首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecosystem and biogeochemical responses to anthropogenic stressors are the result of complex interactions between plants and microbes. A mechanistic understanding of how plant traits influence microbial processes is needed in order to predict the ecosystem-level effects of natural or anthropogenic change. This is particularly true in wetland ecosystems, where plants alter the availability of both electron donors (e.g., organic carbon) and electron acceptors (e.g., oxygen and ferric iron), thereby regulating the total amount of anaerobic respiration and the production of methane, a highly potent greenhouse gas. In this study, we examined how plant traits associated with plant inputs of carbon (photosynthesis and biomass) and oxygen (root porosity and ferric iron on roots) to mineral soils relate to microbial competition for organic carbon and, ultimately, methane production. Plant productivity was positively correlated with microbial respiration and negatively correlated to methane production. Root porosity was relatively constant across plant species, but belowground biomass, total biomass, and the concentration of oxidized (ferric) iron on roots varied significantly between species. As a result the size of the total root oxidized iron pool varied considerably across plant species, scaling with plant productivity. Large pools of oxidized iron were related to high CO2:CH4 ratios during microbial respiration, indicating that as plant productivity and biomass increased, microbes used non-methanogenic respiration pathways, most likely including the reduction of iron oxides. Taken together these results suggest that increased oxygen input from plants with greater biomass can offset any potential stimulation of methanogenic microbes from additional carbon inputs. Because the species composition of plant communities influences both electron donor and acceptor availability in wetland soils, changes in plant species as a consequence of anthropogenic disturbance have the potential to trigger profound effects on microbial processes, including changes in anaerobic decomposition rates and the proportion of mineralized carbon emitted as the greenhouse gas methane.  相似文献   

2.
In the last century, conversion of native North American grasslands to Juniperus virginiana forests or woodlands has dramatically altered ecosystem structure and significantly increased ecosystem carbon (C) stocks. We compared soils under recently established J. virginiana forests and adjacent native C4-dominated grassland to assess changes in potential soil nitrogen (N) transformations and plant available N. Over a 2-year period, concentrations of extractable inorganic N were measured in soils from forest and grassland sites. Potential gross N ammonification, nitrification, and consumption rates were determined using 15N isotope-dilution under laboratory conditions, controlling for soil temperature and moisture content. Potential nitrification rates (Vmax) and microbial biomass, as well as soil physical and chemical properties were also assessed. Extractable NH4+ concentrations were significantly greater in grassland soils across the study period (P  0.01), but analysis by date indicated that differences in extractable inorganic N occurred more frequently in fall and winter, when grasses were senescent but J. virginiana was still active. Laboratory-based rates of gross N mineralization (ammonification) and nitrification were greater in grassland soils (P  0.05), but only on one of four dates. Potential nitrification rates (Vmax) were an order of magnitude greater than gross nitrification rates in both ecosystems, suggesting that nitrification is highly constrained by NH4+ availability. Differences in plant uptake of N, C inputs, and soil microclimate as forests replace grasslands may influence plant available N in the field, as evidenced by seasonal differences in soil extractable NH4+, and total soil C and N accumulation. However, we found few differences in potential soil N transformations under laboratory conditions, suggesting that this grassland-to-forest conversion caused little change in mineralizable organic N pools or potential microbial activity.  相似文献   

