimetric analysis (TGA) were evaluated in relation to MC content. It was found that addition of MC microfibers can significantly improve E and σb of the composite, which is accompanied by rises in glass transition temperatures of the WG matrix. Influences of MC content on the thermal decomposition and gluten solubility (GS) in water are also discussed.  相似文献   

15.
We successfully prepared optically transparent silk fibroin-cellulose nanofiber (CN) composite films from solvent casting using a stable CN suspension in an aqueous silk fibroin solution. The transmittance of the silk fibroin composite films was observed by a UV-visible spectrophotometer. The secondary structural change of the silk fibroin caused by the incorporation of CNs was characterized using Fourier transform infrared spectroscopy. A tensile test was carried out to investigate the mechanical properties. The results showed that the composite film exhibited visible-light transmittance of 75 %, and its mechanical strength and Young’s modulus were increased by 44 % and 35 %, respectively, as compared to a neat silk fibroin film.  相似文献   

16.
In this work, surface acetylation of cellulose nanocrystals was performed to improve their interfacial adhesion with hydrophobic polymer matrix and to restore their thermal stability by removing the sulfate groups. The morphological, chemical, and thermal characteristics of the surface-modified cellulose nanocrystals (ACNs) were confirmed by field emission-transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Furthermore, poly(butylene succinate) (PBS)/ACNs nanocomposites were also prepared via melt-mixing process, and the reinforcing effects of ACNs on the thermal, mechanical, and biodegradable properties of the nanocomposites were investigated. The Young’s modulus and tensile strength of the PBS/ACN nanocomposites increased from 115.36 and 33.67 MPa for the neat PBS to 130.55 MPa and 39.97 MPa, respectively. The thermal stability and biodegradability of the nanocomposites also increased with increasing ACN content.  相似文献   

17.
Glycerol-plasticized wheat gliadin bioplastics were prepared through thermo-molding method. The effect of glycerol content on the morphology and the mechanical properties of wheat gliadin bioplastics was studied. Morphology, tensile properties (tensile strength and elongation at break), dynamic mechanical properties and rheological properties were evaluated in relation to glycerol content. Experimental results reveal that the morphology, the glass transition temperatures (Tg) of both the gliadin-rich and the glycerol-rich domains and the tensile properties are closely linked to the glycerol content. The time–temperature superposition (TTS) fails to be applied to the dynamic loss modulus G″ (all temperatures) and the dynamic storage modulus G′ (above 80 °C) of wheat gliadin bioplastics.  相似文献   

18.
Fully biodegradable and environment-friendly green composite specimens were made using ramie fibers and soy protein concentrate (SPC) resin. SPC was used as continuous phase resin in green composites. The SPC resin was plasticized with glycerin. Precuring and curing processes for the resin were optimized to obtain required mechanical properties. Unidirectional green composites were prepared by combining 65 % (on weight basis) ramie fibers and SPC resin. The tensile strength and Young’s modulus of these composites were significantly higher compared to those of pure SPC resin. Tensile and flexural properties of the composite in the longitudinal direction were moderate and found to be significantly higher than those of three common wood varieties. In the transverse direction, however, their properties were comparable with those of wood specimens. Scanning electron microscope (SEM) micrographs of the tensile fracture surfaces of the green composite indicated good interfacial bonding between ramie fibers and SPC resin. Theoretical values for tensile strength and Young’s modulus, calculated using simple rule of mixture were higher than the experimentally obtained values. The main reasons for this discrepancy are loss of fiber alignment, voids and fiber compression due to resin shrinking during curing.  相似文献   

19.
The present work aims to study the influence of reducing agents of sodium bisulfite, sodium sulfite and thioglycolic acid on the equibiaxial extensional deformation of glycerol plasticized wheat gluten and the properties of gluten bioplastics thermo-molded at 125 °C. Moisture absorption, weight loss and water uptake, uniaxial tensile properties (Young's modulus, tensile strength, elongation at break and tensile set), and morphology observations were performed to characterize the physical properties of the thermo-molded gluten bioplastics. The results showed that reducing agents facilitated the viscous flow and restrained the elastic recovery of the plasticized gluten while not hindering the crosslinking reaction of gluten proteins during thermo-molding. On the contrary, reducing agents do not significantly influence moisture absorption, Young's modulus, tensile strength and the morphology of the gluten bioplastics thermo-molded at 125 °C. It is shown that reducing agents are highly effective for tailoring the flow viscosity of the plasticized gluten dough and the mechanical properties of thermo-molded gluten bioplastics.  相似文献   

20.
Cassava bagasse is an inexpensive and broadly available waste byproduct from cassava starch production. It contains roughly 50% cassava starch along with mostly fiber and could be a valuable feedstock for various bioproducts. Cassava bagasse and cassava starch were used in this study to make fiber-reinforced thermoplastic starch (TPSB and TPSI, respectively). In addition, blends of poly (lactic acid) and TPSI (20%) and TPSB (5, 10, 15, 20%) were prepared as a means of producing low cost composite materials with good performance. The TPS and PLA blends were prepared by extrusion and their morphological, mechanical, spectral, and thermal properties were evaluated. The results showed the feasibility of obtaining thermoplastic starches from cassava bagasse. The presence of fiber in the bagasse acted as reinforcement in the TPS matrix and increased the maximum tensile strength (0.60 MPa) and the tensile modulus (41.6 MPa) compared to cassava starch TPS (0.40 and 2.04 MPa, respectively). As expected, blending TPS with PLA reduced the tensile strength (55.4 MPa) and modulus (2.4 GPa) of neat PLA. At higher TPSB content (20%) the maximum strength (19.9 MPa) and tensile modulus (1.7 GPa) were reduced about 64% and 32%, respectively, compared to the PLA matrix. In comparison, the tensile strength (16.7) and modulus (1.2 GPa) of PLA blends made with TPSI were reduced 70% and 51% respectively. The fiber from the cassava bagasse was considered a filler since no increase in tensile strength of PLA/TPS blends was observed. The TPSI (33.1%) had higher elongation to break compared to both TPSB (4.9%) and PLA (2.6%). The elongation to break increased from 2.6% to 14.5% by blending TPSI with PLA. In contrast, elongation to break decreased slightly by blending TPSB with PLA. Thermal analysis indicated there was some low level of interaction between PLA and TPS. In PLA/TPSB blends, the TPSB increased the crystallinity of the PLA component compared to neat PLA. The fiber component of TPSB appeared to have a nucleating effect favoring PLA crystallization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号