3.
pH regulation of carbon and nitrogen dynamics in two agricultural soils   总被引:1,自引:0,他引:1  
Soil pH is often hypothesized to be a major factor regulating organic matter turnover and inorganic nitrogen production in agricultural soils. The aim of this study was to critically test the relationship between soil pH and rates of C and N cycling, and dissolved organic nitrogen (DON), in two long-term field experiments in which pH had been manipulated (Rothamsted silty clay loam, pH 3.5-6.8; Woburn sandy loam, pH 3.4-6.3). While alteration of pH for 37 years significantly affected crop production, it had no significant effect on total soil C and N or indigenous mineral N levels. This implies that at steady state, increased organic matter inputs to the soil are balanced by increased outputs of CO2. This is supported by the positive correlation between both plant productivity and intrinsic microbial respiration with soil pH. In addition, soil microbial biomass C and N, and nitrification were also significantly positively correlated with soil pH. Measurements of respiration following addition of urea and amino acids showed a significant decline in CO2 evolution with increasing soil acidity, whilst glucose mineralization showed no response to pH. In conclusion, it appears that changes in soil pH significantly affect soil microbial activity and the rate of soil C and N cycling. The evidence suggests that this response is partially indirect, being primarily linked to pH induced changes in net primary production and the availability of substrates. In addition, enhanced soil acidity may also act directly on the functioning of the microbial community itself.  相似文献   

4.
Plant effects on ecosystem processes are mediated through plant-microbial interactions belowground and soil enzyme assays are commonly used to directly relate microbial activity to ecosystem processes. Live plants influence microbial biomass and activity via differences in rhizosphere processes and detrital inputs. I utilized six grass species of varying litter chemistry in a factorial greenhouse experiment to evaluate the relative effect of live plants and detrital inputs on substrate-induced respiration (SIR, a measure of active microbial biomass), basal respiration, dissolved organic carbon (DOC), and the activities of β-glucosidase, β-glucosaminidase, and acid phosphatase. To minimize confounding variables, I used organic-free potting media, held soil moisture constant, and fertilized weekly. SIR and enzyme activities were 2-15 times greater in litter-addition than plant-addition treatments. Combining live plants with litter did not stimulate microbial biomass or activity above that in litter-only treatments, and β-glucosidase activity was significantly lower. Species-specific differences in litter N (%) and plant biomass were related to differences in β-glucosaminidase and acid phosphatase activity, respectively, but had no apparent effect on β-glucosidase, SIR, or basal respiration. DOC was negatively related to litter C:N, and positively related to plant biomass. Species identity and living plants were not as important as litter additions in stimulating microbial activity, suggesting that plant effects on soil enzymatic activity were driven primarily by detrital inputs, although the strength of litter effects may be moderated by the effect of growing plants.  相似文献   

5.
We conducted a laboratory incubation of forest (Scots pine (Pinus sylvestris) or beech (Fagus sylvatica)), grassland (Trifolium repens/Lolium perenne) and arable (organic and conventional) soils at 5 and 25 °C. We aimed to clarify the mechanisms of short-term (2-weeks) nitrogen (N) cycling processes and microbial community composition in relation to dissolved organic carbon (DOC) and N (DON) availability and selected soil properties. N cycling was measured by 15N pool dilution and microbial community composition by denaturing gradient gel electrophoresis (DGGE), phospholipid fatty acid (PLFA) and community level physiological profiles (CLPP). Soil DOC increased in the order of arable<grassland<forest soil while DON and gross N fluxes increased in the order of forest<arable<grassland soil; land use had no affect on respiration rate. Soil DOC was lower, while respiration, DON and gross N fluxes were higher at 25 than 5 °C. Gross N fluxes, respiration and bacterial biomass were all positively correlated with each other. Gross N fluxes were positively correlated with pH and DON, and negatively correlated with organic matter, fungal biomass, DOC and DOC/DON ratio. Respiration rate was positively correlated with bacterial biomass, DON and DOC/DON ratio. Multiple linear modelling indicated that soil pH, organic matter, bacterial biomass, DON and DOC/DON ratio were important in predicting gross N mineralization. Incubation temperature, pH and total-C were important in predicting gross nitrification, while gross N mineralization, gross nitrification and pH were important in predicting gross N immobilization. Permutation multivariate analysis of variance indicated that DGGE, CLPP and PLFA profiles were all significantly (P<0.05) affected by land use and incubation temperature. Multivariate regressions indicated that incubation temperature, pH and organic matter content were important in predicting DGGE, CLPP and PLFA profiles. PLFA and CLPP were also related to DON, DOC, ammonium and nitrate contents. Canonical correlation analysis showed that PLFA and CLPP were related to differences in the rates of gross N mineralization, gross nitrification and soil respiration. Our study indicates that vegetation type and/or management practices which control soil pH and mediate dissolved organic matter availability were important predictors of gross N fluxes and microbial composition in this short-term experiment.  相似文献   

6.
Nitrogen leaching persists in mountain forests of Europe even in the presence of decreasing N depositions. We have hypothesized that this leaching is linked to soil N transformations occurring over the whole year, even at 0°C temperatures. The aims were to estimate (1) the effect of temperature on N transformations and (2) N pools and fluxes. The study sites are situated in the Bohemian Forest (Czech Republic). Litter, humus, and 0–10-cm mineral layers were sampled in early spring, and the effect of temperature on net nitrification, net ammonification, and microbial N immobilization were measured in a short-term incubation experiment without substrate addition. Nitrogen pools were calculated from the concentrations of N forms in the soil and soil pool weights, while daily N fluxes were calculated from daily net rates of processes and soil pool weights. Relationships between temperature and net nitrification, net ammonification, and microbial N immobilization did not follow the Arrhenius type equation; all processes were active close to 0°C, indicating that microbial N transformations occur over the whole year. Microbial N immobilization rate was generally greater than N mineralization rate. The microbial N pool was significantly larger than mineral N pools. Organic layers containing tens of grams of available N per square meter contributed more than 70% to the available N in the soil profile. Daily N fluxes were related to N pools. On average, N fluxes represented daily mineral and microbial N pool changes of 1.14 and 1.95%, respectively. The effect of microbial composition on the C/N ratio of microbial biomass and respiration is discussed.  相似文献   

7.
The tight coupling between nitrogen (N) and phosphorus (P) suggests that P availability may affect soil microbial N dynamics in terrestrial ecosystems. However, how P addition affects the internal N transformations in P-deficient agricultural soil remains poorly understood. We hypothesized that an increase in gross microbial N rates in P-deficient soil should occur after long-term P inputs in agricultural soils. We thus conducted a 15N pool dilution experiment to quantify the gross microbial N transformation rates after long-term mineral fertilizer applications in an upland fluvo-aquic soil (from Fengqiu with pH 8.55) and upland red soil (from Qiyang with pH 5.49) in China. We found that P addition significantly enhanced the gross N mineralization and immobilization rates when N and K were also applied, probably due to the increased soil total C and N concentrations at both soils. Also, gross nitrification rate was stimulated by P addition, perhaps because of enhanced gross N mineralization rates and associated NH4+ substrate availability. Our results showed that long-term P addition may stimulate soil gross N dynamics and hence increase overall N availability for crops in P-deficient agricultural soils.  相似文献   

8.
This study determined temporal variability in N pools, both aboveground and belowground, across two contrasting plant communities in high-Arctic Spitsbergen, Svalbard (78°N). We measured N pools in plant material, soil microbial biomass and soil organic matter in moist (Alopecurus borealis dominated) and dry (Dryas octopetala dominated) meadow communities at four times during the growing season. We found that plant, microbial and dissolved inorganic and organic N pools were subject to significant, but surprisingly low, temporal variation that was controlled primarily by changes in temperature and moisture availability over the short growing season. This temporal variability is much less than that experienced in other seasonally cold ecosystems such as alpine tundra where strong seasonal partitioning of N occurs between plant and soil microbial pools. While only a small proportion of the total ecosystem N, the microbial biomass represented the single largest of the dynamic N pools in both moist and dry meadow communities (3.4% and 4.6% of the total ecosystem N pool, respectively). This points to the importance of soil microbial community dynamics for N cycling in high-Arctic ecosystems. Microbial N was strongly and positively related to soil temperature in the dry meadow, but this relationship did not hold true in the wet meadow where other factors such as wetter soil conditions might constrain biological activity. Vascular live belowground plant parts represented the single largest plant N pool in both dry and moist meadow, constituting an average of 1.6% of the total N pool in both systems; this value did not vary across the growing season or between plant communities. Overall, our data illustrate a surprisingly low growing season variability in labile N pools in high-Arctic ecosystems, which we propose is controlled primarily by temperature and moisture.  相似文献   

9.
The dominant pools of C and N in the terrestrial biosphere are in soils, and understanding what factors control the rates at which these pools cycle is essential in understanding soil CO2 production and N availability. Many previous studies have examined large scale patterns in decomposition of C and N in plant litter and organic soils, but few have done so in mineral soils, and fewer have looked beyond ecosystem specific, regional, or gradient-specific drivers. In this study, we examined the rates of microbial respiration and net N mineralization in 84 distinct mineral soils in static laboratory incubations. We examined patterns in C and N pool sizes, microbial biomass, and process rates by vegetation type (grassland, shrubland, coniferous forest, and deciduous/broadleaf forest). We also modeled microbial respiration and net N mineralization in relation to soil and site characteristics using structural equation modeling to identify potential process drivers across soils. While we did not explicitly investigate the influence of soil organic matter quality, microbial community composition, or clay mineralogy on microbial process rates in this study, our models allow us to put boundaries on the unique explanatory power these characteristics could potentially provide in predicting respiration and net N mineralization. Mean annual temperature and precipitation, soil C concentration, microbial biomass, and clay content predicted 78% of the variance in microbial respiration, with 61% explained by microbial biomass alone. For net N mineralization, only 33% of the variance was explained, with mean annual precipitation, soil C and N concentration, and clay content as the potential drivers. We suggest that the high R2 for respiration suggests that soil organic matter quality, microbial community composition, and clay mineralogy explain at most 22% of the variance in respiration, while they could explain up to 67% of the variance in net N mineralization.  相似文献   

10.
Intensive greenhouse vegetable‐production systems commonly utilize excessive fertilizer inputs that are inconsistent with sustainable production and may affect soil quality. Soil samples were collected from 15 commercial greenhouses used for tomato production and from neighboring fields used for wheat cropping to determine the effects of intensive vegetable cultivation on soil microbial biomass and community structure. Soil total nitrogen (N) and organic‐matter contents were greater in the intensive greenhouse tomato soils than the open‐field wheat soils. Soil microbial carbon (C) contents were greater in the greenhouse soils, and soil microbial biomass N showed a similar trend but with high variation. The two cropping systems were not significantly different. Soil microbial biomass C was significantly correlated with both soil total N and soil organic matter, but the relationships among soil microbial biomass N, soil total N, and organic‐matter content were not significant. The Biolog substrate utilization potential of the soil microbial communities showed that greenhouse soils were significantly higher (by 14%) than wheat soils. Principal component (PC) analysis of soil microbial communities showed that the wheat sites were significantly correlated with PC1, whereas the greenhouse soils were variable. The results indicate that changes in soil microbiological properties may be useful indicators for the evaluation of soil degradation in intensive agricultural systems.  相似文献   

11.
A study was conducted at two experimental tree plantations in the Pacific Northwest to assess the roles of bacteria and fungi in nitrogen (N) cycling. Soils from red alder (Alnus rubra) and Douglas-fir (Pseudotsuga menziesii) plots in low- (H.J. Andrews) and high- (Cascade Head) productivity stands were sampled in 2005 and 2006. Fungal:bacterial ratios were determined using phospholipid fatty acid (PLFA) profiles and quantitative (Q)-PCR. Ratios from these two molecular methods were highly correlated and showed that microbial biomass varied significantly between the two experimental sites and to a lesser extent between tree types with fungal:bacterial biomass ratios lower in more N-rich plots. 15N isotope dilution experiments, with ammonium (NH4+) and nitrate (NO3?), were paired with antibiotics that blocked bacterial (bronopol) and fungal (cycloheximide) protein synthesis. This modified isotope dilution technique was used to determine the relative contribution of bacteria and fungi to net N mineralization and gross rates of ammonification and nitrification. When bacterial protein synthesis was blocked NH4+ consumption and nitrification rates decreased in all treatments except for NH4+ consumption in the Douglas-fir plots at H.J. Andrews, suggesting that prokaryotic nitrifiers are a major sink for mineral NH4+ in forest soils with higher N availability. Cycloheximide consistently increased NH4+ consumption, however the trend was not statistically significant. Both antibiotics additions also significantly increased gross ammonification, which may have been due to continued activity of extra- and intracellular enzymes involved in producing NH4+ combined with the inhibition of NH4+ assimilation into proteins. The implication of this result is that microorganisms are likely a major sink for soil dissolved organic N (DON) in soils.  相似文献   

12.
The influence of two experimental soil treatments, Z93 and W91, on nitrogen transformations, microbial activity and plant growth was investigated in soil microcosms. These compounds are commercially marketed fermentation products (Agspectrum) that are sold to be added to field soils in small amounts to promote nitrogen and other nutrient uptake by crops in USA. In laboratory microcosm experiments, soils were amended with finely ground alfalfa-leaves or wheat straw, or left unamended, in an attempt to alter patterns of soil nitrogen mineralization and immobilization. Soils were treated in the microcosms with Z93 and W91 at rates equivalent to the recommended field application rates, that range from 0.2 to 1.1 l ha−1, (0.005-0.03 μl g−1 soil). We measured their effects on soil microbial activity (substrate-induced respiration (SIR), dehydrogenase activity (DHA) and acid phosphatase activity (PHOS)), soil nitrogen pools (microbial biomass N, mineral N, dissolved organic N), and transformations (net N mineralization and nitrification, 15N dilution of the mineral N pool, and accumulation of mineral N on ion-exchange resins), and on wheat plant germination and growth (shoot and root biomass, shoot length, N uptake and 15N enrichment of shoot tissues), for up to 56 days after treatment. To follow the movement of nitrogen from inorganic fertilizer into plant biomass we used a 15N isotopic tracer. Most of the soil and plant responses to treatment with Z93 or W91 differed according to the type of organic amendment that was used. Soil treatment with either Z93 or W91 influenced phosphatase activity strongly but did not have much effect on SIR or DHA. Both chemicals altered the rates of decomposition and mineralization of organic materials in the soil, which was evidenced by significant increases in the rates of the decomposition of buried wheat straw, and by the acceleration of net, rates of N mineralization, relative to those of the controls. Soil nitrate availability increased at the end of the experiment in response to both chemical treatments. In alfalfa-amended soils, the final plant biomass was decreased significantly by treatment with W91. Increased plant growth and N-use efficiency in straw-amended soil, resulting from treatments with Z93 or W91, was linked to increased rates of N mineralization from indigenous soil organic materials. This supports the marketing of these compounds as promoters of N uptake at these low dosage inputs.  相似文献   

13.
《Applied soil ecology》2007,35(2):319-328
The effects of salinity on the size, activity and community structure of soil microorganisms in salt affected arid soils were investigated in Shuangta region of west central Anxi County, Gansu Province, China. Eleven soils were selected which had an electrical conductivity (EC) gradient of 0.32–23.05 mS cm−1. There was a significant negative exponential relationship between EC and microbial biomass C, the percentage of soil organic C present as microbial biomass C, microbial biomass N, microbial biomass N to total N ratio, basal soil respiration, fluorescein diacetate (FDA) hydrolysis rate, arginine ammonification rate and potentially mineralizable N. The exponential relationships with EC demonstrate the highly detrimental effect that soil salinity had on the microbial community. In contrast, the metabolic quotient (qCO2) was positively correlated with EC, and a quadratic relationship between qCO2 and EC was observed. There was an inverse relationship between qCO2 and microbial biomass C. These results indicate that higher salinity resulted in a smaller, more stressed microbial community which was less metabolically efficient. The biomass C to biomass N ratio tended to be lower in soils with higher salinity, reflecting the bacterial dominance in microbial biomass in saline soils. Consequently, our data suggest that salinity is a stressful environment for soil microorganisms.  相似文献   

14.
《Soil biology & biochemistry》2001,33(12-13):1827-1839
The feedbacks between plant and soil processes play an important role in driving forest succession. One poorly understood feedback mechanism is the interaction between plant secondary chemicals and soil microbes. In the Alaskan taiga, changes in nutrient cycling caused by balsam poplar (Populus balsamifera) secondary chemicals may affect the transition from alder (Alnus tenuifolia) to balsam poplar on river floodplains. We examined the effects of four poplar condensed tannin fractions on N cycling in alder and poplar soils. Tannins were added to forest floor samples from both poplar and alder sites. Samples were incubated for 1 month in the laboratory with soil respiration rates measured over the course of the incubation. At the end of the incubation we measured both net and gross nitrogen mineralization and nitrification, microbial biomass C and N, and the activity of various exoenzymes. In all soils, tannin additions reduced N availability, however, the mechanisms differed depending on the molecular weight of the tannin and the native soil microbial community. Low molecular weight tannin fractions served as a labile C source in poplar Oi, poplar Oe, and alder Oe horizons but were toxic to microbes in alder Oi. High molecular weight tannin fractions appeared to act primarily by binding extracellular substrates and thus limiting C and N mineralization, with the strongest effects observed in the alder soils.  相似文献   

15.
Plant species effects on microbial communities are attributed to changes in microbial community composition and biomass, and may depend on plant species specific differences in the quality of resources (carbon) inputs. We examined the idea that plant-soil feedbacks can be explained by a chance effect, which is the probability of a highly productive or keystone plant species is present in the community and will influence the functions more than the number of species per se. A 13C pulse labelling technique was applied to three plant species and a species mixture in a greenhouse experiment to examine the carbon flow from plants to soil microbial communities. The 13C label was given as CO2 to shoots of a legume (Lotus corniculatus), a forb (Plantago lanceolata), a grass (Holcus lanatus) and a mixture of the three species. Microbial phospholipid fatty acids (PLFA) was analysed in order to determine the biomass and composition of the soil microbial community. The incorporation of the stable isotope into soil microorganisms was determined through GC-IRMS analyses of the microbial PLFAs. Plant species identity did not influence the microbial biomass when determined as total carbon of microbial phospholipid fatty acids. However, the labelled carbon showed that the grass monoculture (H. lanatus) and the plant mixture allocated more 13C into bacteria and actinomycete biomass than the other plant species. H. lanatus monocultures had also the highest amounts of 13C allocated to AM-fungi and saprophytic fungi. The carbon allocation from plants to soil microorganisms in a plant species mixture can thus be explained by the presence of a highly productive species that influence soil functions.  相似文献   

16.
Recovery of soil organic matter, organic matter turnover and mineral nutrient cycling is critical to the success of rehabilitation schemes following major ecosystem disturbance. We investigated successional changes in soil nutrient contents, microbial biomass and activity, C utilisation efficiency and N cycling dynamics in a chronosequence of seven ages (between 0 and 26 years old) of jarrah (Eucalyptus marginata) forest rehabilitation that had been previously mined for bauxite. Recovery was assessed by comparison of rehabilitation soils to non-mined jarrah forest references sites. Mining operations resulted in significant losses of soil total C and N, microbial biomass C and microbial quotients. Organic matter quantity recovered within the rehabilitation chronosequence soils to a level comparable to that of non-mined forest soil. Recovery of soil N was faster than soil C and recovery of microbial and soluble organic C and N fractions was faster than total soil C and N. The recovery of soil organic matter and changes to soil pH displayed distinct spatial heterogeneity due to the surface micro-topography (mounds and furrows) created by contour ripping of rehabilitation sites. Decreases in the metabolic quotient with rehabilitation age conformed to conceptual models of ecosystem energetics during succession but may have been more indicative of decreasing C availability than increased metabolic efficiency. Net ammonification and nitrification rates suggested that the low organic C environment in mound soils may favour autotrophic nitrifier populations, but the production of nitrate (NO3?) was limited by the low gross N ammonification rates (≤1 μg N g?1 d?1). Gross N transformation rates in furrow soils suggested that the capacity to immobilise N was closely coupled to the capacity to mineralise N, suggesting NO3? accumulation in situ is unlikely. The C:N ratio of the older rehabilitation soils was significantly lower than that of the non-mined forest soils. However, variation in ammonification rates was best explained by C and N quantity rather than C:N ratios of whole soil or soluble organic matter fractions. We conclude that the rehabilitated ecosystems are developing a conservative N cycle as displayed by non-mined jarrah forests. However, further investigation into the control of nitrification dynamics, particularly in the event of further ecosystem disturbance, is warranted.  相似文献   

17.
Plant response to increasing atmospheric CO2 partial pressure (pCO2) depends on several factors, one of which is mineral nitrogen availability facilitated by the mineralisation of organic N. Gross rates of N mineralisation were examined in grassland soils exposed to ambient (36 Pa) and elevated (60 Pa) atmospheric pCO2 for 7 years in the Swiss Free Air Carbon dioxide Enrichment experiment. It was hypothesized that increased below-ground translocation of photoassimilates at elevated pCO2 would lead to an increase in immobilisation of N due to an excess supply of energy to the roots and rhizosphere. Intact soil cores were sampled from Lolium perenne and Trifolium repens swards in May and September, 2000. The rates of gross N mineralisation (m) and NH4+ consumption (c) were determined using 15N isotopic dilution during a 51-h period of incubation. The rates of N immobilisation were estimated either as the difference between m and the net N mineralisation rate or as the amount of 15N released from the microbial biomass after chloroform fumigation. Soil samples from both swards showed that the rates of gross N mineralisation and NH4+ consumption did not change significantly under elevated pCO2. The lack of a significant effect of elevated pCO2 on organic N turnover was consistent with the similar size of the microbial biomass and similar immobilisation of applied 15N in the microbial N pool under ambient and elevated pCO2. Rates of m and c, and microbial 15N did not differ significantly between the two sward types although a weak (p<0.1) pCO2 by sward interaction occurred. A significantly larger amount of NO3 was recovered at the end of the incubation in soil taken from T. repens swards compared to that from L. perenne swards. Eleven percent of the added 15N were recovered in the roots in the cores sampled under L. perenne, while only 5% were recovered in roots of T. repens. These results demonstrate that roots remained a considerable sink despite the shoots being cut at ground level prior to incubation and suggest that the calculation of N immobilisation from gross and net rates of mineralisation in soils with a high root biomass does not reflect the actual immobilisation of N in the microbial biomass. The results of this study did not support the initial hypothesis and indicate that below-ground turnover of N, as well as N availability, measured in short-term experiments are not strongly affected by long-term exposure to elevated pCO2. It is suggested that differences in plant N demand, rather than major changes in soil N mineralisation/immobilisation, are the long-term driving factors for N dynamics in these grassland systems.  相似文献   

18.
The exclusion of insects from terrestrial ecosystems may change productivity, diversity and composition of plant communities and thereby nutrient dynamics. In an early-successional plant community we reduced densities of above- and below-ground insects in a factorial design using insecticides. Beside measuring vegetation dynamics we investigated the effects of insect exclusion on above- and below-ground plant biomass, below-ground C and N storage by plants, litter quality, decomposition rate, soil water content, soil C:N ratio, nutrient availability and soil microbial activity and biomass.The application of soil insecticide had only minor effects on above- and below-ground biomass of the plant community but increased carbon content in root biomass and total carbon and nitrogen storage in roots. In one of the three investigated plant species (Cirsium arvense), application of soil insecticide decreased nitrogen concentration of leaves (−12%). Since C. arvense responded positively to soil insecticide application, this effect may be due to drought stress caused by root herbivory. Decomposition rate was slightly increased by the application of above-ground insecticide, possibly due to an impact on epigeic predators. The application of soil insecticide caused a slightly increased availability of soil water and an increased availability of mineralised nitrogen (+30%) in the second season. We explain these effects by phenological differences between the plant communities, which developed on the experimental plots. Microbial biomass and activity were not influenced by insecticide application, but were correlated to above-ground plant biomass of the previous year. Overall, we conclude that the particular traits of the involved plant species, e.g. their phenology, are the key to understand the resource dynamics in the soil.  相似文献   

19.
Eutrofication is a threat against nutrient-poor habitats as increased amounts of nutrients in ecosystems may cause changes in the vegetation. Nitrogen (N) deposition leads to conversion of Calluna heathlands into graminoid dominated heath, but low availability of P may hinder or slow down this process.In this study the soil properties under two dominant heathland plants, the dwarf shrub Calluna vulgaris and the grass Deschampsia flexuosa, were investigated, with focus on nutrient content in the organic top soil and soil microbes during the main growing season and effects of nutrient amendments. The concentration of inorganic and dissolved organic N was significantly higher under D. flexuosa than C. vulgaris all though there were the same amounts of total N in the soil below the two species. N and P amendment enhanced available N and P in the soil, but added nutrients had little direct effects on microbes. The microbial biomass on the other hand was positively related to soil water content in fertilized plots indicating that this was due to an indirect effect of enhanced nutrient availability. Microbial N and P pools were respectively 1000 and 100 times higher than the pool of inorganic N and P, and microbes therefore may play an important role in regulating plant nutrient supply. Judged from responses of inorganic and microbial N and P concentrations to added N and P, N seemed to limit C. vulgaris and soil microbes below while P seemed to limit D. flexuosa and soil microbes below this species. There were lower rates of net nitrification, net ammonification and DOC and DON production rates during winter in the soil under C. vulgaris than below D. flexuosa, although all these rates were equal under the two species on an annual basis. This indicates that these microbial processes were taking place during winter but were affected by exudates from C. vulgaris.  相似文献   

20.
Microbial biomass C and N, and activities related to C and N cycles, were compared in needle and leaf litter, and in the uppermost 10 cm of soil under the litter layer in Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.) and silver birch (Betula pendula L.) stands, planted on originally similar field afforestation sites 23–24 years ago. The ground vegetation was differentiated under different tree species, consisting of grasses and herbs under birch and pine, and mosses or no vegetation with a thick layer of needles under spruce. The C:N ratio of the soils was 13–21 and the soil pHCaCl 2 3.8–5.2. Both showed little variation under different tree species. Microbial biomass C and N, C mineralization, net ammonification, reduction) did not differ significantly in soil under different tree species either. Birch leaf litter had a higher pHCaCl 2 (5.9) than spruce and pine needle litter (pH 5.0 and 4.8, respectively). The C:N ratio of spruce needles was 30, and was considerably higher in pine needles (69) and birch leaves (54). Birch leaves tended to have the highest microbial biomass C and C mineralization. Spruce needles appeared to have the highest microbial biomass N and net formation of mineral N, whereas formation of mineral N in pine needles and birch leaves was negligible. Microbial biomass C and N were of the same order of magnitude in the soil and litter samples but C mineralization was tenfold higher in the litter samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号